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Abstract

Design of Multi-Input Multi-Output (MIMO) Homogeneous Slid-
ing Modes (HSMs) for uncertain dynamic systems is considered. The
resulting closed-loop systems feature all well-known standard proper-
ties of Single-Input Single-Output (SISO) HSM systems. Introduction
of robust exact differentiators produces homogeneous output-feedback
controllers. The ultimate asymptotic accuracy of SISO HSM technique
is proved to be preserved in the MIMO and SISO cases, if the discrete-
time implementation is based on the one-step Euler integration.

1 Introduction

Sliding-mode (SM) control is an effective technique to control systems under
heavy uncertainty conditions. The main idea is to remove the uncertainty
permanently keeping some properly chosen constraint functions (sliding vari-
ables) at zero. The method is based on high-frequency (theoretically infinite
frequency) control switching, and the respective modes are called SMs. SMs
are accurate and insensitive to matched disturbances [10, 30], and are usually
established in finite time.
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The control switching produces possibly dangerous system vibrations (the
so-called chattering effect), which are considered the main drawback of the
method [10, 12, 30]. Also, standard SMs [10, 30] are based on the relay
control and sliding variables of relative degree 1.

High order sliding modes (HOSMs) [5, 15, 17, 18, 20, 27, 29] hide the
switching in the higher derivatives of the sliding variables and remove the
relative-degree restriction, while preserving the finite-time transient to the
sliding mode. The relative degree of the sliding variable has become the
main parameter of the HOSM application. Artificially increasing the relative
degree, one produces arbitrarily smooth control and removes the dangerous
high-energy chattering [4, 5, 20, 29]. Such controllers directly solve the con-
trol problem, if the sliding variable is a tracking error. Another important
application of SMs is the robust finite-time-exact differentiation and obser-
vation [6, 7, 14, 16, 17, 29, 30, 31].

Let the system be understood in the Filippov sense [11] and σ1, . . . , σm be
its scalar outputs. Recall [15, 17] that if the system is closed by some possibly-
dynamical discontinuous feedback, the successive total time derivatives σi, σ̇i,
..., σ

(ri−1)
i , i = 1, . . . ,m, are continuous functions of the closed-system state-

space variables; and the r-sliding set σi = ... = σ
(ri−1)
i = 0, i = 1, . . . ,m,

is a non-empty integral set, r = (r1, . . . , rm), then the motion on the set is
said to be in r-sliding (rth-order sliding) mode. The vector r = (r1, . . . , rm)
is called the sliding order. The standard sliding mode [10, 30] is of the first
order (σi are continuous, and σ̇i are discontinuous, r = (1, . . . , 1)).

The asymptotic accuracy of the r-SM was analyzed in [15]. The accuracy
is called asymptotic, since it is calculated as O(γ), where γ is an infinitesimal
function. It is shown there that the best possible asymptotic accuracy with
the sampling time interval τ > 0 is σ

(j)
i = O(τ ri−j), j = 0, 1, . . . , ri − 1. On

the other hand, the homogeneity technique [18] indeed provides for this ac-
curacy at least for the SISO case. Moreover, the accuracy is preserved, if the
derivatives are estimated by homogeneous differentiators [17]. More exactly
with the sampling accuracy ε > 0 of the σ-measurements the asymptotic
accuracy σ

(j)
1 = O(max (τ r1−j, ε(r1−j)/r1)) is obtained (SISO case, m = 1,

r = (r1)). Unfortunately, this result is restricted to the ideal case, when
the system is described by the Filippov differential equations with zero-hold
measurements.

Most known results on HOSM control were obtained for Single-Input
Single-Output (SISO) systems. In the case of Multi-Input Multi-Output
(MIMO) systems the case of the well-defined relative degree corresponds to
the non-singularity of the matrix of partial derivatives of higher-order total
output derivatives explicitly containing controls with respect to controls (the
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high-frequency gain matrix). One mostly needs to know this matrix exactly
or with high precision to use HOSM controls, since it allows exact decoupling
of such a MIMO system into SISO subsystems of relative degrees ri.

The paper [9] deals with the case when the matrix is uncertain, at the
same time providing for the finite-time convergence to the sliding mode in
the general MIMO case. The nominal value of the above matrix of partial
derivatives is assumed available in [9] and the deviation from the nominal
value is bounded. The control is based on the integral first-order SM, while
in the integral SM the system dynamics is finite-time stable and is taken
from [8]. Thus, one cannot provide for the arbitrarily fast convergence of
the resulting integral SM dynamics [8]. Moreover, since the control combines
1-SM dynamics with the special homogeneous dynamics [8], the combined
dynamics are not homogeneous. That causes the loss of the ultimate accuracy
of r-sliding homogeneous control [18].

The MIMO control [21] is simpler, preserves SM homogeneity and the
respective accuracy and allows arbitrarily fast convergence rate. It also sup-
poses the availability of the above nominal matrix of partial derivatives. This
paper presents and further develops results of [21], while the nominal matrix
is assumed known up to a bounded positive factor. In that way the system is
equipped with SM-based differentiators [17] yielding finite-time exact robust
estimations of the output derivatives. The asymptotic accuracy of the ob-
tained output-feedback control is estimated, and is shown to be the standard
ultimate accuracy of homogeneous SM control [18] extended to the MIMO

case, i.e. σ
(j)
i = O(max (τ ri−j, ε(ri−j)/ri)), j = 0, 1, . . . , ri − 1, i = 1, 2, . . . ,m.

As it has been already mentioned, the above standard accuracy [18] is
obtained under the assumption that, whereas the sampling is performed at
discrete times, the system itself evolves in the continuous time. In practice
controllers and observers are based on real-time computer calculations. Thus,
formally the computer-based implementation of the HOSM controllers and
differentiators requires that the dynamic parts of controllers/differentiators
be integrated with infinitesimally small integration step, and the control be
continuously fed to the system. This significantly complicates the imple-
mentation, and even may increase the chattering, when sampling periods are
uneven or long. Indeed, in such a case the differentiator input is a piece-wise
constant function, featuring zero derivatives. Respectively, the differentiator
outputs are in a persistently renewed transient to zero.

The natural way of the computer-based implementation is to keep the
outputs of observers and integrators constant between the measurements,
and to apply the one-step Euler-integration method in the dynamic parts
of the controllers and observers. The approach remains the same also with

3



variable sampling intervals. The resulting hybrid system requires special
analysis. The approach is for the first time formulated and established in
this paper for MIMO and SISO systems. A special case is the case of the
standard chattering attenuation procedure, when the system control input is
built as the integral of an auxiliary control. In such a way the vector relative
degree components are increased by one. The inserted discrete integrators
are also based on the Euler approximation and produce piece-wise constant
functions.

