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Abstract

Filtering differentiators are capable both of rejecting large noises and exactly dif-

ferentiating smooth signals. Even unbounded noises are rejected provided their

local average is small. A special type constitute tracking filtering differentiators

producing smooth outputs being derivatives one of another. Discrete filter ver-

sions are proposed, and the accuracy asymptotics are studied in the presence

of noises and discrete sampling. Extensive computer simulation confirms the

theoretical results.

Keywords: Sliding mode control, nonlinear observation, homogeneity,

sampled systems.

1. Introduction

Filtering noisy signals is an old problem, and differentiation is its special

type. While the first only extracts the basic signal, the second also provides its

derivatives. The problem is ill posed, since one cannot distinguish between the

noise and the unknown signal to be extracted and processed.

The classic approach classifies the signals by their Fourier expansions. The

high-frequency components are considered noises, and the approximate differ-

entiation is only achieved for signals of a bounded frequency range. The corre-
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sponding filters are widely and successfully applied in signal processing, obser-

vation and output-feedback control [1, 2, 3]. Generaly speaking, their efficiency

in smooth output-feedback control is due to the reduction of the asymptotic

stability to the stability of the system linearization. In particular, the con-

trol creates an artificial system equilibrium, and becomes constant or (after the

feedback linearization [4]) vanishes at it.

Sliding-mode (SM) control (SMC) is used to control systems which cannot

be stabilized by smooth control due to significant uncertainties [5, 6, 7]. Corre-

spondingly the observation requirements are higher, since closed-loop systems

cannot be linearized at the stabilization point. The differentiation is considered

a classic problem of SMC [8, 9]. SMC inevitably produces small high frequency

vibrations [10], [11] often called chattering. The corresponding output vibra-

tions contain important information on the system state and cannot be ignored

in observation.

A system output f0 is naturally classified by the lowest order of its total

time derivative containing control, i.e. by its relative degree r [4]. High-order

SMs (HOSMs) were intentionally developed for the regulation of outputs with

high relative degrees r [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Exact finite-time (FT) stabilization of the output f0 is performed by the

so-called r-th order SMC (r-SMC) and requires the knowledge of the output

derivatives up to the order r− 1. Thus, the exact (r− 1)th-order differentiation

is essential for the HOSM control (HOSMC) theory [24, 25, 26, 27, 28, 29, 18,

30, 31]. In the r-SMC framework one can assume that f
(r)
0 is a bounded high-

frequency switching signal. Reformulate that problem in a general form for

r = n+ 1.

The sampled signal f(t) inevitably contains a noise η(t), i.e. f(t) = f0(t) +

η(t). Correspondingly, the problem is to evaluate f0(t), ḟ0(t), ..., f
(n)
0 (t) robustly

and in real time, under the condition that |f (n+1)
0 (t)| ≤ L. The available numeric

information consists of L > 0 and n ∈ N. Derivatives are to be exact for η = 0.

The problem has been solved in [32, 18].

Thus, “standard” HOSM-based differentiators [18] produce the outputs zi,
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i = 0, ..., n, which in FT converge to exact derivatives f
(i)
0 . They exactly differ-

entiate small high-frequency output components of f0, but still are very robust

to noises (see Section 5). Moreover, the accuracy asymptotics in the presence

of bounded noises, |η| ≤ ε, have been shown to be optimal with respect to ε

[32, 33] (see Section 2.2).

Nevertheless, one would like to provide a feature similar to linear filters’

ability to reject large high-frequency signal components. That feature together

with the linearity of a filter (or the ideal differentiation) immediately exclude the

filter robustness to small noises, but it becomes possible for nonlinear FT-exact

filters. The aim is achieved by the recently proposed filtering differentiators

capable of filtering out unbounded noises with small average values, while pre-

serving all advantageous features of the “standard” SM-based differentiators.

The simplest form of the filtering differentiator has been proposed and ap-

plied in [34] to the extraction of the equivalent control from the SMC. The

general form of the filtering differentiator has been proposed at the conference

[35]. Paper [35] contains no proofs, is concentrated on the SM observation

lemma and feedback applications, and unfortunately has a few inaccuracies.

