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Abstract. Second order sliding modes are used to keep exactly 
a constraint of the second relative degree or just to avoid 
chattering, i.e. in the cases when the standard (first order) sliding 
mode application might be involved or impossible. A number of 
new 2-sliding controllers are designed by means of a proposed 
method based on some homogeneity reasoning. A recently 
developed robust exact differentiator being used as a standard 
pan of the 2-sliding controllers, robust output feedback 
controllers with finite-time convergence are produced, capable to 
control any general uncertain single-input-single-output process 
with relative degree 2. Simulation results are presented. 

1. Introduction 

Control under heavy uncertainty conditions is one of the 
main problems of the modem control theory. The sliding- 
mode control approach [17, 18, 31 to the problem is based 
on keeping exactly a properly chosen constraint by means 
of high-frequency control switching. The approach exploits 
the main features of the sliding mode: its insensitivity to 
external and internal disturbances, ultimate accuracy and 
finite-time transient. Nevertheless, the standard-sliding- 
mode usage is bounded by some restrictions. The 
constraint being given by equality of an output variable a 
to zero, the standard sliding mode may be implemented 
only if the relative degree [6] of a is 1. In other words, 
control has to appear explicitly already in the first total 
time derivative a ,  Atso, high frequency control switching 
leads to the so-called chattering effect which is exhibited 
by high frequency vibration of the controlled plant and can 
be dangerous in applications. 

Consider a smooth dynamic system with smooth output 
function a, and let the system be closed by some possibty- 
dynamical discontinuous feedback. Then, provided 

successive total time derivatives a, 6 ,  ..., a are 
continuous functions of the closed-system state-space 
variables and 
the set a = CY= ... = a = 0 is non-empty and 

consists locally of Filippov trajectories [4], 
the motion on the set a = a =  .._ = a = 0 is called r- 
sliding mode (rth order sliding mode 12, 5 ,  71, Fig. 1). The 
additional condition of the Filippov velocity set containing 
more than 1 vector may be imposed in order to exclude 
some trivial cases. 

The standard sliding mode is of the fmt order ( 6  is 
discontinuous). Higher order sliding modes (HOSM) 
remove the above-mentioned restrictions of the I-sliding 
mode. Asymptotically stable HOSMs appear in many 
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systems with traditional sliding-mode control and are 
deliberately introduced in systems with dynamical sliding 
modes [15, 31. In particular 2-sliding modes are used lo 
remove the chattering or to keep constraints of the second 
relative degree. While arbitrary-order sliding finite-time- 
convergent controllers are still theoretically studied [ l l ] ,  
2-sliding controllers are already successfully implemented 
for solution of real problems [IO, 161. Some homogeneity- 
based method is proposed in this paper for the construction 
of new finite-time convergent 2-sliding controllers 
featuring the highest accuracy of 2-sliding control [7]. A 
number of new controllers are presented. 

Unfortunately, mnst of 2-sliding controllers explicitly 
use possibly-unavailable 6 or sign 6 .  The fust difference 
of a is usually used instead of a in order to overcome the 
difficulty [Z, 71. Nevertheless, the resulting performance 
still critically depends on the sampling step which has to 
be chosen in accordance with the measurenient-noise 
magnitude. Thus. the robustness of the controller is 
partially lost. This paper proposes to use a recently 
developed robust exact differentiator [8, 121 as a standard 
part of the 2-sliding controllers. 

The resulting output-feedback controllers preserve the 
ultimate ' accuracy and finite-time convergence of the 
original controllers and do not require any information on 
the noises. Corresponding theorems and simulation results 
are presented. 

Fig. 1: 2-sliding mode 

3. 2-sliding controllers 

Consider a dynamic system of the form 

x = a ( 0 )  + b(f,x)u, a = aft, x). (1) 

where x E R", U E R is control, a is a measured output, 
smooth functions a, b, a and the dimension 11 are unknown. 



The relative degree of the system is assumed to be 2. The 
task is to make the output a vanish in finite time and to 
keep a = 0 by discontinuous feedback control. System 
trajectories are supposed to be infinitely extendible in time 
for any hounded input. The system is understood in the 
Filippov sense. 

