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Abstract—The proposed kth-order filter is based on sliding
modes (SMs). It exactly estimates k input derivatives in the
absence of noises, and is robust to noises of small magnitudes
or having small average values. Estimation accuracy asymptotics
are calculated. The filter is applied to the real-time accurate
estimation of the equivalent control in SM control systems.

Index Terms—Sliding-mode control, nonlinear filtering, esti-
mation, uncertain systems, discrete event systems.

I. INTRODUCTION

Sliding-mode (SM) control (SMC) is based on the exact
keeping of a properly chosen output σ (the sliding variable)
at zero by means of high-frequency switching control. SMC
systems are accurate, and robust [6], [30], [32]. The main
drawback is the chattering effect [7], [13], [33], [35], [30].

If the relative degree [16] of the output σ is r, the corre-
sponding SM is called the rth-order SM (r-SM, high-order SM
(HOSM)) [2], [5], [6], [11], [18], [26], [24], [25], [27]. The
corresponding control appears in σ(r) and is discontinuous on
the r-SM set σ = σ̇ = ... = σ(r−1) = 0.

HOSM theory requires and develops robust exact differ-
entiators [3], [18], [25] which in finite time (FT) estimate
derivatives f, ..., f (k), provided |f (k+1)(t)| ≤ L holds for
some known L. Noises of small magnitude are filtered out
in an asymptotically optimal way [18], [22]. The new fil-

ter/differentiator proposed in this paper also filters out noises

of small average values. It is still homogeneous, asymptoti-
cally optimal, and only requires the knowledge of L.

We demonstrate the filter application by solving the classic
SMC problem of the equivalent-control [30] estimation. The
equivalent control ueq is the value of control providing for
the equality σ(r) = 0 in an r-SMC system. It is used to
diminish the chattering [4], [10], [15], [29], [31], [34] and
for observation and identification purposes [8], [9], [14], [28].
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Since 1970s equivalent control is estimated by Utkin’s
method [30] exploiting the low-pass filter ż = −α(z − u(t))

of the switching control u keeping σ(r−1) ≈ 0. Provided α is
properly chosen, z estimates ueq with a good accuracy under
the conditions that sup |σ(r−1)(t)| is small, u and u̇eq are
bounded. These and some other conditions appear in [30] and
are proved to be unremovable in this paper.

A number of the cited papers assume that a good or even
exact estimation of ueq is available in real time. Unfortunately
that assumption is difficult to satisfy. Indeed, Utkin’s method
[30] requires sup |σ(r−1)(t)| ≤ ε to hold for some known ε.
Moreover accuracy optimization implies α(ε) → ∞ as ε →
0, but sup |z − ueq| approximates the switching component
magnitude for each fixed ε > 0 and sufficiently large α.

Only approximate SMs (real SMs [30]) allow evaluation of
ueq , since in the exact SM σ ≡ 0 the control u features infinite-

frequency switching, i.e. ceases to be a function of time (Fig.

1b). The best possible result is that the estimation be asymptot-
ically exact, i.e. exact in the limit when sup |σ(r−1)(t)| → 0,
whereas the filter parameters remain fixed.

Let |u(k+1)
eq | ≤ L, k ≥ 0. Our new kth-order fil-

ter/differentiator directly “differentiates” the chattering con-
trol u(t) producing asymptotically exact estimations of
ueq, ..., u

(k)
eq . The estimation accuracy asymptotics are calcu-

lated in the presence of discrete noisy sampling.

II. THE PROPOSED FILTER

A. Filtering signals sampled continuously (i.e. all the time)

Assumption 1. The unknown function f0(t), t ≥ 0, is avail-

able in real time by its noisy approximation f(t) = f0(t) +

η(t)+ηc(t). It is known that the derivative f (k)
0 exists and has

the known Lipschitz constant L > 0. The first noise component

η(t) is Lebesgue-measurable and (essentially) bounded, i.e.

|η(t)| ≤ δ for some unknown δ ≥ 0.

Assumption 2. The second noise component ηc(t) is

Lebesgue-measurable and approximately centralized at zero,

i.e. it is integrable and the inequality |
∫ t

0
ηc(s)ds| ≤ ε holds

for any t ≥ 0 and some unknown ε ≥ 0.
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The problem is to accurately restore f0, ḟ0, ..., f
(k)
0 in finite

time (FT). We call k ≥ 0 the order of the problem and the
corresponding filter. The stated problem turns into the standard
differentiation problem [18] if ηc ≡ 0.