Differentiators [18] produce estimations zi ≈ f (i)
0 which themselves are differ-

entiable only once. In particular, in the presence of even small noises żi 6= zi+1,

and one cannot evaluate d
dt ḟ

2
0 as 2z1z2. The issue is resolved by the tracking

differentiators introduced in [36, 37] for the practical-relative-degree identifica-

tion [38, 39]. The tracking differeniators are unified to a standard form and

extended to the filtering tracking differentiators in this paper.

A paper on filtering differentiators submitted in parallel to CDC’ 2019 con-

tains significantly less theoretical results and has no proofs. The simulation part

of the present paper is completely different from the CDC paper, whereas its

theoretic results are much more comprehensive.

Notation. A binary operation � of two sets is defined as A � B = {a � b| a ∈

A, b ∈ B}, a � B = {a} �B. A function of a set is the set of function values on

this set. The norm ||x|| stands for the standard Euclidian norm of x, ||x||∞ =
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max |xi|, ||x||h∞ = maxi=1,...,n |xi|1/(n+1−i) for x ∈ Rn. Bε = {x | ||x|| ≤ ε},

R+ = [0,∞); baeb = |a|b sign a, bae0 = sign a.

2. Preliminaries: homogeneous differentiation

Recall that solutions of the differential inclusion (DI)

ẋ ∈ Φ(x), Φ(x) ⊂ TxRnx , (1)

are defined as locally absolutely continuous functions x(t), satisfying the DI for

almost all t. Here TxRnx denotes the tangent space to Rnx at x ∈ Rnx .

We call the DI (1) Filippov DI, if the vector-set field Φ(x) ⊂ TxRnx is non-

empty, compact and convex for any x, and Φ is an upper-semicontinuous set

function. The latter means that the maximal distance of the points of Φ(x)

from the set Φ(y) tends to zero, as x→ y.

Filippov DIs feature existence, extendability etc. of solutions, but not their

uniqueness [40]. The Filippov definition [40] replaces a differential equation

(DE) ẋ = ϕ(x) with the Filippov DI (1), Φ = KF [ϕ], where

KF [ϕ](x) =
⋂

µLN=0

⋂
δ>0

co ϕ((x+Bδ)\N). (2)

Here co, µL stand for the convex closure and the Lebesgue measure respectively,

(2) defines the celebrated Filippov procedure.

2.1. Weighted homogeneity basics

Introduce the weights m1, ...,mnx > 0 of the coordinates x1, ..., xnx in Rnx ,

deg xi = mi, and the dilation [41]

dκ : (x1, x2, ..., xnx) 7→ (κm1x1, κ
m2x2, ..., κ

mnxxnx),

where κ ≥ 0. Recall [41] that a function g : Rnx → Rm is said to have the

homogeneity degree (HD) (weight) q ∈ R, deg g = q, if the identity g(x) =

κ−qg(dκx) holds for any x ∈ Rnx\{0} and κ > 0.
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Consider the combined time-coordinate transformation

(t, x) 7→ (κ−qt, dκx), κ > 0, (3)

where the number −q ∈ R might be interpreted as the weight of t. The DI

ẋ ∈ Φ(x) and the vector-set field Φ(x) are called homogeneous of the HD q,

if the DI is invariant with respect to (3). The following is the corresponding

formal definition.

Definition 1. [19] A vector-set field Φ(x) ⊂ TxRnx (DI ẋ ∈ Φ(x)), x ∈ Rnx , is

called homogeneous of the degree q ∈ R, if the identity Φ(x) = κ−qd−1
κ Φ(dκx)

holds for any x 6= 0 and κ > 0.

A system of DEs ẋi = ϕi(x), i = 1, ..., nx, is a particular case of DI, when

the set Φ(x) contains only one vector ϕ(x). Then Definition 1 is reduced to

deg ẋi = deg xi − deg t = mi + q = degϕi [41]. Note that if ϕ is discontinuous,

the DE is equivalent to the corresponding homogeneous Filippov DI (1).

Note that the weights −q, m1, ...,mnx are defined up to proportionality. The

sign of the HD determines many properties of DIs.

Any continuous positive-definite function of the HD 1 is called a homogeneous

norm. In particular ||x||h = maxi |xi|1/mi is such a norm.