Calculating the second total time derivative 6 along 
the trajectories of (1) achieve that under these conditions 

6=h(t,*)+g(t,x)u, h=6l , ,= , ,  g = $ 6  t O  ( 2 )  

where the functions g, h are some unknown smooth 
functions [6]. Suppose that 

0 < K, i $a i KM, I el,,& I i c. (3) 

for some K,, KM, C > 0. These conditions are satisfied at 
least locally for any smooth system (I). Assume here that 
(3) holds globally. Then (2). (3) imply the differential 
inclusion 

6 E [-C, c] + [K,, KM]u. (4) 

Most 2-sliding controllers may be considered as controllers 
for (4) stirring a, a to 0 in (preferably) finite time. 
Inclusion (4) does not “remember” what was the original 
system (1). Thus, such controllers are obviously robust 
with respect to any perturbations preserving (3). 

Hence, the problem is to find such a feedback 

U = cp(0, a ). ( 5 )  

that all the trajectories of (4). ( 5 )  converge in finite time to 
the origin a = ir = 0 of the phase plane a, a . Here ‘p is a 
locally hounded Borel-measurable function (actually all 
functions used in sliding-mode control satisfy this 
restriction). Differential inclusion (4). ( 5 )  is understood 
here in the Filippov sense [4], which means that the right- 
hand vector set is enlarged in a special way in order to 
satisfy certain convexity and semicontinuity conditions. 
Introduce a few simple auxiliary notions to be used further. 

Inclusion (4), (5) and controller ( 5 )  itself are called 
specially homogeneous if for any K > 0 the combined time- 
cwrdinate transformation 

G,: ( I ,  a. 6 )  H ( lo, K’a, K i r )  (6)  

transfers its solutions into the solutions of the transformed 
inclusion. It is easily checked that ( 5 )  is specially 
homogeneous iff 

(7) 
2 

cp(K a, K a )  = Ha, 6 ) .  

Controller ( 5 )  is called weakly stable if all the 
trajectories starting from some centered at the origin disk 
on the plane a, a transfer together in some finite time into 
some disk of a smaller radius, the trajectories being 
uniformly bounded (i.e. being confined in a third disk). 

Consider the case of noisy measurements, when 

= cp(a+qoW. 6 +ql(0). (8) 

where qn, q i  are some unknown hounded Lehesgue- 
measurable functions. Controller ( 5 )  is  called further 
weakly robust to input noises if for sonie E ~ ,  E ,  > 0 the 
resuictions lqol i En. 1q,1 < E, cause controller (8) to be 
uniformly weakly stable (i.e. the three disks are the same 
for all possible noises qo(t), q,(t)). 

Most of known 2-sliding controllers [ I ,  2, 71 satisfy 
these properties. The homogeneity property (7) allows to 
prove their convergence in a very general way. 
Theorem 1. Let controller ( 5 )  be specially homogeneous 
and weakly stable. Then controller ( 5 )  provides forfinite- 
time convergence of any trajectory of (1). (3) info the 2- 
sliding mode a = a =  0, the conuergence time being a 
locally bounded function of the initial conditions in the 
plane a, b .  

Controller (5) requires availability of a .  That 
information demand may be lowered if measurements are 
canied out at times I ,  with constant step 7 > 0. Indeed, let 

(9) 
where ai = D (t:, x(t,)), Aa, = a; a,.,, t E [I,, ti+,). Mark that 
identity (7) inipties ‘p(T2a, Aa,) = cpp(a, Ac/li~). 
Lemma 1. Suppose that controller ( 5 )  is specially 
homogeneous and weakly robust to input noises, then with 
discrete measurements controller (9) provides in finite 
time for  keeping the inequalities la1 <  yo^ , I b I < yi’ with 
some positive constants yo, yI. 
Lemma 2. Under the conditions of Lemma 1 let the 
magnitudes of noises qa, q1 be less than poS and PIS 
respectively with some positive constants Po and PI. Then 
for  any S>O control/er ( 8 )  provides in finite time for  
keeping rhe inequalities 101 < yn6, la I < y,6 with some 

positive constants yo, y, . 
Remarks. The accuracy described in Lemma 1 is the hest 
possible with discontinuous control and relative degree 2 
[7]. Similar results can he formulated for any relative 
degree r and r-sliding controllers, only the homozeneity 
conditions (6), (7) are to he reformulated as in [ I l l .  