Following [6], [25] denote bωeγ = |ω|γ signω for any
ω, γ ∈ R, ω 6= 0. Let also bωe0 = signω, ∀γ > 0 : b0eγ = 0.
Then the proposed filter of the kth order is

ż−1 = −λ̃k+1L
1
k+2 bz−1e

k+1
k+2 + z0 − f(t),

ż0 = −λ̃kL
2
k+2 bz−1e

k
k+2 + z1,

...

żk−1 = −λ̃1L
k+1
k+2 bz−1e

1
k+2 + zk,

żk = −λ̃0Lbz−1e0,

(1)

where λ̃i > 0, i = 0, 1, ..., k+1. The solutions are understood
in the Filippov sense. Here zi estimates f (i)

0 for i ≥ 0, z−1 is
an auxiliary variable. It is reasonable to take z−1(0) = 0.

Similarly to [18] (1) can be rewritten in the recursive form

ż−1 = v−1 − f(t),

v−1 = −λk+1L
1
k+2 bz−1e

k+1
k+2 + z0,

ż0 = v0 = −λkL
1
k+1 bz0 − v−1e

k
k+1 + z1,

...

żk−1 = vk−1 = −λ1L
1
2 bzk−1 − vk−2e

1
2 + zk,

żk = vk = −λ0Lbzk − vk−1e0.

(2)

where λ̃0 = λ0, λ̃k+1 = λk+1, and λ̃j = λj λ̃
j/(j+1)
j+1 ,

j = k, k− 1, . . . , 1. Hence, filter (1) has one internal variable
more than the kth-order differentiator [18] and differs from
the differentiator [18] of the order k + 1 by its entry point.

Theorem 1. For any λ0 > 1 there exists an infinite sequence

{λi}, λi > 0, i = 0, 1, ..., chosen recursively sufficiently large

in the list order, such that under assumptions 1,2 for any k,

ε, δ ≥ 0 the kth-order filter (1) in FT provides for the accuracy

|z−1| ≤ µ−1L$
k+2, $ = max[( εL )

1
k+2 , ( δL )

1
k+1 ]

|zi − f (i)
0 | ≤ µiL$k−i+1, i = 0, ..., k,

(3)

for any initial values. For each k the coefficients µi > 0 only

depend on the filter parameters λi, i ≤ k + 1. In particular

the filter converges in FT to exact derivatives for ε = δ = 0.

The sequence λj is the same as for the standard (k+ 1)th-
order differentiator [18]. In particular, the starting numbers of
Λ = {λj}∞j=0 = {1.1, 1.5, 2, 3, 5, 7, 10, 12, ...} are sufficient
for k ≤ 6 [22].

In the following proofs we denote W (t) =
∫ t

0
ηc(s)ds (it

becomes a sum in the next subsection), ω−1 = (z−1 +W )/L,

ωi = (zi − f (i)
0 )/L for i = 0, ..., k.

Proof of Theorem 1. Add Ẇ = ηc(t) to the both sides of the
equation for z−1 of (1) and subtract f (i+1)

0 from the both sides
of the equations for zi, i = 0, ..., k. Now using |f (k+1)

0 | ≤ L,
z−1 = Lω−1 −W , |W | ≤ ε, and dividing by L obtain the
differential inclusion (DI)

ω̇−1 ∈ −λ̃k+1

⌊
ω−1 + ε

L [−1, 1]
⌉k+1
k+2

+ δ
L [−1, 1] + ω0,

ω̇0 ∈ −λ̃k
⌊
ω−1 + ε

L [−1, 1]
⌉ k
k+2 + ω1,

ω̇1 ∈ −λ̃k−1

⌊
ω−1 + ε

L [−1, 1]
⌉k−1
k+2 + ω2,

...

ω̇k ∈ −λ̃0

⌊
ω−1 + ε

L [−1, 1]
⌉0

+ [−1, 1].

(4)

Increase the uncertainties using ε ≤ L$k+2, δ ≤ L$k+1. The
resulting DI

ω̇−1 ∈ −λ̃k+1

⌊
ω−1 +$k+2[−1, 1]

⌉k+1
k+2

+$k+1[−1, 1] + ω0,

ω̇0 ∈ −λ̃k
⌊
ω−1 +$k+2[−1, 1]

⌉ k
k+2 + ω1,

ω̇1 ∈ −λ̃k−1

⌊
ω−1 +$k+2[−1, 1]

⌉k−1
k+2 + ω2,

...

ω̇k ∈ −λ̃0

⌊
ω−1 +$k+2[−1, 1]

⌉0
+ [−1, 1].

(5)

is homogeneous of the degree −1 with the weights degωj =

k − j + 1, j = −1, 0, ..., k, and deg$ = 1 [21]. Here $

measures the intensity of the homogeneous disturbance [6],
[21]. It is FT stable for $ = 0 [18], thus for arbitrary $ ≥ 0

obtain the required accuracy [21].