It is proved in [19] that if the HD q of the DI (1) is negative then it is

asymptotically stable iff it is FT stable. Moreover, there exist such µ1, ..., µnx >

0 that in the presence of a maximal delay τ ≥ 0 and noises of the magnitudes

εi ≥ 0, i = 1, 2, ..., nx, each extendable-in-time solution of the disturbed DI

ẋ ∈ Φ (x(t− τ [0, 1]) + [−ε1, ε1]× ...× [−εnx , εnx ])

starting from some time satisfies the inequalities

|xi| ≤ µiρmi , ρ = max[||ε||h, τ−q] = max[ε
1/m1

1 , ..., ε
1/mnx
n , τ−q]. (4)

2.2. SM-based homogeneous differentiation

Let the set of all functions R+ → R, whose nth derivative has the Lipschitz

constant L > 0, be denoted by Lipn(L). Following [18] the differentiators are

required to be exact on Lipn(L) after a FT transient.
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Assumption 1. The input signal f(t), t ≥ 0, is assumed to have the form

f(t) = f0(t) + η(t), consisting of an unknown basic signal f0 ∈ Lipn(L) and a

Lebesgue-measurable noise η(t).

Assumption 2. The noise η(t) is bounded, |η| ≤ ε0. Whereas L is assumed

known, ε0 ≥ 0 remains unknown.

Differentiation problem. [[32, 18]] The problem is to evaluate the deriva-

tives f
(i)
0 (t), i = 0, 1, ..., n, in real time, robustly with respect to small noises

η(t), and exactly in their absence.

Theorem 1 ([33]). For any t0 > 0 there exists such ε∗ > 0 that for any ε0,

0 < ε0 ≤ ε∗, and any f0, f1 ∈ Lipn(L) the inequality supt≥0 |f1(t)− f0(t)| ≤ ε0

implies the inequalities

sup
t≥t0
|f (i)

1 (t)− f (i)
0 (t)| ≤ Ki,n(2L)

i
n+1 ε

n+1−i
n+1

0 , i = 0, 1, ..., n. (5)

Here Ki,n, Ki,n ∈ [1, π/2], are the Kolmogorov constants [42]. For each ε0, i

these inequalities become equalities for certain functions f0, f1.

Let z0(t), z1(t), ..., zn(t) be the outputs of some differentiator estimating

f0(t), ḟ0(t), . . . , f
(n)
0 (t) for the input f0 ∈ Lipn(L), and let zi(t) ≡ f

(i)
0 (t) for

t ≥ t0. Then, defining f = f1 = f0 + η, η = f1 − f0, under Assumptions 1, 2

obtain from Theorem 1 that the best worst-case accuracy to be kept from some

moment t∗ > t0 is supf0,η supt≥t∗ |zi − f
(i)
0 | ≥ Ki,n(2L)

i
n+1 ε

n+1−i
n+1

0 . In partic-

ular, since K1,1 =
√

2, get supf0,η supt≥t∗ |z1 − ḟ0| ≥ 2
√
Lε0 for the first-order

differentiation.

A differentiator is called asymptotically optimal, if for some constants

µi > 0 under Assumptions 1, 2 it in FT provides the accuracy |zi(t)− f (i)
0 (t)| ≤

µiL
i

n+1 ε
n+1−i
n+1

0 , i = 0, 1, ..., n, for all inputs, noises and ε0 ≥ 0. Obviously,

µi ≥ Ki,n2
i

n+1 > 2
i

n+1 .

The following is the asymptotically-optimal differentiator [18] in its so-called
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non-recursive form:

ż0 = −λ̃nL
1

n+1 bz0 − f(t)e
n
n+1 + z1,

ż1 = −λ̃n−1L
2

n+1 bz0 − f(t)e
n−1
n+1 + z2,

...

żn−1 = −λ̃1L
n
n+1 bz0 − f(t)e

1
n+1 + zn,

żn = −λ̃0L sign(z0 − f(t)).

(6)

Here and further all differential equations are understood in the Filippov sense

(2) [40]. Differentiator (6) is further called standard.