It is known that the Euler discretezation of the standard differentiators
[15] lacks their homogeneity and their standard asymptotic accuracy [23, 26].
Hence, one would expect the accuracy deterioration also in the case of the
differentiator output-feedback application. The sudden and important result
of this research is that in the closed-loop system the above asymptotic system
accuracy is proved to be preserved in all considered cases.

2 Preliminaries. SISO HOSM control, homo-

geneity notions

Consider a dynamic system of the form

ẋ = a(t, x) + b(t, x)u, ω = ω(t, x), (1)

where x ∈ Rn, u ∈ R is the control, ω : Rn+1 → R and a, b are unknown
smooth functions, n itself can be also uncertain. Informally, the control
task is to keep the real-time measured output ω as small as possible. All
differential equations are understood in the Filippov sense [11] in order to
allow discontinuous controls.

In order to simplify the presentation, the input u, and the relative degree
r have the same notation both in the SISO and MIMO cases, when they turn
out to be vectors.

The relative degree r of system (1) is assumed to be constant and known.
It means [13] that for the first time the control explicitly appears in the rth
total time derivative of ω, i.e.

ω(r) = h̃(t, x) + g̃(t, x)u, (2)

where h̃(t, x), g̃(t, x) are some unknown smooth functions, g̃ 6= 0. According
to the standard HOSM control approach, let

0 < Km ≤ g̃(t, x) ≤ KM , |h̃(t, x)| ≤ C, (3)
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for some Km, KM , C > 0. Also assume that solutions of (2) are infinitely
extendible in time for any Lebesgue-measurable bounded control u(t, x).

In practice the operational region of any plant is inevitably bounded.
In that case conditions (3) hold locally, in which case the results can be
respectively reformulated [17].

Obviously, (2) and (3) imply the differential inclusion

ω(r) ∈ [−C,C] + [Km, KM ]u, (4)

and the problem is reduced to the stabilization of (4). Here and further a
binary operation of two sets produces the set of all possible binary operations
of their elements, a number (vector) is treated in that context as a one-
element set.

A bounded feedback control

u = Ur(ω, ω̇, ..., ω
(r−1)), (5)

is constructed, such that all solutions of (4), (5) converge in finite time to the
origin ω = ω̇ = ... = ω(r−1) = 0. The function Ur is a locally-bounded Borel-
measurable function. Thus, substituting any Lebesgue-measurable estima-
tions of ω, ω̇, ..., ω(r−1) obtain a Lebesgue measurable control. At the next
step, the lacking derivatives are real-time evaluated, producing an output-
feedback controller.

Note that here and further the right-hand side of any closed-loop differen-
tial inclusion is minimally enlarged providing for its compactness, convexity
and upper-semicontinuity [18].

It is easy to see that the function Ur is to be discontinuous at the r-sliding
set ω = ω̇ = ... = ω(r−1) = 0 [18, 19]. Some other properties of the controller
(5) are described below.

A function f : Rn → R (respectively a vector-set field F (x) ⊂ Rn, x ∈
Rn, or a vector field f : Rn → Rn) is called homogeneous of the degree qs ∈ R
with the dilation [2] dκ : (x1, x2, ..., xn) 7→ (κm1x1, κ

m2x2, ..., κ
mnxn), and the

weights m1, ..., mn > 0, if for any κ > 0 the identity f(x) = κ−qsf(dκx)
holds (respectively, F (x) = κ−qsd−1

κ F (dκx), or f(x) = κ−qsd−1
κ f(dκx)). The

non-zero homogeneity degree qs of a vector field can always be scaled to ±1
by an appropriate proportional change of the weights m1, ..., mn.

Note that the homogeneity of a vector field f(x) (a vector-set field F (x))
can equivalently be defined as the invariance of the differential equation ẋ =
f(x) (differential inclusion ẋ ∈ F (x)) with respect to the combined time-
coordinate transformation (t, x) 7→ (κ−qst, dκx), where −qs might naturally
be considered as the weight of t. Indeed, the homogeneity condition can be
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rewritten as

ẋ ∈ F (x)⇔ d(dκx)

d(κ−qst)
∈ F (dκx).

Suppose that feedback (5) imparts homogeneity properties to the closed-loop
inclusion (4), (5). Due to the term [−C,C], the right-hand side of (5) can only
have the homogeneity degree 0 with C 6= 0. Scaling the system homogeneity
degree to -1, achieve that the homogeneity weights of t, ω , ω̇, ..., ω(r−1)

are 1, r, r - 1, ..., 1 respectively. This homogeneity is called the r-sliding
homogeneity [14]. The inclusion (4), (5) is called r-sliding homogeneous if
for any κ > 0 the combined time-coordinate transformation

(t, ω, ω̇, . . . , ω(r−1)) 7→ (κt, κrω, κr−1ω̇, . . . , κω(r−1)) (6)

preserves the closed-loop inclusion (4), (5).
Transformation (6) transfers (4), (5) into

dr(κrω)

d(κt)r
=
drω

dtr
∈ [−C,C] + [Km, KM ]Ur(κ

rω, κr−1ω̇, . . . , κω(r−1)).

Thus, the r-sliding homogeneity condition is

Ur(κ
rω, κr−1ω̇, . . . , κω(r−1)) ≡ Ur(ω, ω̇, . . . , ω

(r−1)). (7)

Respectively, controller (5) is called r-sliding homogeneous, if the identity
(7) holds for any positive κ and any arguments. Also the corresponding r-
sliding mode ω ≡ 0 is called homogeneous in that case. In particular, the
relay controller is 1-sliding homogeneous, as well as the corresponding sliding
mode. Since the control is locally bounded, due to (7) it is also globally
bounded.

Let β1,r, . . . , βr−1,r be some predefined positive coefficients, and α be the
chosen control magnitude. Then some r-sliding homogeneous controllers of
the form

u = −αΨr−1,r(ω, ω̇, . . . , ω
(r−1)) (8)

are provided by the following recursive procedures. The procedure

ϕ0,r = ω, N0,r = |ω|, Ψ0,r = sign ω;

ϕj,r = ω(j) + βj,rN
(r−j)/(r+1−j)
j−1,r Ψj−1,r,

Nj,r =
∣∣ω(j)

∣∣+ βj,rN
(r−j)/(r+1−j)
j−1,r ,

Ψj,r =
ϕj,r

Nj,r
, j = 0, 1, . . . , r,

(9)

produces the controllers, called quasi-continuous [19, 25], for the resulting
control is continuous everywhere except the r-sliding set ω = ω̇ = . . . =
ω(r−1) = 0. The following simple generalization is a new result.
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Theorem 1. Let Nj,r in (9) be any positive-definite r-sliding homogeneous
function of ω, ω̇, . . . , ω(j) of the weight r−j. Let also Ψj−1,r in the definitions
of ϕj,r be replaced with ζj−1,r(Ψj−1,r), j = 1, . . . , r, where ζj−1,r(s) is any
strictly increasing continuous function, ζj−1,r(0) = 0.Then (9) still produces a
quasi-continuous r-sliding homogeneous finite-time stable controller, provided
the coefficients β1,r, . . . , βr−1,r are chosen sufficiently large in the list order.