Many known 2-sliding controllers may he considered 
as particular cases of a generalized controller 

U = - rl sign& 6 + h,lal sign a) 

2 
U = cp(7 a, Aa,), 

2 

1R 

In 

In . 
IR . - r2 s ign (kb  + &la1 sign a). (10) 

It is easy to check that with appropriate r , ,  r2 (10) satisfies 
the conditions of Theorem 1 and the Lemmas. The 
following theorem is a straight-forward consequence of 
Theorem 1. 
Theorem 2. Let pi, h ,  i = 1,2 be any non-negative 
numbers, such that F, + A; > 0, pl + k > 0, A, + & > 
0. Then there ore such positive values of rj that controller 
(IO) provides forfinite-time convergence of any trajectory 
of (l) ,  (3) into the 2-sliding mode a = 6 = 0. 
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Since under the conditions of Theorem 3 controller 
(IO) satisfies the conditions of the Lemmas, its discrete 
measurement version 

U = - rl sign(pl Aai + h1T lad sign oj) 
112 . 

- rz sign(h A q  + &T la) sign 0,). ( I  I )  
I t 7  . 

provides for the accuracy described in Lemma I .  Similarly, 
its noisy version has the accuracy provided by Lemma 2.  

Controller (IO) may he considered as a generalization 
of the so-called twisting controller [7, 21, when the 
switching takes place on parabolas p a  + hlol sign 0 = 0 
instead of the coordinate axes. Consider some particular 
cases of controllers (IO) and (11). With p, = & = 0, rl > r2 
> 0 achieve the twisting controller 

112 . 

U = - ( r ,  sign a + r2 sign 15 1, 
the convergence condition being 

(rl + r2)Km - C > (rl - rJKM + C, (rl - rJ K ,  > C 

Its convergence on the plane 0, 6 is shown in Fig. 2a. 
With pl = & = 0, r2 > rl > 0 achieve from (11) the drift 
controller [7, 21 (it does not converge with continuous 
measurements). 

A particular case of the controller with prescribed 
convergence law [7,21 arises when & = &, h, = &: 

U = - a sign( 6 + hlal sign a), 
where a = r, + r2, h = hllpl, and the convergence 
condition is 

IR  . 

aK, - c > h2/2 

(Fig 2b). This controller is very close to the terminal 
sliding mode controller [14]. An unexpected "twisting" 
finite-time convergence can appear here if the above 
condition is not satisfied, but still aK, > C (Fig. 3b). 

A new controller appears when (hl, p l )  # (A2, h) and 
all components are nonzero, especially interesting are the 
cases when 

2 2 2 2  
r ,  = r 2 ,  4r,Km - 2C > max(h, I p, , ;12 I h ). 

In that case the trajectory is confined between two 
parabolas (Fig. 2c). The control vanishes in that region. 

One may easily construct other Z-sliding controllers. 
List one more example: 

In 
U = min(R, max[-R, - a (bllal  + h sign 011). (12) 

where R, a, h > 0, RK, - C > h2/2 , d > R (Fig. 2d). The 
control U is not defined here with a = 0, but that is not 
significant, for the solutions of ( I ) ,  (12) are understood in 
the Filippov sense [4] and are not influenced by the control 
values on a set of the measure 0. For example, U may be 
defined by continuity in time for any point except for the 
point a = b = 0. An interesting feature of controller (12) is 
that in that case the discontinuity is concentrated at a = 
a = 0, i.e. the control is a continuous function of time till 

the 2-sliding mode is attained in finite time. Thus in the 
presence of any measurement error the control signal turns 
out to he a continuous one! 