Remark 1. The proved accuracy (3) coincides with the
accuracy of the standard differentiator [18] for ε = 0, i.e.
the new differentiator (1) is asymptotically optimal [22]. The
proved robustness to noises with small averages significantly
extends the integral input-to-state stability feature [6].

It is similarly proved that moving the term −f(t) from the
first line of (1) to the equation on zi, i = 1, .., k− 1, one also
obtains new alternative asymptotically-optimal homogeneous
differentiators of lower orders.

B. Discrete filter for signals sampled at discrete times

Discrete sampling can destroy the centralization of the noise
ηc at 0. Indeed, one can easily get a constant signal instead of
a switching signal ±1. Thus, Assumption 2 is to be replaced
with its discrete version.

Assumption 3. The input function f is sampled at the instants

t0, t1, ..., t0 = 0, 0 < tj+1 − tj = τj ≤ τ . The noise ηc(tj)



3

is approximately centralized at zero, i.e. |
∑j
s=0 ηc(ts)τs| ≤ ε

holds for any j ≥ 0 and some unknown ε ≥ 0.

Denote filter (1) by ż = Fk,Λ(z, f, L), where z ∈ Rk+2.
Then the following is the discrete version of filter (1) fitting
computer-based applications:

z(tj+1) = z(tj) + Fk,Λ(z(tj), f(tj), L)τj + Tk(z(tj), τj),

(6)
Here Tk(z(tj), τj) ∈ Rk+1 is the vector of Taylor-like terms,

Tk,−1

Tk,0

...

Tk,i

...

Tk,k−2

Tk,k−1

Tk,k


=



0
1
2!z2(tj)τ

2
j + ...+ 1

k!zk(tj)τ
k
j

...∑k
s=i+2

1
(s−i)!zs(tj)τ

s−i
j

...
1
2!zk(tj)τ

2
j

0

0


. (7)

In particular T0(z, τ) = 0 ∈ R2, T1(z, τ) = 0 ∈ R3.

The identically equivalent recursive form of filter (6) is

z(tj+1) = z(tj) + Vk,Λ(z(tj), f(tj), L)τj + Tk(z(tj), τj),

(8)
where Vk(z(tj)) = (v−1, ..., vk)T ∈ Rk+2 is defined in (2).

Theorem 2. Let {λi}, i = 0, 1, ..., be chosen as in Theorem

1. Then under assumptions 1,3 for any k, ε, δ ≥ 0, τ > 0 the

kth-order filter (6) in FT provides for the accuracy

|z−1| ≤ µ−1L$
k+2, $ = max[( εL )

1
k+2 , ( δL )

1
k+1 , τ ]

|zi − f (i)
0 | ≤ µiL$k−i+1, i = 0, ..., k,

(9)

at each tj for any initial values. For each k the coefficients

µi > 0 only depend on the filter parameters λs, s ≤ k + 1.

Proof. Let W (tj) =
∑j−1
s=0 ηc(ts)τs, W (0) = 0. Adding

W (tj+1) to the both sides of the equation for z−1 in (6),
subtracting the Taylor expansion

f
(i)
0 (tj+1) =

∑k
s=i

f
(s)
0 (tj)
(s−i)! τ

s−i
j + θi

(k−i+1)!τ
k−i+1
j ,

|θi| ≤ L, from the both sides of the equation for zi, i ≥ 0,
and dividing by L, similarly to the previous proof get a ho-
mogeneous discrete system with the weights deg t = deg τ =

deg τj = 1, degωi = k+ 1− i, deg ε = k+ 2, deg δ = k+ 1.
Its solutions approximate solutions of the undisturbed DI (4).
The rest of the proof is similar to [23] and uses [21].

III. ESTIMATION OF EQUIVALENT CONTROL IN SMC

A. Sliding-mode control framework

Consider a smooth dynamic system of the form

ẋ = a(t, x) + b(t, x)u, x ∈ Rn, u ∈ Rm, (10)

with the vector sliding variable σ(t, x) ∈ Rm, closed by the
discontinuous feedback

u = U(t, x). (11)

Let the system have the vector relative degree r =

(r1, ..., rm) [16]. Denoting σ(r) = (σ
(r1)
1 , ..., σ

(rm)
m )T , obtain

σ(r) = h(t, x) + g(t, x)u, (12)

where det g(t, x) 6= 0 [16]. The functions h(t, x) and g(t, x)

are smooth and usually unknown in SMC.
The function ueq ,

ueq(t, x) = −g−1(t, x)h(t, x), (13)

which satisfies σ(r)(t, x, ueq(t, x)) = 0 is called the equivalent

control [30]. Therefore, (12) is rewritten as

σ(r) = g(t, x)(u− ueq(t, x)). (14)

Due to the discontinuity of U(t, x) when σ ≡ 0, the
solutions of the closed-loop system are understood in the
Filippov sense [12], and the corresponding motion σ ≡ 0 is a
sliding-mode (SM) motion of the order r (r-SM) [18].