The proof is similar to [25]. It is easy to see that |ζ1,r(Ψ1,r)| ≤ ξ1 de-
fines a finite-time stable r-sliding homogeneous differential inclusion for any
sufficiently small ξ1 > 0. A recursion step follows: for sufficiently small
ξj > 0 with sufficiently large βj,r the homogeneous differential inclusion
|ζj,r(Ψj,r)| ≤ ξj provides for the finite time establishment of the inequality
|ζj−1,r(Ψj−1,r)| ≤ ξj−1 in the space ω, . . . , ω(j−1). The fact that with suffi-
ciently large α system (4) provides in finite time for |ζr−1,r(Ψr−1,r)| ≤ ξr−1

finishes the proof.
Let d ≥ r. Another well-known family of SM controllers, called embedded

SM controllers [17], is provided by the procedure

ϕ0,r = ω, N0,r = |ω|1/r, Ψ0,r = signω;

ϕj,r = ω(j) + βj,rN
r−j
j−1,rΨj−1,r,Ψj,r = signϕj,r,

Nj,r =
(
|ω|d/r + |ω̇|d/(r−1) + . . .+ |ω(j−1)|d/(r+1−j))1/d

.

(10)

Any positive coefficients can be taken in the definition of Nj,r. The proof is
the same as in [15].

A number of quasi-continuous SM controllers (9), (8) with tested coef-
ficients is listed below for r = 1, 2, 3, 4. It is enough to adjust only the
parameter α in order to control any system (1), (3) of the corresponding
relative degree.

1. u = −α signω,

2. u = −α (ω̇ + |ω|1/2 signω)/(|ω̇|+ |ω|1/2),

3. u = −α [ω̈ + 2(|ω̇|+ |ω|2/3)−1/2)(ω̇ + |ω|2/3 signω)]/

[|ω̈|+ 2(|ω̇|+ |ω|2/3)1/2)],

4. ϕ3,4 =
...
ω + 3[ω̈ + (|ω̇|+ 0.5|ω|3/4)−1/3(ω̇ + 0.5|ω|3/4 signω)]

[|ω̈|+ (|ω̇|+ 0.5|ω|3/4)2/3]−1/2,

N3,4 = |...ω |+ 3[|ω̈|+ (|ω̇|+ 0.5|ω|3/4)2/3]1/2, u = −αϕ3,4/N3,4.

Note that the same coefficients βj,r can be used for embedded controllers
with r ≤ 4. Other constructions of homogeneous HOSM controllers and the
choice of parameters are considered in [18, 25]. It is further assumed that
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β1,r, . . . , βr−1,r are always properly chosen, which means that the differential
equation ϕr−1,r = 0 is finite-time stable [25].

Any r-sliding homogeneous controller can be combined with an (r−1)th-
order differentiator [17] producing an output feedback controller. Its appli-
cability in this case is possible due to the boundedness of ω(r) implied by the
boundedness of the feedback function Ur in (5).

Let the input signal f(t) be a function consisting of a bounded Lebesgue-
measurable noise with unknown features, and of an unknown base signal
f0(t), whose kdth derivative has a known Lipschitz constant L > 0. The

following differentiator provides for the estimations zj of the derivatives f
(j)
0 ,

j = 0, . . . , kd:

ż0 = −λ̃kdL1/(kd+1)|z0 − ω|kd/(kd+1) sign(z0 − f(t)) + z1,

ż1 = −λ̃kd−1L
1/kd|z1 − ż0|(kd−1)/kd sign(z1 − ż0) + z2,

...

żkd−1 = −λ̃1L
1/2|zkd−1 − żkd−2|1/2 sign(zkd−1 − żkd−2) + zkd ,

żkd = −λ̃0L sign(zkd − żkd−1).

(11)

The parameters λ̃i of differentiator (11) are chosen in advance for each kd.
An infinite sequence of parameters λ̃i can be built, valid for any kd [17]. In
particular, one can choose λ̃0 = 1.1, λ̃1 = 1.5, λ̃2 = 2, λ̃3 = 3, λ̃4 = 5,
λ̃5 = 8 [19], which is enough for kd ≤ 5. In the absence of noises the
differentiator provides for the exact estimations in finite time. With discrete-
time sampling time period τ > 0 and the maximal possible sampling error
ε ≥ 0 the accuracy zj − f (j)

0 = O(max (τ kd+1−j, ε(kd+1−j)/(kd+1))) is provided.
Equations (11) can be rewritten in the standard (non-recursive) dynamic-

system form

ż0 = −λkdL1/(kd+1)|z0 − f(t)|kd/(kd+1) sign(z0 − f(t)) + z1,

ż1 = −λkd−1L
2/(kd+1)|z0 − f(t)|(kd−1)/(kd+1) sign(z0 − f(t)) + z2,

...

żkd−1 = −λ1L
kd/(kd+1)|z0 − f(t)|1/(kd+1) sign(z0 − f(t)) + zkd ,

żkd = −λ0L sign(z0 − f(t)).
(12)

It is easy to see that λ0 = λ̃0, λkd = λ̃kd , and λj = λ̃jλj+1
j/(j+1), j =

kd − 1, kd − 2, . . . , 1.
Assuming that the sequence λ̃j, j = 0, 1, ..., is the same over the whole

paper, denote both (11) and (12) by the equality ż = Dkd(z, f, L). Incorpo-
rating the (r − 1)th order differentiator into the feedback equations, obtain
the output-feedback r-sliding controller

u = Ur(z), ż = Dr−1(z, ω, L), (13)
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where L ≥ C+KM sup |Ur|. Obviously, provided (4), (5) is finite-time stable,
the output-feedback controller (13) ensures the finite-time establishment of
the r-sliding mode (ω, ω̇, . . . , ω(r−1)) = 0. Moreover [18], if (5) is r-sliding
homogeneous, and ω is measured with the sampling accuracy ε > 0, then the
asymptotic accuracy ω(j) = O(max (τ r−j, ε(r−j)/r)) is obtained.

3 MIMO SM control

Once more consider dynamic system (1),

ẋ = a(t, x) + b(t, x)u, σ = σ(t, x), (14)

but let now σ and u be vectors, σ : Rn+1 → Rm, u ∈ Rm. As previously, a,
b, σ are assumed smooth. The task is to stabilize the output σ at 0.