Moreover, let @(y) he any monotonously growing 
positive function of positive argument, then 

U = min(R, max[-R, -a(signa$(lb l/ld ) + @(h) signa]) 

provides for finite-time convergence to 2-sliding mode and 
the accuracies corresponding to Lemmas I ,  2 for any h > 
0 with R, a sufficiently large. 

112 

a. b. 

C. d. 
Fig. 2: Convergence of various 2-sliding controllers 

Any listed controller U = ~ ( a ,  6 ) may also be used with 
relative degree 1 in order to remove the chattering and 
improve the sliding accuracy of the standard sliding mode. 
Indeed, suppose that the original relay control has the form 

U = - sign a. 
Then under certain natural conditions [7] it may be 
replaced by the chattering-free controller 

- u , l u b l  
U =  [ 

cp(Cr,b),lu 151 

3. Robust output-feedback 2-sliding controllers 

The described 2-sliding controllers require direct 
measurement of 6 which is not always possible. 
Therefore, first differences are used (Lemma 2). 
Unfonunately, that decision is also not perfect. Indeed, let 
the maximum possible error in the measurements of a be 6 
> 0. It is easy to check that the algorithm performance is 
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preserved with 6 sufficiently small. But it deteriorates 
when T decreases or 6 increases, for 6 is bounded and the 
measurement error starts to dominate in the measured 
difference Aa. Hence, the sampling time step T is to he 
adjusted with respect to the often-unknown noise 
magnitude 6. Another solution is to make 5 a function of 
measured a [9], which is effective, but not convenient. 

Assume that the function 'p in feedback ( 5 )  he bounded, 
then another way is to calculate 6 in real time by means of 
a robust exact differentiator (8 ,  121. Its application is 
possible due to the boundedness of 6 ,  as it follows from 
(4). The resulting controller has the form 

11 = 'p(G. zJ. 
io = -&I + - a1 
i, = A, sign(+- a), 

(13) 
112 . 

sign(i, - a)+ zI. 

where ho > 0, h, > C +KMUM are the parameters, UM is the 
correspondent maximal absolute value of the control found 
from (5).  Adjustment of h,, h, is described in detail in [XI. 
One of reasonable choices is to take 

The outputs +- z ,  converge in finite time to a and 6 
respectively in the absence of measurement noise. With the 
measurement-error magnitude 6 the maximal deviations 
I+ - a1 and k, - 6 I are proportional in the steady state to 6 
and respectively [8, 121. 
Theorem 3. Under the conditions of Lemma 1, with 
bounded function 'p and properly chosen differentiator 
parameters [SI, controller (13) provides in the absence of 
nieasuremenr noises for finite-rime convergence of each 
trajectory to the 2-sliding mode a = 6 = 0, orhenvise 
convergence to a set defined by the inequalities I d  < yo6, 

In . I6 I < y16 
Theorem 4. Under the condirions of Theorem 3 the 
discrete-measurenient version of controller (13) provides 
in the absence of measurement noises f o r  the inequalities 
101 < yo?, I 6 I < y,r for  some yo. y, > 0. 
Remarks. Also here similar results can be formulated for 
any relative degree r and r-sliding controllers, only the 
homogeneity definitions (6) .  (7) are to be reformulated as 
in [ l l ,  12. 131. 

I S  assured f o r  some positive constants yo, y,, 

4. Sketch of the proofs 

Proof of Theorem 1. Let the trajectories of (4), ( 5 )  starting 
in a disk WO of the radius R finish in a disk W'of the radius 
r < R in time T. Denote K = (r/R) < 1. It is easy to see 
applying transformation (6) that W, 3 G,Wo 2 W: Thus, 
trajectories starting in WO come into W, = C,Wo in time T. 
Denote W, = G:W, , j E Z and achieve that trajectories 
starting in W, in time d T  finish in 