Differentiator (6) is called homogeneous due to its homogeneous error dy-

namics. Let σi = (zi − f (i))/L. Now subtracting f (i+1) from the both sides of

the equation for zi, dividing by L and taking into account f (n+1)/L ∈ [−1, 1] in

the last equation, obtain the FT stable differential inclusion (DI)

σ̇0 = −λ̃nbσ0e
n
n+1 + σ1,

σ̇1 = −λ̃n−1bσ0e
n−1
n+1 + σ2,

...

σ̇n−1 = −λ̃1bσ0e
1

n+1 + σn,

σ̇n ∈ −λ̃0 sign(σ0) + [−1, 1].

(7)

Here and further in all DIs the function sign(·) is replaced with KF [sign(·)](·)

(see (2)). The homogeneity of (7) is due to its invariance with respect to the

transformation σi 7→ κn+1−iσi, t 7→ κt for κ > 0 (Section 2.1). Obviously the

HD is −1.

Parameters λ̃i are most easily calculated using the parameters λ0, ..., λn of

the differentiator recursive form [18]: λ̃0 = λ0, λ̃n = λn, and λ̃j = λj λ̃
j/(j+1)
j+1 ,

j = n− 1, n− 2, . . . , 1. An infinite sequence of parameters ~λ = {λ0, λ1, ...} can

be built [18], providing coefficients λ̃i of (6) for all natural n. In particular,

~λ = {1.1, 1.5, 2, 3, 5, 7, 10, 12, ...} suffice for n ≤ 7 [43, 33]. The corresponding

parameters λ̃i are listed in Table 1.

The differentiator accuracy follows from the homogeneity of dynamics (7).

Due to (4) in the presence of discrete measurements with the maximal sampling
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Table 1: Parameters λ̃0, λ̃1, ..., λ̃n of differentiator (6) for n = 0, 1, ..., 7
0 1.1

1 1.1 1.5

2 1.1 2.12 2

3 1.1 3.06 4.16 3

4 1.1 4.57 9.30 10.03 5

5 1.1 6.75 20.26 32.24 23.72 7

6 1.1 9.91 43.65 101.96 110.08 47.69 10

7 1.1 14.13 88.78 295.74 455.40 281.37 84.14 12

time interval τ > 0 differentiator (6) in FT provides the accuracy

|zi(t)− f (i)
0 (t)| ≤ µiLρn+1−i, i = 0, 1, ..., n,

ρ = max[(ε0/L)1/(n+1), τ ]
(8)

for some µi > 0 [18]. Here the case τ = 0 formally corresponds to continu-

ous sampling. The same accuracy asymptotics (with different constants µi) is

maintained by properly discretized differentiator [44, 43].

3. Filtering differentiators

Filtering differentiators are developed to reject some large noises, while pre-

serving all properties of the standard differentiators (6). The rejectable noises

are required to be small in average. Two main examples are the noises of the

form γ cos(ωt), ω >> 1, and a random discretely-sampled signal of the zero

mean value (mostly in Section 4). The latter example is not considered mathe-

matically in this paper, but provides a lot of practical examples (Section 5).

3.1. “Standard” filtering differentiators

Introduce the number nf ≥ 0 which is further called the filtering order. The

following differentiator [35] extends the standard differentiator (6) and is further
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called the standard filtering differentiator:

ẇ1 = −λ̃n+nfL
1

n+nf+1 bw1e
n+nf
n+nf+1 + w2,

...

ẇnf−1 = −λ̃n+2L
nf−1

n+nf+1 bw1e
n+2

n+nf+1 + wnf ,

ẇnf = −λ̃n+1L
nf

n+nf+1 bw1e
n+1

n+nf+1 + z0 − f(t),

ż0 = −λ̃nL
nf+1

n+nf+1 bw1e
n

n+nf+1 + z1,

...

żn−1 = −λ̃1L
n+nf
n+nf+1 bw1e

1
n+nf+1 + zn,

żn = −λ̃0L sign(w1).

(9)

In order to keep the standard differentiator (6) as a particular case, it is assumed

that for nf = 0 the first nf equations disappear, and w1 = z0 − f(t) is formally

substituted for w1. In the case n = 0 only the equation for z0 remains in the

lower part.