The system is assumed to have the vector relative degree r = (r1, ..., rm),

ri > 0. It means that the successive total time derivatives σ
(j)
i , j =

0, 1, ..., ri − 1, i = 1, ...,m, do not contain controls, and can be used as
new coordinates [13]. Respectively, instead of (4) obtain a vector equation,

σ(r) = h(t, x) + g(t, x)u, (15)

where σ(r) denotes (σ
(r1)
1 , ..., σ

(rm)
m )T , the functions h, and g are unknown and

smooth. The function g is a nonsingular matrix.
Let g be represented in the form g = Kḡ, where K > 0 defines the “size”

of the matrix g, and ḡ defines the matrix “direction”. In the scalar case
m = 1, ḡ = ±1. The following assumption directly generalizes (3).

Assumption 1. The scalar function K(t, x) is bounded, a nominal “direc-
tion” matrix G(t, x) is assumed nonsingular and available in real time, so
that

g(t, x) = K(t, x)(G(t, x)+∆g(t, x)),
∥∥∆gG−1

∥∥
1
≤ p < 1, 0 < Km ≤ K ≤ KM .

(16)
Here ∆g is the uncertain deviation of ḡ from G, and the norm ‖·‖1 of the
matrix A = (aij) is defined as ‖A‖1 = max

i

∑
j

|aij|. The estimation G can be

any Lebesgue-measurable function, Km, KM , p are known constants.

Assumption 2. The uncertain vector function h is supposed to satisfy the
estimation

‖h(t, x)‖ ≤ H(t, x), H(t, x) ≥ h0 > 0. (17)
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where H(t, x) is some strictly positive locally bounded Lebesgue-measurable
function available in real time, h0 is known. It is also assumed that trajec-
tories of (14) are infinitely extendible in time for any Lebesgue-measurable
control with uniformly bounded ||gu||/H.

Note that the functions G(t, x) and H(t, x) are assumed directly available
along the current trajectory (t, x(t)) in real time, but this does not necessar-
ily mean that x(t) is assumed available, or the functions are given by some
formulas. For example, due to extensive wind-tunnel experiments the aero-
dynamic characteristics of an aircraft are usually available as approximate
functions of the observable dynamic pressure and altitude.

3.1 Control design

Introduce a virtual control v,

v = G(t, x)u. (18)

Then dynamics (15) takes the form

σ(r) = h(t, x) +K(t, x)(I + ∆g(t, x)G−1(t, x))v, (19)

where I is the unit matrix.
Introduce the notation ~σi = (σi, . . . , σ

(ri−1)
i ), ~σ = (~σ1, . . . , ~σm). Choose

the components of v = (v1, . . . , vm)T in the form

vi = −αH(t, x) sat(ηiΨri−1,ri(~σi)), i = 0, 1, ,m, (20)

where −Ψri−1,ri is an embedded (10) or quasi-continuous (9) ri-sliding homo-
geneous controller (8), α > 0, sat(s) = min[1,max(−1, s)] is the saturation
function. The parameter ηi ≥ 1 is further chosen as a function of ri. Note
that sat(s) can be replaced here by any function ζi(s), where ζi is any con-
tinuous strictly growing function, satisfying ζi(−s) = −ζi(s).
Choice of ηi. In the case of quasi-continuous controllers, if

|ϕri−1,ri | ≤
2p

1− p
βi,ri−1N

1/2
ri−2,ri

is a finite-time stable differential inclusion in the state space σi, σ̇i, . . . , σ
(ri−2)
i ,

then ηi = 1 can be taken. Otherwise, ηi > 1 is taken sufficiently large, so
that the differential inclusion

|ϕri−1,ri | ≤
2η−1

i

1− η−1
i

βi,ri−1N
1/2
ri−2,ri
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is finite-time stable, and η−1
i < p. Such ηi > 1 always exists with properly

chosen coefficients βij, j = 1, 2, . . . , ri− 1, and can be found in advance [19].
In the case of embedded controllers one can always take ηi = 1, for it does
not influence the control.

Theorem 2. With sufficiently large α > 0 and ηi control (20) provides for
the finite-time establishment of the r-sliding mode σ ≡ 0.

Remark. Note that with uniformly boundedH one can also claim that the r-
sliding mode is uniformly finite-time stable, i.e. there exists a uniform upper
convergence time bound T (R) for solutions starting in the region ||~σ|| ≤ R,
and for any δ0 > 0 there exists δ1 > 0, such that at any moment the inequality
||~σ|| ≤ δ1 implies ||~σ|| ≤ δ0 from this moment and forever.

Theorem 3. Let H(t, x) = const > 0. Let σ
(j)
i be measured with sampling

noises not exceeding εij and with the sampling intervals not exceeding τ >
0. Then with sufficiently large α and ηi the feedback (20) provides for the

accuracy |σ(j)
i | ≤ µij

(
max[τ,maxi,j ε

1/(ri−j)
ij ]

)ri−j
, j = 0, 1, . . . , ri − 1, i =

1, 2, . . . ,m, with some constant µij > 0.

3.2 Output-feedback control

Suppose that H(t, x) is continuous. It follows from (16)-(17) that |σ(ri)
i | ≤

(αKM(1 + p) + 1)H(t, x). Thus [22], the needed values of the derivatives
can be obtained globally and in finite time by means of the robust exact
differentiators (11) of the orders r1−1, . . . , rm−1 with the variable functional
parameter

L(t, x) = kL(αKM(1 + p) + 1)H(t, x), (21)

where kL ≥ 1 is an arbitrary coefficient, usable in practical realization. Re-
spectively, the output feedback obtains the form

vi = −αH(t, x) sat(ηiΨri−1,ri(zi)), żi = Dri−1(zi, σi, L),
i = 1, 2, . . . ,m.

(22)

Theorem 4. Let H(t, x) = const > 0. Then with sufficiently large α and
ηi the output-feedback control (21), (22) provides for the finite-time estab-
lishment of the r-sliding mode σ ≡ 0. In the presence of sampling noises of
σi not exceeding ε with the sampling intervals not exceeding τ > 0 the accu-
racy |σ(j)

i | ≤ µij max(ε(ri−j)/ri , τ ri−j), j = 0, 1, . . . , ri − 1, i = 1, 2, . . . ,m, is
established with some constant µij > 0.
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Consider now the general case. Let L be differentiable and the logarith-
mic derivative L̇/L be uniformly bounded, then the differentiation is robust,
and in the presence of a Lebesgue-measurable sampling noise with the mag-
nitude εL(t, x) and the sampling interval τ the accuracy |zij−σ(j)

i |/L(t, x) =
O
(
max(ε(ri−j)/ri , τ ri−j)

)
is obtained [22].