112 

and 

. , . ~ W . , ~ W , ~ W ~ ~  ..., U W ~ = R ~ ,  nW,:={o) ,  
where 0 is the origin. Hence, any trajectory starting in W, 
converges in finite time to the origin, the convergence time 
being estimated by the expression dT(1 + K + K + ... ) = 

dT/(  I - K). A similar procedure is performed for the larger 
disk containing the trajectories starting in the disk WO 
during the time T. As a result achieve a sequence of 
embedded sets retracting to the origin 0. Thus, any 
trajectoly starting at 0 has to belong to all of these sets and 
cannot leave 0. 
Proof of Lemma 1. Identity (7) implies that 'p(r2a, Aa,) = 
9(0. Ais,&), locally Bajr - 6 I<  "i sup16 I. Thus, the weak 
robustness conditions (Section 2) hold for any sufficiently 
small T. It is easy to see that the transfomiation 

2 

6, : (LO, 6 , T ) H ( K f , K 2 0 , K 6 , K Z )  

preserves discrete sampling and transfers solutions of (4). 
(9) into solutions of the same inclusion but with different T. 
It is proved like for Theorem 1 that with some small T~ all 
trajectories concentrate in some set 101 5 do, I 6 I 5 d ,  to 
stay there forever. Applying now G ,  with K =  TIT^ achieve 
the needed asymptotics. 
Proof of Lemma 2. A transformation 6, is used, 

E,: (t. a, 6 ,  qo. q,,  6) H ( U, K~O, ~ 6 ,  ~ ~ q ~ ,  ~ q , ,  26). 
transferring solutions of inclusion (4), (8) into solutions of 
the same inclusion but with 6 changedto K 6. 
Proof of 77ieorem.s 3,4. Let si = zi - o , I = OJ, then 

u='p(a+&. a +<,I,  
toe  -XJ t+ ~ - 6 ,  51 I In sign(h+[-S, 61) +E,,, 

t, E -a, sign(&+ [-6,61), 

2 

IO . 

(14) 

Consider now differential inclusion (4), (14) instead of (4). 
(13). With 6 = 0 variables &, 5, vanish in f ~ t e  time [8, 
121, thus the first part of the Theorem 3 is a trivial 
consequence of Theorem 1. Let now the noise magnitude 6 
> 0. It is easy to see that the transformation 

6 , : ( t , a ,  6,t,,t1,~) H ( ~ , K ~ ~ , K ~ . K ~ ~ , K ~ , , K ~ ~ )  

transfers trajectories of (4). (14) into trajectories of (4), 
(14) hut with changed 6. A homogeneity reasoning 
completes the proof. 

5. Simulation results 

Consider a variable-length pendulum with motions 
restricted to some vertical plane. A load of known mass m 
moves along the pendulum rod (Fig. 3a). Its distance from 
0 equals R(t) and is not measured. There is no friction. 
An engine transmits a torque U which is considered as 
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control. The task is to track some function .rc given in real 
time by the angular coordinate x of the rod. 

The system is described by the equation 

(15) 
.. R .  1 .  1 
x = - 2  - x-g-ssmx+- 

R R  niR2 

where g = 9.81 is the gravitational constant, m = 1 was 
taken. Let 0 < R, 5 R 5 R,, R ,  R , i, and ic be 
bounded, a =x-xc be available. Following are the functions 
R and x, considered in the simulation: 

R = 1 + 0.25 sin&+ 0.5 COS f, 
x, = 0.5 sin 0.51 + 0.5 cos f , 

The relative degree of the system equals 2. The 
assumptions (3) are fulfilled only locally here. In order to 
simplify the demonstration no global free-of-chattering 
control [7] is constructed here. Thus, the controllers 
applied further are effective only for some bounded set of 
initial conditions. The controllers include a real-time 
differentiator and have the form 

U = c(z,. z,). 
(16) 

112 . io= - 61%- a1 s~gn(z , -  a)+ z,. 
i, = - 35 sign&- a), (17) 

where z,, z, are real-time estimations of a, 6 respectively. 
Differentiator (16). (17) is exact for input signals o with 
second derivative not exceeding 30 in absolute value. 