For example, the filter of the filtering order nf = 2 and the differentiation

order n = 0 gets the form

ẇ1 = −2L
1
3 bw1e

2
3 + w2,

ẇ2 = −2.12L
2
3 bw1e

1
3 + z0 − f(t),

ż0 = −1.1L signw1.

(10)

where the parameters λ̃0 = 1.1, λ̃1 = 2.12, λ̃2 = 2 are taken from the row

n + nf = 2 of table 1. Its output z0 estimates the component f0 of the noisy

signal f , |ḟ0| ≤ L.

Introduce a short notation for (9):

ẇ = Ωn,nf (w, z0 − f, L,~λ), for nf > 0,

w1 = z0 − f for nf = 0,

ż = Dn,nf (w1, z, L,~λ);

(11)

Any valid parametric sequence ~λ introduced in Section 2.2 can be used. The

particular sequence listed there generates table 1. In the sequel for brevity we

omit the case nf = 0 in (11).
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In the following one can consider the signal cos(ωt), ω >> 1, as a simplest-

form noise to be rejected by the filter. Note that |
∫ t

0
cos(ωt)dt| = | sin(ωt)|/ω <<

1. The next definition generalizes these properties.

Definition 2. A function ν(t), ν : [0,∞)→ R, is called globally filterable, or a

signal of the (global) filtering order k ≥ 0, if ν is a locally integrable Lebesgue-

measurable function, and there exists a uniformly bounded locally absolutely-

continuous solution ξ(t), ξ : [0,∞)→ R, of the equation ξ(k) = ν. Any number

exceeding sup |ξ(t)| is called a kth-order (global) integral magnitude of ν.

Assumption 3. Extend Assumption 2 assuming that the input noise signal is

comprised of nf + 1 components, η(t) = η0(t) + η1(t) + ...+ ηnf (t), where each

ηk, k = 0, ..., nf , is a signal of the global filtering order k and the kth-order

integral magnitude εk ≥ 0. Components η1, ..., ηnf are possibly unbounded.

The noise of Assumption 2 is of the 0th filtering order and the 0th order

integral magnitude ε0. The standard differentiator (6) corresponds to nf = 0

and is known to be robust with respect to the noises η = η0 of the filtering order

0 [18].

The following theorem shows that differentiator (9) of the filtering order

nf is FT exact and robust with respect to possibly unbounded noises of the

filtering orders not exceeding nf . Moreover, its asymptotic optimality feature

is preserved and corresponds to the case ε1 = ... = εnf = 0.

Theorem 2. Under Assumptions 1 and 3 differentiator (9) in FT provides for

the accuracy

|zi(t)− f (i)
0 (t)| ≤ µiLρn+1−i, i = 0, 1, ..., n,

|w1(t)| ≤ µw1Lρ
n+nf+1,

(12)

ρ = max[( ε0L )
1

n+1 , ( ε1L )
1

n+2 , ..., (
εnf
L )

1
n+nf+1 ], (13)

where {µi}, {µw1} only depend on the choice of {λl}, l = 0, ..., n+ nf .

Estimations of wk, k > 1, depend on the noises. In particular, similar

inequalities |wk| ≤ µwkLρn+nf+2−k are maintained for η2 = ... = ηnf = 0. Here

and further the proofs appear in the Appendix.
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The standard differentiator (6) is included here for nf = 0. Note that

increasing the differentiator filtering order nf while keeping the same noise fil-

tering orders does not change the differentiation accuracy asymptotics provided

by the theorem.

Example 1. The noise η = γ cos(ω∗t) features any global filtering order k ≥ 0

with the integral magnitude γ for k = 0 and 2γ/ω∗
k for k > 0. It means that it

has at least nf + 1 trivial expansions of the form η = ηk for any k = 0, 1, ..., nf

and other components equal 0. It follows from Theorem 2 that the estimation

(12) holds for each corresponding value of ρ = ρk, k ≤ nf , i.e. for

ρ = min{( γL )
1

n+1 , min
k=1,2,...,nf

[(2 γL )
1

n+k+1ω∗
− k
n+k+1 ]}.