The initial errors of the differentiator should be sufficiently small, i.e.
||zi−~σi||/L(t, x) should be less than some constant independent of L. Choos-
ing larger L the region of acceptable initial differentiation errors can be made
arbitrarily large. In the absence of noises the equalities zi = ~σi are estab-
lished in finite time [17]. The convergence criterion [1] allows to detect the
end of the transient in the presence of noises and in real time. Then the
function L can be abruptly decreased to a less value. Another way is to
evaluate the initial approximate derivative values using finite differences. In
practice the implementation will always require some rough upper initial
estimation of ||~σ||. In the following theorem the differentiator transient is
assumed finished.

Theorem 5. Let H(t, x) be continuous and differentiable with uniformly
bounded Ḣ/H. Then with sufficiently large α and ηi the output-feedback con-
trol (21), (22) provides for the finite-time establishment of the r-sliding mode
σ ≡ 0. Let the sampling noises of σi not exceed εH(t, x) and the sampling
intervals not exceed τ > 0. Let also the initial conditions belong to some com-
pact region. Then there exists the time instant t0 (the end of the transient),

such that for any t2 > t1 ≥ t0 the accuracy |σ(j)
i | ≤ µij max(ε(ri−j)/ri , τ ri−j),

j = 0, 1, . . . , ri−1, i = 1, 2, . . . ,m, is kept over the steady-state time interval
[t1, t2] with sufficiently small ε, τ and constant µij > 0. In general coefficients
µij depend on the steady-state time interval [t1, t2].

3.3 Chattering attenuation

High-frequency switching of the control in the SM σ ≡ 0 causes potentially-
dangerous vibrations called chattering [30, 10, 3]. One of the standard ways
to suppress high-energy vibrations is to artificially increase the relative degree
[15, 4, 20]. Let the new control be u̇. Differentiating (15) obtain σ(r+~1) =
he(t, x, u)+g(t, x)u̇, where ~1 = (1, . . . , 1) ∈ Rm. Applying the transformation

u̇ = G−1(t, x)ve, (23)

obtain
σ(r+~1) = he(t, x, u) +K(t, x)(I + ∆g(t, x)G−1(t, x))ve, (24)

where he is some uncertain smooth function.
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Note that with ~σ ≡ 0 the control satisfies σ(r) = 0. Hence, (15) yields
u = ueq(t, x) = −g−1(t, x)h(t, x), where ueq is some another uncertain smooth
vector function. Thus, in the vicinity of the (r + ~1)-sliding mode u is close

to ueq(t, x) and therefore locally bounded. Denote ~σei = (σi, . . . , σ
(ri)
i ), ~σe =

(~σe1, . . . , ~σem).

Assumption 3. The function he(t, x, u) is uniformly bounded in the region
||~σe|| ≤ δe for some δe > 0,

||he(t, x, u)|| ≤ Ce, Ce > 0 with ||~σe|| ≤ δe. (25)

The above assumption is at least locally always true due to the smooth-
ness of he. In the following we do not consider the global control, but restrict
ourselves to the local chattering attenuation. Let

vei = −αeCe sat(ηiΨri,ri+1(zei)), żei = Dri(zei, σi, Le),
Le = kL(αeKM(1 + p) + 1)Ce, i = 1, 2, . . . ,m.

(26)

Theorem 6. Let the initial values of ~σe be sufficiently close to zero and
the differentiators be initialized by zero initial conditions. Then after a finite
time the (r+~1)-sliding mode σ ≡ 0 is established. In the presence of sampling
noises of σi not exceeding ε with the sampling intervals not exceeding τ > 0
the accuracy |σ(j)

i | ≤ µij max(ε(ri−j+1)/(ri+1), τ ri+1−j), j = 0, 1, . . . , ri, i =
1, 2, . . . ,m, is established with some constant µij > 0.

If the function he(t, x, u) has a functional bound, the Theorem is to be
reformulated similarly to Theorem 5.

Note that the closed-loop dynamic systems are nowhere replaced by dis-
crete dynamics in the above Theorems. The discretization issues are consid-
ered in Section 5.

4 Proofs of Theorems 2 - 6

Obviously, (15) - (20) imply the differential inclusions

σ
(ri)
i ∈ H(t, x) ([−1, 1]− α[Km(1− p), KM(1 + p)] sat(ηiΨri−1,ri(~σi))) (27)

valid for each i = 1, . . . ,m.
Proof of Theorem 2. Prove that (27) implies the finite-time conver-

gence to the partial ri-sliding mode ~σi = 0. The proof should be performed
separately for quasi-continuous (9) and embedded (10) SM controllers. In the
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case of the embedded SM controller the proof is especially simple. Indeed,
Ψri−1,ri only accepts the values ±1. Thus, solutions of (27) satisfy

σ
(ri)
i ∈ −[Km(1− p)α− 1, KM(1 + p)α + 1]H(t, x)Ψri−1,ri(~σi),

which is finite-time stable with sufficiently large α according to the gain-
function robustness property of the controller (i.e., roughly speaking, multi-
plication of the control by any function larger than 1 does not destroy the
finite-time convergence [24]).

Consider the quasi-continuous controller (9). The presented proof is a
modified proof from [25]. The following simple technical Lemma plays im-
portant role in the sequel.

Lemma 1. Let A,B ≥ 0, |θ| ≤ 1, 0 ≤ ξ < 1. Then the inequality |A+Bθ|
A+B

≤ ξ

implies that |A+Bθ| ≤ 2ξ
1−ξB.

Proof. Obviously, the inequality implies that B > 0. Divide the de-
nominator and the nominator by B. Let Ã = A/B. It is enough to prove
that

|Ã+ θ|/(Ã+ 1) ≤ ξ (28)

implies that |Ã+ θ| ≤ 2ξ
1−ξ . Indeed, if Ã ≤ 1+ξ

1−ξ then (28) implies

|Ã+ θ| ≤
(

1 + ξ

1− ξ
+ 1

)
ξ =

2ξ

1− ξ
.

Now suppose that Ã > 1+ξ
1−ξ . Then

|Ã+ θ|
Ã+ 1

=
|Ã+ 1 + θ − 1|

Ã+ 1
≥ 1− 2

Ã+ 1
> 1− 2

1+ξ
1−ξ + 1

= ξ,

and we come to contradiction. �
Fix a valid combination βj,ri , j = 1, . . . , ri − 1, of the parameters of (9)

used in (20). Note that Nri−1,ri(~σi) is positive definite, i.e. Nri−1,ri = 0 iff
~σi = 0. As well as ϕri−1,ri , it is also an ri-sliding homogeneous function of
the weight 1. On the other hand, Ψri−1,ri = ϕri−1,ri/Nri−1,ri is homogeneous
of the weight 0, and |Ψri−1,ri| ≤ 1.