Since the system dynamics (10) are nowhere involved, for
simplicity we often omit the argument x(t) and, for example,
write ueq(t) and σ(t) instead of ueq(t, x(t)) and σ(t, x(t)).

Remark 2. The Filippov dynamics of the r-SM σ ≡ 0 are
limit motions on the discontinuity set of U(t, x) obtained when
some switching imperfections Π gradually vanish, Π→ 0 [12].
Since limΠ→0 u(t) does not exist (Fig. 1b), the control signal

does not exist as a function of time t and cannot be filtered in

the ideal SM. The very requirement of the control signal to be
available in the SM makes the SM only approximate, σ ≈ 0.

In the approximate SM (real SM [30]) the average value
of the control u(t) approximates the equivalent control [12],
[30]. The value of the equivalent control is very important,
since it allows chattering attenuation and SM adaptation by
canceling the term h in (12) [4], [10], [15], [29], [31], [34],
and is useful in observation [8], [9], [14], [28].

Below we estimate the function ueq(t) and its time deriva-
tives u̇eq, ..., u

(k)
eq in real time, provided the approximate r-SM

is kept and the applied control u(t) is available.
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B. Equivalent control: conventional estimation

The following are the slightly generalized standard assump-
tions by Utkin [30] for the estimation of ueq . Only two

numbers k, L appearing below are needed for the application

of filter (1). The classic equivalent-control estimation method
[30] also requires the knowledge of the SM accuracy ε.

Assumption 4. The actual control u(t) entering (12) is a

Lebesgue-measurable bounded function of time. From the

starting moment t = 0 a real SM holds keeping ||σ(r−1)|| ≤ ε,
where r − 1 = (r1 − 1, r2 − 1, . . . , rm − 1).

Assumption 5. The vector input u(t) ∈ Rm of the system (12)
is available in real time by its Lebesgue-measurable approxi-

mation ũ(t), ||ũ − u|| ≤ δ. The input u and the function ueq
are uniformly bounded, ||u|| ≤ UM , ||ueq(t, x(t))|| ≤ UM .

The equivalent control (13) has k total time derivatives along

the trajectory, the last one, u(k)
eq (t, x(t)), being Lipschitzian

with the known Lipschitz constant L, ||u(k+1)
eq || ≤ L, L > 0.

The matrix ġ(t, x(t), u(t)) = g′t + g′x(a + bu) is bounded,

||ġ|| ≤ Dg; also det g(t, x(t)) 6= 0, ||g−1|| ≤ Cg .

Assumptions 4, 5 accept ε = 0, since there exists a function
u(t) which keeps σ ≡ 0. Remark 2 is still valid. Boundedness
of ueq and u

(k+1)
eq implies the boundedness of u̇eq, ..., u

(k)
eq

[17]. Due to (13) the additional boundedness of g would lead
to the boundedness of h as well.

The assumption that the control u(t) actually entering (12)
is available in real time is important and non-trivial, since only
it contains the information on ueq . In practice it may require
ũ(t) to be produced by a sensor at the actuator output.

The standard method [30] applied today in SMC was
proposed by Utkin in 1970s and suggests application of the
completely decoupled low-pass filter

α−1żu + zu = ũ(t), zu(0) = 0, zu ∈ Rm, α > 0. (15)

Its vector output zu tracks ueq(t). The solutions are understood
in the Caratheodory or Filippov sense [12].

The main result here belongs to Utkin [30], but it has
never been formulated in a complete mathematical form. The
auxiliary lemma ([30], p.23) that is usually cited in that context
is inexactly formulated in spite of accurate proof calculations.
The following theorem formulates Utkin’s result and extends
it to the noisy control sampling (for δ > 0) and the relative
degrees different from (1, ..., 1).

Theorem 3. Let k = 0, then under assumptions 4, 5 filter

(15) provides for the inequalities

||zu(t)− ueq(t)|| ≤ e−αt(
√
mUM + Cgε)

+
√
mLα−1 + C2

gDgε+ 2Cgαε+
√
mδ,

||zu(t)− ueq(t)|| ≤ 2
√
m(UM + δ).