Obviously, ρ decreases for growing nf approaching lim ρ = 1/ω∗, provided

ωn+1
∗ > L/γ, ω∗ > 1. Also see the simulation in Section 5.

Other simple examples of the signals of global filtering orders are arbitrary-

order derivatives of periodic functions (see Section 5.1). �

Signals of the same filtering order obviously constitute linear spaces. More-

over, let ν1, ν2, ... be the sequence of the signals R+ → R of the same global

filtering order k, with the bounded solutions ξ1, ξ2, ... and the integral magni-

tudes b1, b2, .... Then, provided the series
∑
j ξ

(l)
j uniformly converge over any

bounded interval for l = 0, 1, ..., k and
∑
j bj converges, the series

∑
j ηj is also

a signal of the kth filtering order of the integral magnitude
∑
j bj .

The proof of the above claim is trivial. In particular, Example 1 establishes

application of Theorem 2 for filtering out smooth periodic high-frequency noises.

A noise can have uniformly small integrals over intervals of bounded length,

but still have no global filtering order. Further we show that also such noises

can be filtered out. The following definition formalizes that property.

Definition 3. A locally integrable Lebesgue-measurable function ν(t), ν :

[0,∞) → R, is called locally filterable if there exists an integer k > 0 (the

local filtering order) and some numbers T > 0, a0, a1, ..., ak−1 ≥ 0, such that

for any t1 ≥ 0 there exists a solution ξ(t), t ∈ [t1, t1 + T ], of the equation
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ξ(k)(t) = ν(t) which satisfies |ξ(l)(t)| ≤ al for l = 0, 1, ..., k − 1. Numbers al are

called the local (k− l)th-order integral magnitudes of ν. Signals of local filtering

order 0 are trivially defined as bounded signals of the magnitude a0.

Note that each signal of a positive local filtering order k > 0 trivially pos-

sesses any other local positive filtering order.

Obviously, also locally filterable signals constitute a linear space. Contrary

to the signals of global filtering orders locally filterable signals are relatively

easily recognized.

Example 2. The function cos(ω∗t · ln ln(t + 2)), ω∗ > 0, is locally filterable.

Indeed, fix any T > 0. Let t1 ≤ t2 ≤ t1 + T , then due to the Lagrange theorem

ln ln(t+ 2) = ln ln(t1 + 2) + 1
(c+2) ln(c+2) (t− t1)

for any t ∈ [t1, t1 + T ] and some c ∈ [t1, t]. Thus, the calculations

cos(ω∗t ln ln(t+ 2)) = cos(ω∗t ln ln(t1 + 2))

−2 sin(1
2ω∗t[ln ln(t+ 2) + ln ln(t1 + 2)]) sin( 1

2ω∗t[ln ln(t+ 2)− ln ln(t1 + 2)]),

|ω∗t[ln ln(t+ 2)− ln ln(t1 + 2)| ≤ ω∗(t−t1)
ln(t1+2)

t
t1+2

prove the first local filtering order of the signal. Indeed,

|
∫ t2
t1

cos(ω∗t ln ln(t+ 2))dt| =
∣∣∣∫ t2t1 cos(ω∗t ln ln(t1 + 2))dt

∣∣∣+R(t1, t2, T );

|
∫ t2
t1

cos(ω∗t ln ln(t+ 2))dt| ≤ 2
ω∗ ln ln(t1+2) +R(t1, t2, T ),

where the function R(t1, t2, T ) is uniformly bounded for any fixed T > 0, 0 ≤

t2 − t1 ≤ T and t1 ≥ 0, since R = O( ω∗T
2

ln(t1+2) ) as t1 →∞. �

The following lemma shows that filtering differentiators can be applied when

the noises are only locally filterable.

Lemma 1. Any signal ν(t) of the local filtering order k ≥ 0 from the Definition

2 can be represented as ν = η0+η1+ηk, where η0, η1, ηk are signals of the (global)

filtering orders 0, 1, k.