Define the point set Ω(ξ) = {~σi| |Ψri−1,ri(~σi)| ≤ ξ} for some fixed ξ, ξ < 1.
As follows from Lemma 1 the points of Ω(ξ) satisfy the inequality∣∣∣σri−1

i + βri−1,riN
1/2
ri−2,ri

(~σi)Ψri−2,ri(~σi)
∣∣∣ ≤ 2ξ

1− ξ
βri−1,riN

1/2
ri−2,ri

(~σi). (29)
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In other words, |ϕri−1,ri | ≤
2ξ

1−ξβri−1,riN
1/2
ri−2,ri

. Note that βj,ri are chosen in

such a way that ϕri−1,ri(~σi) = 0 defines a finite-time stable ri-sliding homoge-

neous differential equation in the space σi, σ̇i, . . . , σ
(ri−2)
i [25]. Respectively,

with sufficiently small ξ inequality (29) corresponds to a finite-time stable
homogeneous differential inclusion [18]. Fix such a value of ξ.

Obviously, it is enough to prove that with sufficiently large α the trajec-
tories of (27) in finite time enter the region Ω(ξ) to stay there forever. Let
ηi ≥ ξ−1, then outside of Ω(ξ) we have sat(ηiΨri−2,ri) = ±1. That in its turn
implies that

σ
(ri)
i ∈ −[Km(1− p)α− 1, KM(1 + p)α + 1]H(t, x) sign Ψri−1,ri(~σi). (30)

is kept outside of Ω(ξ). It is proved in [25] that with any sufficiently large

γ > 0 the relation σ
(ri)
i sign(Ψri−2,ri(~σi)) ≤ −γ, provides for the entrance into

Ω(ξ) in finite time, and for its invariance. Fix such γ. Hence, due to (30),
the inequality (Km(1− p)α− 1)h0 > γ implies the finite-time convergence to
the r-sliding mode. �

Proof of the Remark to Theorem 2, Theorems 3, 4 and 6. Let
H be bounded. Substitute an appropriate segment for H in (27) and get
an r-sliding homogeneous inclusion. Obviously, the above proof provides
for the existence of an upper estimation of the convergence time to zero for
trajectories starting in a unit ball [25]. Thus, the obtained inclusion is finite-
time stable [18]. In particular, with the constant function H inclusion (27)
becomes r-sliding homogeneous and finite-time stable. The Theorems now
follow from [18]. �

Proof of Theorem 5. Fix some starting point (t∗, x∗) for the system
trajectory. Let first the measurements be exact and sampled continuously
in time. Starting from some moment t̂0 > t∗ all trajectories starting in a
small vicinity of (t∗, x∗) enter the r-SM ~σ = 0. Over any sufficiently small
time interval in the r-SM the function can be considered almost constant:
H(t, x(t)) ∈ [Hm, HM ]. Then the trajectory satisfies the inclusion

σ
(ri)
i ∈ [Hm, HM ] ([−1, 1]− α[Km(1− p), KM(1 + p)] sat(ηiΨri−1,ri(~σi))) ,

which is homogeneous and finite-time stable [18]. The Theorem now follows
from Theorem 3 and the compactness of the region of initial conditions. �

5 Discretization of HOSMS

Note that the results of this section are new both in the SISO and MIMO
cases. Implementation of HOSM controllers usually requires the control val-
ues to be calculated by computers using discrete sampling and fed to the
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systems at discrete time instants. In the case, when the controller does not
involve its own dynamics, in particular, if all needed derivatives are directly
sampled, the resulting system is adequately described by variable sampling
noises and delays, and by Theorem 3.

The situation changes when the output feedback is applied, which in-
corporates a dynamic observer. Let the sampling take place at the time
instants tk, 0 < tk+1 − tk = τk ≤ τ . It is known [23, 26] that the error
dynamics of the discrete dynamics żf = Dkd(zf , f(t), L) loses its homogene-
ity, if the differentiator is replaced by its Euler approximation zf (tk+1) =

zf (tk) + Dr−1(zf (tk), ω(tk), L)τk. The reason is that the error zf (tk) − ~f(t),
~f = (f, ḟ , . . . , f (kd)), combines both discrete and continuous-time variables.
As a result, the accuracy of all derivatives accept zf,0 − f is proportional to
τ with τk = τ and is worth with variable τk. Therefore, one would expect
that the accuracy of the output-feedback r-SM control also deteriorates. We
prove that it is not the case.

5.1 SISO case

Differentiating (2) obtain

ω(r+1) = h̃e(t, x, u) + g̃(t, x)u̇. (31)

Assumption 4. The functions h̃e and h̃′xb + g̃′xbu are bounded in a vicinity
of the (r + 1)-sliding mode ω ≡ 0,

|h̃e(t, x, u)| ≤ C̃e, |h̃′x(t, x)b(t, x) + g̃′x(t, x)b(t, x)u| ≤ C̃1e. (32)

Just as in the MIMO case this assumption is natural, since u is close to
ueq = −h̃/g̃ in the vicinity of the (r+ 1)-sliding mode. Let now the sampling
take place at the time instants tk, 0 < tk+1 − tk = τk ≤ τ , and the sampling
error be ν(t), |ν(t)| ≤ ε. In other words the applied feedback control (13) at
the moment t ∈ [tk, tk+1) is calculated at the moment tk and gets the form

u(t) = Ur(z(tk)), z(tk) = z(tk−1) + τk−1Dr−1(z(tk−1), ω(tk−1), L).

Theorem 7. Discretization does not destroy the asymptotic closed-system
accuracy [18] in the SISO case under the standard assumptions. Under as-
sumption 4 the same is true for the chattering attenuation procedure with
sufficiently small τ .

Note that the deterioration of the accuracy has been avoided, since in
the following proof the coordinates zj, ω

(j) are treated as independent homo-
geneous coordinates stabilizing at zero. In the case of the discrete general
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differentiation the accuracy deteriorates, since the inputs do not tend to
zero, and the discrete differentiation errors cannot be anymore considered as
homogeneous coordinates.

Proof. Recall that in the SISO case r ∈ N, u, ω ∈ R, and the closed system
dynamics satisfies the finite-time stable r-sliding homogeneous differential
inclusion

ω(r) ∈ [−C,C] + [Km, KM ]Ur(z), ż = Dr−1(z, ω, L), (33)

where z ∈ Rr. The homogeneity degree is −1 and the homogeneity weights
are degω(j) = deg zj = r − j, j = 0, 1, . . . , r − 1.

Let the sampling take place at the time instants tk, 0 < tk+1−tk = τk ≤ τ ,
and the sampling error be ν(t), |ν(t)| ≤ ε. The discretization yields the
system

ω(r) ∈ [−C,C] + [Km, KM ]Ur(z(tk)), t ∈ [tk, tk+1];
z(tk+1) = z(tk) + τkDr−1(z(tk), ω(tk) + ν(tk), L).