(16)

The proof of the first inequality is similar to the proof of
the mentioned Utkin’s lemma [30] and is omitted. The second
one trivially follows from |ũl| ≤ UM + δ, ũ = (ũ1, ..., ũm)T .
Rewrite (16) as

||zu(t)− ueq(t)|| =

O(1)e−αt +O(L/α) +O(min[αε, UM ]) +O(δ) (17)

for large α and small ε, δ.

We say that φ(w) = O(ψ(w)) is strictly O(ψ(w)) as w →
w0, w0 ∈ Rnw

∞ , R∞ = R ∪ {∞,−∞}, if in a vicinity of w0

a) the equality ψ(w) = 0 implies φ(w) = 0, and b) |φ/ψ| is
bounded and separated from zero whenever ψ(w) 6= 0.

Proposition 1. 1. Under Assumptions 4, 5 for k = 0 the

accuracy (17) is unimprovable, i.e. for some systems all O(·) in

(17) are strict. The worst-case error satisfies lim sup ||zu(t)−
ueq(t)|| ≥ UM for α→∞, t→∞ and any fixed ε > 0.

2. Removal of each one of boundedness conditions on u̇eq ,

ġ or g−1 destroys the uniform asymptotics (17). By that we

mean that for some δ ≥ 0, ρ0 > 0 and any α, ε > 0 there

are system (12) and u(t) satisfying the respectively modified

assumptions such that for any t0 > 0 and zu(0) the inequality

||zu(t)− ueq(t)|| ≥ ρ0 holds for some t > t0.

Proof. The formal proof consists of 4 proper examples. It is
enough to take m = 1.

1. To prove Statement 1 one takes (10), (12), u(t) in the form
σ̇ = −UM cos(Lt) + u, u = UM cos(Lt) + UM cos(UM

ε t),
ũ = u+ δ, σ(0) = 0.

2. The boundedness of u̇eq is removed in the system σ̇ =

−2 sin2( 1
2ε t) + u, ũ = u = 1, σ(0) = 0. ||zu − ueq|| ≥ 0.5 is

observed for some t in spite of fixed UM = Cg = Dg = 2.

Let δ = 0 and [w] be the maximal integer not exceeding
w. Consider σ̇ = g(t)u(t), σ(0) = 0, where u(t) = 1 +

2 · (−1)[t/T ], T > 0. Let g ∈ γ[1, 5], γ > 0, and define
ġ = −10γT−1 sign(uσ) with saturation/stopping at γ and 5γ,
g(0) = 3γ. It is easy to check that |σ| ≤ ε = 3γT is kept for
all t ≥ 0.

Now taking T = 1/N , N = 1, 2, ..., γ = 1, obtain a
counterexample for unbounded ġ. If also γ = 1/N obtain
an example with bounded ġ, but unbounded 1/g. In all cases
ueq ≡ 0, filter (15) has the same predefined input, and zu
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infinitely many times crosses the mean value 1 of u.

No choice of α makes filter (15) exact. Too small values of
α lead to low accuracies, too large values lead to the control-
switching-magnitude-order errors. Nevertheless, filter (15) has
been used for arbitrary-order approximate differentiation [14].

A reasonable strategy is taking α proportional to
√
L/ε.

The main problem of that strategy is that the accuracy ε of
the sliding mode is required to be available.

C. Equivalent control: asymptotically exact estimation

The proposed equivalent-control estimator gets the form

żl = Fk,Λ(zl, ũl, L), l = 1, ...,m;

zl = (zTl,−1, ..., z
T
l,k)T ∈ Rk+2.

(18)

Here the output zl,i approximates u(i)
eq,l, i = 0, 1, ..., k, zl,−1

are auxiliary internal variables.

In the following the time needed to converge to the exact
values of ueq and its derivatives for ε = δ = 0 is called the

transient time.

Theorem 4. Under Assumptions 4, 5 for any ε, δ ≥ 0 the

kth-order filter (18) in finite time provides for the accuracy

|zl,i − u(i)
eq,l| ≤ µliLρk−i+1, ρ1 = ε[3Cg + C2

gDg]

ρ = max{(ρ1L )
1
k+2 , ( δ+ρ1L )

1
k+1 },

i = 0, ..., k, l = 1, ...,m,

(19)

for any initial values. The coefficients µli > 0 only depend

on the filter parameters λ0, ..., λk+1. The transient time is

uniformly bounded for the initial value z(0) = 0, i.e. in that

case it depends only on UM , L, λ0, ..., λk+1.

In particular, the observer is FT exact if ε = δ = 0. The
theorem proof uses the following technical lemma.