Fix any number ρ0 > 0. Then, provided ρ ≤ ρ0 holds for ρ = ||a||h∞ =

max[a
1/k
0 , a

1/(k−1)
1 , ..., ak−1], the integral magnitudes of the signals η0, η1, ηk are
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calculated as γ0ρ/T , γ1ρ, γkρ
k respectively, where the constants γ0, γ1, γk > 0

only depend on k and ρ0. In particular, in the important case k = 1 get ρ = a0,

ν = η0 + η1, and independently of ρ0 get γ0 = 1, γ1 = 2, i.e. |η0| ≤ a0/T , and

the first-order integral magnitude of η1 is 2a0.

Note that due to Lemma 1 and Theorem 2 filtering differentiator (9) and

the tracking filtering differentiator to be introduced further, preserve their prac-

tical stability for any locally filterable noises. The noise from Definition 3 is

practically rejected if ||a||h∞ is small.

Remark 1. Lemma 1 provides sufficient conditions for the validity of Assump-

tion 3 and shows that the noise representation η = η0 + ...+ηnf is never unique.

Since the accuracy estimation (12) holds for any such noise representation, the

resulting accuracy inevitably corresponds to the best possible one.

Example 3 (Application of Lemma 1). Return to Example 2. The noise η =

cos(ω∗t ln ln(t+2)) is bounded, and therefore is of the 0th global filtering order.

That means that the filtering differentiator (9) of the filtering order nf = 0 (i.e.

the standard differentiator) keeps its practical stability in its presence, though

probably has bad accuracy.

The same signal η(t) is also locally filterable. Its first order local integral

magnitude is of the form O( T 2

ln(t1+2) ), depends on T and tends to zero as the left

end t1 of the T -segment tends to infinity. According to the lemma, η = η0 + η1,

where η0, η1 are of the global filtering orders 0 and 1, and the integral magnitudes

O( 1
Tω∗ ln ln(t1+2) ) and O( 1

ω∗ ln ln(t1+2) ) respectively. Thus, by restarting the time

counting at larger time values obtain from Theorem 2 that differentiator outputs

(slowly) asymptotically converge to the exact derivatives for any nf ≥ 1.

The noise η̇ is unbounded. It is globally filterable of the order 1, which

means that in its presence differentiator keeps its stability for nf ≥ 1 providing

for the accuracies corresponding to the parameter ρ = O(1) of (13). It is also

locally filterable of the order 2 with the magnitudes 1 and O( 1
ω∗ ln ln(t1+2) ) of

the order 1 and 2 respectively. But in that case Lemma 1 and Theorem 2 only

promise the accuracy O(1) for nf ≥ 2.
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Similarly the noise η(k) is unbounded signal of the global filtering order k

and requires nf ≥ k. Note that the unbounded noise εη(k) will cause only

small differentiation errors for nf ≥ k and small ε > 0. Also see the simulation

with unbounded noise in Section 5.1. �

Example 4. The signal η = cos(ωt) is already a signal of any global filtering

order (Example 1). Nevertheless, one can consider it as a locally filterable signal

and apply the lemma. It is natural to suppose that the estimated accuracy will

not improve.

Indeed, fixing any T > 0, ρ0, and formally considering it as a signal of

local filtering order k with the integral magnitudes 2/ωk, ..., 2/ω, ρ = 2/ω,

obtain η = ηk + η1 + η0, where the new noise components are of the global

filtering orders k, 1, 0 and the integral magnitudes γk/ω
k, γ1/ω, γ1/(ωT ) for

some γ0,1,k > 0. Then for sufficiently large ω Theorem 2 provides for the same

accuracy asymptotics (up to the coefficients) as the original signal representation

η = ηk = cos(ωt) . �

3.2. Tracking filtering differentiators

One of the basic requirements to differentiator is to produce smooth and

consistent derivatives of the input. It becomes critical if, for example, such

inconsistency may trigger undesired alerts. One may think of an aircraft trans-

mitting its deliberately erroneous location and velocity in order to misguide

hostile detection. The signals are to be consistent in order not to be disclosed

by a radar equipped with a sanity mechanism.

Because of always present noises no differentiator can keep z0 − f0(t) ≡ 0.

Due to the differentiator equations (9) in that case żi 6= zi+1. Moreover, outputs

zi(t) of differentiators (6) (or (9)) are not Lipschitzian due to the fractional

powers on the right-hand sides of (9). Hence, the difference żi − zi+1 can be

large even in the case of small estimation errors.