(34)

Note that t ∈ [tk, tk+1] implies tk ∈ [t− τ, t]. Thus, any solution (~ω(t), z(tk)),
t ∈ [tk, tk+1], of (34) can be regarded as a solution of the continuous-time
differential inclusion with variable delays,

ω(r) ∈ [−C,C] + [Km, KM ]Ur(z(t− τ [0, 1])),
ż(t) ∈ Dr−1(z(t− τ [0, 1]), ω((t− τ [0, 1]) + ε[−1, 1], L),

(35)

in the sense that the component ~ω(t) is the same, whereas the component
z(t) takes on the same values at the sampling moments tk. That solution is
obviously indefinitely extendable in time.

Note that (35) is (33) with delays and noises. According to [18] all its
solutions defined over sufficiently large time interval in finite time enter some
invariant compact set of the dimensions ω(j) = O([max(τ, ε1/r)]r−j) and zj =
O([max(τ, ε1/r)]r−j). This proves the first part of the Theorem.

Consider now the chattering attenuation procedure. The control u is
added as a new coordinate. The closed-loop system takes on the form

ω(r) = h̃(t, x) + g̃(t, x)u, u̇ = Ur+1(z), ż = Dr(z, ω, L), (36)

where z ∈ Rr+1. Using |h̃e| ≤ C̃e in a vicinity of the (r + 1)-SM, obtain a
finite-time stable (r + 1)-sliding homogeneous inclusion

ω(r+1) ∈ [−C̃e, C̃e] + [Km, KM ]Ur+1(z), ż = Dr(z, ω, L) (37)

with the homogeneity degree −1 and the homogeneity weights degω(j) =
deg zj = r + 1− j, j = 0, 1, . . . , r.
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Let now the sampling take place at the time instants tk, 0 < tk+1 − tk =
τk ≤ τ , and the sampling error be ν(t), |ν(t)| ≤ ε. Discretization replaces
(36) with

ω(r) = h̃(t, x) + g̃(t, x)u(tk), t ∈ [tk, tk+1],
u(tk+1) = u(tk) + τkUr+1(z(tk)),
z(tk+1) = z(tk) + τkDr(z(tk), ω(tk) + ν(tk), L).

(38)

Define u(t) = u(tk) + (t − tk)Ur+1(z(tk)) between the sampling instants
tk and tk+1, producing a Lipschitzian control. It does not affect the process,
since only the values u(tk) are fed to the system. Introduce the notation
wj = ω(j), j = 0, 1, . . . , r−1, wr = h̃(t, x)+g̃(t, x)u(t), and let α = sup |Ur+1|.
Thus,

ẇr−1 = h̃(t, x) + g̃(t, x)u(tk) = wr − g̃(t, x)(t− tk)Ur+1(z(tk)). (39)

Differentiating wr obtain

ẇr = h̃′t(t, x) + h̃′x(t, x)(a(t, x) + b(t, x)u(tk)) + g̃′t(t, x)u(t)+

g̃′x(t, x)(a(t, x) + b(t, x)u(tk))u(t) + g̃(t, x)Ur+1(z(tk)) =

h̃e(t, x, u(t)) + g̃(t, x)Ur+1(z(tk))

− (h̃′x(t, x)b(t, x) + g̃′x(t, x)b(t, x)u(t))(t− tk)Ur+1(z(tk)). (40)

Let C̃2e > C̃e + τC̃1eα. Taking into account (39) and (40), obtain from
(38) that

ẇ0 = w1, . . . , ẇr−2 = wr−1,
ẇr−1 ∈ wr + τ [−KM , KM ]α,

ẇr ∈ [−C̃2e, C̃2e] + [Km, KM ]Ur+1(z(t− τ [0, 1])),
ż ∈ Dr(z(t− τ [0, 1]), ω(t− τ [0, 1]) + ε[−1, 1], L).

(41)

The produced differential inclusion is (r+ 1)-sliding homogeneous and finite-
time stable with τ = ε = 0, provided C2e is sufficiently close to Ce [18]. It is
also invariant with respect to the time - parameter - coordinate transforma-
tion

(t, τ, ω, . . . , ω(r), z0, z1, . . . , zr) 7→
(κt, κτ, κr+1ω, κrω̇, . . . , κω(r), κr+1z0, κ

rz1, . . . , κzr).

The end of the proof follows from the lemmas of [26].
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5.2 MIMO case

Like in the SISO case we need an additional assumption.

Assumption 5. The functions he and h′xb + g′xbu are bounded in a vicinity
of the (r +~1)-sliding mode ~ωe ≡ 0,

||he(t, x, u)|| ≤ Ce, 0 < Kem ≤ ||g(t, x)|| ≤ KeM ,
||h′x(t, x)b(t, x) + g′x(t, x)b(t, x)u|| ≤ C1e.

(42)

Theorem 8. In the MIMO case under the assumptions of Theorem 4 the
discretization does not destroy the stated asymptotic closed-system accuracy.
Under additional assumption 5 and with sufficiently small τ the discrete
chattering-attenuation procedure does not destroy the accuracy stated in The-
orem 6.

Mark that the Theorem assumes that the proposed homogeneous SM
control (18), (20) is applied. The proof is actually the same as for the previous
theorem, due to the effective decoupling of the system.

6 Simulation Results

6.1 MIMO car control

Consider a simple MIMO (”bicycle”) model of car control [28]

ẋ = V cosϕ, ẏ = V sinϕ, ϕ̇ = V
∆

tan θ,

V̇ = µ1Tnet(V, ρ)− µ2V
2 − µ3Rx, µ3Rx = ε(1− cos(5θ)),

µ1Tnet(V, ρ) = (2.5 sin ρ− 0.7)(1− 0.001(V − 9)2),

θ̇ = u1, ρ̇ = u2,

where x and y are Cartesian coordinates of the rear-axle middle point, ϕ is
the orientation angle, V is the longitudinal velocity, ∆ is the length between
the two axles and θ is the steering angle (i.e. the first real input) (Fig. 1),
Tnet(V, ρ) is the net combustion torque of the engine, ρ is the throttle angle
(i.e. the second real input), ρ ∈ [0, π/2], Rx is the rolling resistance of the
tires. Parameters µ2 = 0.005, ∆ = 5m were taken. For simplicity brakes are
not applied. Usually Tnet is available as a table function of the engine angle
velocity and ρ. It is presented here by some regression roughly approximating
the data from [28], Fig. 9-6. The rolling resistance is voluntarily represented
here by a function, corresponding to some mechanical car damage, ε = 0.1.