Lemma 1. Let γ > 0 and consider the auxiliary equation

ẇe = u(t)− ueq(t)− γwe, we(0) = 0 ∈ Rm. (20)

Then for any t ≥ 0 (20) provides for

||we|| ≤ ργ = ε[3Cg + γ−1C2
gDg]. (21)

Proof. Taking (14) into account and integrating by parts get

we = e−γt
∫ t

0

eγsg−1(s)σ(r)(s)ds =

g−1(t)σ(r−1)(t)− g−1(0)σ(r−1)(0)e−γt

− e−γt
∫ t

0

[γeγsg−1 − eγsg−1ġg−1]σ(r−1)(s)ds,

where the argument s of g−1, ġ is omitted. Hence,

||we|| ≤ 2Cgε+ ε[Cg + γ−1C2
gDg][1− e−γt]

≤ ε[3Cg + γ−1C2
gDg].

Proof of Theorem 4. Apply Lemma 1 and rewrite

ũ = ueq + (u− ueq − γwe) + (γwe + ũ− u).

Introduce the “noises” ηc,l = ul−ueq,l−γwel, ηl = ũl−ul+
γwel, |ηl| ≤ δ + γργ . Applying Theorem 1 component-wise
and taking into account ||(1, ..., 1)|| =

√
m obtain the stated

accuracy (19), but for ρ1 = ργ . That accuracy estimation is
true for any γ > 0. Taking γ = 1 obtain the theorem.

The accuracy asymptotics of the novel kth-order filter are
better than those of the classical filter (15). Indeed, consider
systems satisfying Assumptions 4, 5 for both filter orders 0

and k ≥ 0, and fix all corresponding assumption parameters.
Let zu(0) = 0, z(0) = 0. Then for any α > 0

lim
ρ→0

lim supt→∞ ||z0(t)−ueq(t)||
lim supt→∞ ||zu(t)−ueq(t)|| = 0,

where z0 = (z1,0, ..., zm,0)T , and the upper limits are taken
over all systems satisfying the assumptions. The formula
follows from the first statement of Proposition 1 and (19).

Consider the overall system (10), (11), (18) with the ideal
SM σ ≡ 0 and ũ = u. Then filter (18) becomes a part of
the overall Filippov dynamics, and its solution is understood
differently than in Theorem 4.

In the SM the signal u(t) is undefined (Remark 2). To find
the solution one formally replaces ũ, u with ueq in (10), (11),
(12), (18) (the equivalent-control principle [30], [12]). Since
ε = δ = 0, Theorem 4 now implies zl,i(t) ≡ u

(i)
eq,l(t) in

FT along the Filippov solutions. Since Filippov solutions are
limits of real-SM solutions [12], it still only means that zl,i−
u

(i)
eq,l → 0 as various switching imperfections vanish.

Example 1. Homogeneous SMC is convenient for testing
filter (18) due to the availability of the SM accuracy [19]
(see Section IV). Let the feedback (11) be homogeneous r-
SM control [20]. Then, if each σl is sampled with error not
exceeding εw,l ≥ 0 and sampling-time intervals not exceeding
τw ≥ 0, the control [20] in FT provides for the SM accuracy

|σ(i)
l | ≤ νliρ̃

rl−i, ρ̃ = max
l

[τw,max
l
ε

1
rl
wl ]. (22)

where i = 0, 1, ..., rl − 1, l = 1, 2, ...,m [21]. Thus
||σ(r−1)|| ≤ ν̃ρ̃ for some ν̃ > 0. Correspondingly Theorems
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3 and 4 for sufficiently small εwi, τw imply that

1. under Assumptions 4, 5 with k = 0 and ũ = u (i.e.
δ = 0) filter (15) provides for the accuracy

||zu(t)− ueq(t)|| = O(1)e−αt +O(L/α) +O(αρ̃); (23)

2. under Assumptions 4, 5 with ũ = u (i.e. δ = 0) filter
(18) provides for the accuracy

|zl,i − u(i)
eq,l| ≤ µliL

1+i
k+2 ρ̃

k−i+1
k+2 , i = 0, 1, ..., k, (24)

for some constants µli > 0 depending only on the parameters
of the SMC system, and the parameters Λ of the filter.

D. Discretization of filters

Nowadays filters (15), (18) and controller (11) are usually
implemented by computer technique. Then both ũ(t) and u(t)

become piece-wise constant. As previously let the sampling
instants be tj = t0, t1, ..., t0 = 0, tj+1 − tj = τj > 0.

Direct integration of (15) over t ∈ [tj , tj+1] results in

z(tj+1) = e−ατjz(tj) + (1− e−ατj )ũ(tj), (25)

which can be used instead of (15) in that case.