The initial conditions are x(0) = X (0) = 0 were taken, 
~ ( 0 )  = x(0) - x,(O) = - 0.5, z,(O) = 0, the sanlpling step 7 
and the integration steps being the same, T = 0.0001, The 
Euler integration method was used, for it is the only 
method valid for sliding-mode sinNlation 

a: Pendulum b 2-sliding convergence 

E: 2-sliding tracking d: Differentiator convergenct 

Fig. 3: Pendulum and performance of controller (16) - (18) 

Consider a controller of form (IO) 

(18) 
112 . 

U = - 6 sign( I, + 61 %I sign z, ). 
The magnitude of the control is not sufficiently large here 
to establish a 1-sliding mode on the curve 6 +61a1 sign a = 
0, nevertheless the 2-sliding mode a = 6 = 0 is 
established here in finite time according to Theorem 1. The 
phase trajectories in the plane CT, 6 and the first 0.1 
seconds of the differentiator convergence are shown in 
Fig. 3b.c respectively, the corresponding accuracies being 

~6 -3 Ial= Ix-x,  I S 6.4.10 , I6 I = I i - X ,  I S  6.4.10 . 
Consider a controller of form (12) 

U = min(6. max[-6, - 5 (z,A zul U2 + 2 sign z,)]). (19) 

The trajectory and 2-sliding tracking performance in the 
absence of noise are shown in Figs. 4a,b, the 
corresponding accuracies being la1 = Lr - xJ 5 9.1.10 , 
I X - X, I S 2.0.10-3. After the sampling step T was reduced 

from IOA to 10.' the resulting accuracies changed to k - x) 
5 9.6.10-, l X - X c  I 5 2.2.10 which corresponds to the 
statement of Theorem 4. 

The tracking results and the differentiator performance 
in the presence of a noise with the magnitude 0.01 are 
denionstrated in Figs. 4c.d respectively, the corresponding 
accuraciesbeinglal= Ix-x,1SO.011,lX-Xc 150.18.The 
noise was a periodic nonsmooth function with nonzero 
average. The performance does not significantly change 
when the frequency of the noise varies from 10 to 10000. 

-6 

8 4 

a: Z-sliding convergence b: 2-sliding tracking 

c: Noisy hacking d: Noisy differentiation 

Fig. 4 Simulation of controller (16), (17). (19) 

6. Conclusions 

A method is proposed of second-order-sliding-mode 
controller design based on homogeneity reasoning. The 
resulting controllers feature finite-time convergence and 
the maximal possible for 2-sliding mode accuracy [71. A 
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number of new 2-sliding controllers were proposed using 
the new method which significantly increases the number 
of known ?.-sliding controllers [2,7]. 

The construction of a new 2-sliding controller is not 
difficult. One has only to find a specially-homogeneous 
weakly-stable controller, which is easy due to the 
simplicity of the plane geometry. The number of such 2- 
sliding controllers is obviously infinite. 

Theorems I ,  3, 4 and Lemmas 1, 2 are almost literally 
extended to the case of arbitrary relative degree with 
corresponding definition of the homogeneity conditions. 
Unfortunately the very design of new higher-order sliding 
controllers is much more diffrcult due to the higher 
dimension of the problem. 

A real-time robust exact differentiator having been 
used as a standard pan of the 2-sliding controllers, the full 
single-input-single-output control is achieved based on the 
input measurements only. The only requirements are that 
the relative degree of the controlled uncertain process he 2 
and houndedness restrictions (3) hold globally. Othenvise 
they are locally applicable for any smooth process of 
relative degree 2. No exact model of the process is needed. 

The resulting robust output-feedhack controllers 
preserve the ultimate accuracy of the original 2-sliding 
controllers with direct measurements of the input 
derivative. In the absence of noises the tracking accuracy 
proportional to ‘T’ is provided, ‘T being a sampling period. 
That is the best possible accuracy with discontinuous 
second output derivative [7]. In the presence of a 
measurement noise the tracking accuracy is proportional to 
the unknown noise magnitude. That result does not depend 
on the unknown noise features. 

The differentiator is to be used whenever the sampling 
step can he taken small. At the same time in the practically 
imponant case when the sampling step is sufficiently large 
compared with the noises and the output derivative, the 
differentiator is successfully replaced by the first finite 
difference (Lemma I ) .  
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