The task is to steer the car from a given initial position and speed to the
trajectory y = yc(x), and V = Vc(t), where g(x), y and Vc(t) are assumed to
be available in real time.
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Figure 1: The car model.

Define σ1 = y − yc(x), σ2 = V − Vc(t). The initial values are V = 5m/s,
x = y = ϕ = ρ = θ = 0 at t = 0, yc(x) = 10 sin(0.05x) + 5, Vc(t) =
9 + sin(0.5t).

The choice H = const is natural here. The relative degree of the undis-
turbed system is (3,2) and the quasi-continuous 3,2-sliding controllers solve
the problem. The controller magnitude α, the parameters η1, and η2 are
conveniently found by simulation. The differentiator parameters are taken
deliberately large, in order to provide for better performance in the presence
of measurement errors. It was taken η1 = η2 = 1, α = 20, the differentiator
parameters are L = 80, λ̃0 = 1.1, λ̃1 = 1.5, λ̃2 = 2. The control is applied
starting from t = 1 in order to provide some time for the differentiators’
convergence.

The resulting output-feedback controller is

v1 = −20
s2 + 2(|s1|+ |s0|2/3)−1/2(s1 + |s0|2/3 sign s0)

|s2|+ 2(|s1|+ |s0|2/3)1/2
, ṡ = D2(s, σ1, 80),

v2 = −20(w1 + |w0|1/2 sign w0)]/(|w1|+ |w0|1/2), ẇ = D1(w, σ2, 80).

In order to define G calculate the matrix

g =

[ ...
σ ′1u1

...
σ ′1u2

σ̈′2u1 σ̈′2u2

]
,

...
σ ′1,u1 = V 2

l
cosϕ+y′c sinϕ

cos2θ
− 5εV sin(5θ)(sinϕ− y′c cosϕ),

...
σ ′1,u2 = 2.5 cos ρ(1− 0.001(V − 9)2)(sinϕ− y′c cosϕ),
σ̈′2,u1 = −5εV sin(5θ), σ̈′2,u2 = 2.5 cos ρ (1− 0.001(V − 9)2);

and, taking into account that the mechanical damage should be considered

unknown, define G =

[
V 2

l
cosϕ
cos2θ

0
0 2.5 cos ρ

]
, K = 1.

The nominal matrix G is calculated each 5 seconds starting from t = 1.
For this sake V 2 cosϕ = V ẋ is calculated using two more differentiators of
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the second order producing estimations of ẋ and ẏ , the stirring angle (the
first input θ) is considered available. Differentiators’ parameter L = 80 is
taken.

The matrix G turns out to be singular at ρ = π/2, which corresponds to
the fully open gas. Therefore ρ is artificially saturated at ρ = π/3.

The integration was carried out by the Euler method, the sampling step
being equal to the integration step τ = 10−4. The tracking accuracies |σ1| ≤
1.01 · 10−8, |σ̇1| ≤ 1.12 · 10−4, |σ̈1| ≤ 0.0205, |σ2| ≤ 3.13 · 10−6, |σ̇2| ≤
0.0091 were obtained. After the sampling step has changed to τ = 10−3 the
accuracies |σ1| ≤ 0.946 ·10−5, |σ̇1| ≤ 1.6 ·10−3, |σ̈1| ≤ 0.207, |σ2| ≤ 2.66 ·10−4,
|σ̇2| ≤ 0.0845 were obtained, which corresponds to the asymptotics stated in
Theorem 8.

The car trajectory, 3-sliding tracking errors σ1, σ̇1, σ̈1, 2-sliding tracking
errors σ2, σ̇2, and the velocity tracking graph are shown in Fig. 2. Controls
u1, u2, throttle angle ρ and steering angle θ, as well as nonzero elements of
the nominal matrix G are presented in Fig. 3. It is seen that u2 ≡ 0 when ρ
comes to the saturation level π/3.

For comparison calculate matrices G and g.

At t = 7 get g =

[
14.45 −0.06
1.51 2.23

]
, G =

[
13.68 0

0 1.46

]
.

At t = 13 get g =

[
17.63 1.8 · 10−5

−2.24 1.81

]
, G =

[
12.4 0

0 2.07

]
.

6.2 Discretization accuracy asymptotics

Consider a simple second-order system

ẋ0 = sin(t) + x1,
ẋ1 = cos(x0) + u(tk), σ = x0,
u(tk+1) = u(tk)− τkαΨ2,3(z0(tk), z1(tk), z2(tk)),
z(tk+1) = z(tk) + τkD2(z(tk), σ(tk), L),

(43)

where the 3-sliding embedded controller is taken

Ψ2,3(z) = sign (z2 + 2(|z1|3 + |z0|2)1/6 sign(z1 + (|z0|2/3 sign z0))).

The continuous-time part of system (43) was integrated by the Euler
method with the integration step 10−4 and initial values x0(0) = 10, x1(0) =
5. The discrete-time subsystem in (43) has the parameters λ̃0 = 1.1, λ̃1 = 1.5,
λ̃2 = 2, L = 16, α = 8 and z0(0) = z1(0) = z2(0) = 0.

Take random positive sampling steps τk, uniformly distributed in the
segment [10−4, τ ]. The stabilization of σ, σ̇, σ̈ with 0 < τk ≤ τ = 0.01 is
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Figure 2: Quasi-continuous (3,2)-sliding car control.

Figure 3: Car controls and the nominal control matrix elements.
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Figure 4: (a), (b), (c) Stabilization of σ, σ̇, σ̈ with τ = 0.01; (d) asymptotics
of σ, σ̇, σ̈ for the maximal sampling steps τ = 0.01, 0.02, ..., 0.1.

respectively demonstrated in Figs. 4a, b, and c. Now let the maximal sam-
pling step τ take values 0.01, 0.02, ..., 0.1. Logarithmic plots of max[30,40] |σ(i)|,
i = 0, 1, 2, together with the corresponding best-fitting lines 2.9 ln τ + 8.1,
1.9 ln τ + 5.6 and 0.9 ln τ + 3.9 are shown in Fig. 4d. According to Theo-
rem 7, the worst-case accuracy orders correspond to the slope values 3, 2, 1,
respectively. Thus, the simulation results are in good compliance with the
theory.

7 Conclusions

A simple robust MIMO homogeneous SM control is proposed, preserving
the main properties of SISO homogeneous SM control including its high
asymptotic accuracy. The required conditions are a direct generalization of
the SISO case.

It is proved that the well-known standard asymptotic accuracy of the
output-feedback homogeneous SM control is preserved, when the observer
is realized as a discrete-time system based on the Euler integration. More-
over, the accuracy is also preserved, if, as a part of the artificial relative
degree increase, the discrete dynamics includes a discrete Euler integrator.
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These results are also true in the MIMO case, provided the proposed MIMO
homogeneous SM control is applied.
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