Since the filters are decoupled, it is enough to consider the
scalar case m = 1. The corresponding filter naturally takes the
form (6) and (8) with ũ substituted for f . Discrete filters ready

for immediate use are presented in Section IV for k = 0, 1.

The following theorem is proved in the same way as Theorem
2 using Lemma 1 as in Theorem 4.

Theorem 5. Under the conditions of Theorem 4 let τj ≤ τ

for some constant τ > 0. Then the multi-input version of the

discrete filter (6) provides for the accuracy

|zl,i − u(i)
eq,l| ≤ µliLρk−i+1, i = 0, ..., k, l = 1, ...,m,

ρ = max{[ρ1L ]
1
k+2 , [ δ+ρ1+ρ2

L ]
1
k+1 , τ},

ρ1 = ε[3Cg + C2
gDg], ρ2 = τ [2L

1
k+1U

k
k+1
M + 2UM + ρ1],

(26)
at the sampling instants tj . The constants µli > 0 are

determined by the filter parameters Λ.

Continuous-time estimation accuracies (23), (24) (Example
1) and Theorem 5 imply that, provided the sampling instants
of the filters and the system coincide, τ = τw, the discrete
filters have the same asymptotic accuracies (23) and (24).

IV. SIMULATION

The following are novel discrete filters/differentiators (6) of
the most practical orders k = 0, 1. The 0th order filter extracts

the basic component f0 of f and has the equations

z−1(tj+1) = z−1(tj)+

(−1.5L
1
2 bz−1(tj)e

1
2 + z0(tj)− f(tj))τj ,

z0(tj+1) = z0(tj)− 1.1L sign(z−1(tj))τj .

(27)

The 1st-order filter for estimating f0, ḟ0 is

z−1(tj+1) = z−1(tj)+

(−2L
1
3 bz−1(tj)e

2
3 + z0(tj)− f(tj))τj ,

z0(tj+1) = z0(tj)+

(−2.12L
2
3 bz−1(tj)e

1
3 + z1(tj))τj ,

z1(tj+1) = z1(tj)− 1.1L sign(z−1(tj))τj .

(28)

In the following we take equal sampling steps τ = τj . Initial
values are zeroed at t = 0, z(0) = 0.

Figure 1. Convergence of the 1st-order filters for τ = 10−6: a. filter-
ing/differentiating a signal corrupted by the Gaussian noise with dispersion
5; b. filtering/differentiating the chattering SM control (29).

Filtering signals. Simulation shows that the novel differ-
entiator demonstrates practically the same performance and
accuracy as the standard differentiator [18] for k = 0, 1, ..., 5

in the presence of bounded (small) noises.

Consider the signal f(t) = f0(t) + η(t) where f0(t) =

sin 0.5t+ cos t, and η(tj) is a Gaussian random variable with
the standard deviation 5 and the mean 0. Due to the central-
limit theorem such noise in practice satisfies Assumptions 1,
3. Results of filtering the signal f for k = 1, L = 2 and the
sampling step τ = 10−6 are shown in Fig. 1a. The accuracies
|z0 − f0| ≤ 0.05, |z1 − ḟ0| ≤ 0.36 are obtained.

Estimating the equivalent control. Consider a simple SMC
system (Example 1) with the twisting controller [18]

σ̈ = cos t+ (2 + sin(2t))u, u = −9 signσ − 6 sign σ̇. (29)

Obviously Assumptions 4, 5 hold here for any k = 0, 1, ....
In particular |u̇eq|, |üeq| ≤ L = 30. Let f = ũ = u, δ = 0.
The initial values σ(0) = 5, σ̇(0) = −3 are taken. The system
enters the SM at t = 2.45. Let z(0) = 0, zu(0) = 0. The 1st-
order filter converges at 3.05 (Fig. 1b). The conventional filter
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(25) with α = 30 and the new filter of the 0th order converge
practically simultaneously at 2.5.

The accuracies are calculated as the corresponding maximal
deviations for t ∈ [5, 10]. Due to (22) in the steady state
ε = sup |σ̇| is roughly proportional to τ [21]. According to
Example 1 the 0th-order filter (27) provides for the accuracy
z0−ueq = O(τ1/2). The conventional filter (15) (or (25)) has
the same optimal accuracy zu − ueq = O(τ1/2), provided α

is kept proportional to τ−1/2. The 1st-order filter (28) has the
better accuracy z0 − ueq = O(τ2/3), z1 − u̇eq = O(τ1/3).

Consider the classical filter (25). First let the sampling step
be τ = 10−4. System (29) keeps the accuracies |σ| ≤ 4.9·10−6

and |σ̇| ≤ ε = 0.013. The roughly best accuracy |z − ueq| ≤
0.16 is obtained for α = 10. The accuracies obtained for α =

30 and α = 100 are 0.17 and 0.47 respectively (Fig. 2).

Let now the sampling step be τ = 10−5. System (29) keeps
the accuracies |σ| ≤ 5.0 · 10−8 and |σ̇| ≤ ε = 0.0013, which
corresponds to the standard asymptotics (22). The best accu-
racy of filter (25) is expected for α ≈

√
10−4/10−5 ·10 ≈ 30.

And indeed, the accuracies obtained for α = 10, 30, 1000 are
0.12, 0.066, 0.47 respectively (Fig. 2). Note that for each τ the
error becomes large for large α (Fig. 2).

Figure 2. Performance of the classic filter (15) over the interval [5, 6]. The
roughly best performance for τ = 10−4 is obtained for α = 10, while the
value α = 30 is the best for τ = 10−5.

The 0th-order filter (27) with L = 30 yields the accuracies
|z0 − ueq| ≤ 0.085 and |z0 − ueq| ≤ 0.021 for τ = 10−4 and
τ = 10−5 respectively, while the 1st-order filter demonstrates
the accuracies |z0 − ueq| ≤ 0.04, |z1 − u̇eq| ≤ 0.65 for τ =

10−4 and |z0− ueq| ≤ 0.008, |z1− u̇eq| ≤ 0.29 for τ = 10−5

according to Example 1. One does not need to adjust the filter
parameters with respect to ε or τ (Fig. 3).

The obtained accuracies of the 0-order filters (27) and (25)
are indeed of the same order, provided the conventional filter
parameter is adjusted as α = O(τ−1/2). Comparison of the
graphs is shown in Fig. 4. Note the chattering of the linear
filter output.

Figure 3. Performance of the nonlinear filters (27) and (28) over the interval
[5, 6] for τ = 10−4, 10−5.

Figure 4. Comparison of the classic filter (15) with optimaly chosen α(τ)
and the output zu, and the nonlinear filter (27) of the 0th order with fixed
parameters and the output z0 over the interval [5, 6] for τ = 10−4, 10−5.

The general performance of all the considered filters does
not depend on the SM order. Indeed, the asymptotics (17), (19)
do not depend on r. The estimation errors are not centralized
at 0 in Figs 2-4, since they are determined by the limit orbits
of the discrete-SM steady-state dynamics [1], [33], [35].

V. CONCLUSIONS

A novel FT-exact homogeneous differentiator is proposed
which is based on the ideas of [18], while being robust not
only to small noises, but also to any noises approximately
centralized at zero. In particular, in simulation it has been
shown to successfully reject large Gaussian white noises. The
only needed information for the kth-order differentiation still
is a rough Lipschitz constant L of the kth input derivative.

The proposed differentiator is both homogeneous and
asymptotically optimal [22] in the presence of bounded noises.
The simulation shows that the obtained accuracies and perfor-
mance are also practically identical to those of the standard
differentiators [18]. Thus, one comes to the conclusion that
the new differentiator overcomes its predecessor [18].

The novel kth-order differentiator is applied to solving the
classical SMC problem of the equivalent control estimation.
It directly “differentiates” the chattering SM control, filters
out the chattering component and produces the estimations
of the equivalent control ueq and its k derivatives, provided
|u(k+1)
eq | ≤ L holds.
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The very nature of that SMC problem requires the SM to
be approximate, since in the ideal r-SM σ ≡ 0 the switching
control u is not a function of time and cannot be processed.
But the output of our filter converges to the exact equivalent
control ueq as the switching imperfections and the SM error
ε vanish. Our filter is asymptotically exact in that sense.

The main alternative for the equivalent control estimation
is the classic linear filter (15) by Utkin [30]. No value of its
only parameter α makes it asymptotically exact. The needed
conditions [30] are the same as for our differentiator, but α
is to be a function of the usually unknown SM accuracy ε.
Moreover, α → ∞ makes the worst-case estimation error
approach the switching-control-component magnitude. We list
the conditions by Utkin for the application of filter (15),
calculate its accuracy (Theorem 3), and prove that none of
these conditions can be removed (Proposition 1).

For any order k ≥ 0 and α > 0 for sufficiently small ε our
kth-order filter provides for the worst-case error lower than
the linear filter (15). The higher k the better the accuracy.

We believe that the new differentiator/filter will prove
its effectiveness in signal processing. A number of well-
known adaptation and observation methods based on
equivalent-control estimations will benefit from the proposed
asymptotically-exact method.

Acknowledgment. The authors highly appreciate the comment
on the filter structure by the anonymous reviewer.
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