Example 5. Consider a simple academic example. The motion of some object

is described by a scalar differential equation on the coordinate x ∈ R, which is
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measured with some noise. Derivatives x(i) are successfully estimated by the

differentiator outputs zi with a certain error due to noise.

Let E = ẋ2/2 be the kinetic energy. Its dynamics is governed by the equation

Ė = P (t) where P (t) is the propelling power of an engine. The task is to

estimate P (t) = ẋẍ, Ṗ (t) = ẍ2 + ẋ
...
x .

One possible way is to differentiate z2
1/2 once more using the same differen-

tiator. It will inevitably exaggerate the noises, since the successive differentiator

application destroys the optimal accuracy asymptotics (Section 2.2). Another

way is to utilize the already available estimations P (t) ≈ z1z2, Ṗ (t) ≈ z2
2 +z1z3.

Unfortunately the latter way is not available, since the differences P (t)− z1z2,

and especially Ṗ (t)−z2
2−z1z3 are very significant even for very small estimation

errors zi − f (i)
0 (see example in Section 5.2). �

One would like to ensure zi(·) ∈ Cn−i and żi ≡ zi+1, i = 0, ..., n − 1, with

zn being only Lipschitzian.

The corresponding differentiators have been introduced for the identification

of the practical relative degree in [36, 37, 33]. The task was to experimentally

detect the number of the output derivative which most strongly responds to

control jumps. One needs a sequence of consistent derivative’s estimations for

that end. The following tracking filtering differentiator contains a significantly

improved and unified version of that tracking differentiator.

Let a homogeneous SMC u = αnψn+1(σ, σ̇, ..., σn) in FT stabilize the DI

σ(n+1) ∈ [−1, 1] + u for some αn > 0. Such controls are called (n + 1)th-order

SM ((n + 1)-SM) controls, [15, 16, 17, 19, 45]. The (n + 1)-SM homogeneity

means that ψn+1(σ, σ̇, ..., σn) ≡ ψn+1(κn+1σ, κnσ̇, ..., κσn) holds for any κ > 0

and σ, σ̇, ..., σn ∈ R. We also require |ψn+1| ≤ 1.

Then the tracking filtering differentiator is defined as

ẇ = Ωn,nf (w, ζ0 − z0 + f(t), L+ αnL,~λ),

ζ̇ = Dn,nf (w1, ζ, L+ αnL,~λ),

ż0 = z1, ..., żn−1 = zn,

żn = αnLψn+1(ζ/L).

(14)
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Theorem 3. Under Assumptions 1, 3 differentiator (14) in FT provides for

the accuracy asymptotics (12), (13). Also |ζi| ≤ µζiLρn+nf+1−i are kept in the

steady state for i = 0, ..., n. The constants µi, µζi, µwk only depend on the

choice of {λl}, l = 0, ..., n+ nf , αn and ψn+1.

The following are probably the simplest such r-SM controllers u = αnψn+1(ζ)

ready to use for n ≤ 4. They are known as quasi-continuous rational homoge-

neous SM controllers [16]:

n = 0. u = −1.5 sign ζ0,

n = 1. u = −1.5 bζ1e
2+ζ0

ζ21+|ζ0| ,

n = 2. u = −4
ζ32+bζ1e

3
2 +ζ0

|ζ2|3+|ζ1|
3
2 +|ζ0|

,

n = 3. u = −7 bζ3e
4+2bζ2e2+2bζ1e

4
3 +ζ0

ζ43+2ζ22+2ζ
4
3
1 +|ζ0|

,

n = 4. u = −20 bζ4e
5+6bζ3e

5
2 +5bζ2e

5
3 +3bζ1e

5
4 +ζ0

|ζ4|5+6|ζ3|
5
2 +5|ζ2|

5
3 +3|ζ1|

5
4 +|ζ0|

.

(15)

Note that the tracking differentiation is not an easy task. Indeed, it is

natural to assume that zi vibrates around its limit value f
(i)
0 (t). But each time

as zi gets its local extremum the next estimation zi+1 vanishes. Hence, on

the first glance the estimation accuracy zi+1 − f (i+1)
0 turns to be of the order

of |f (i+1)
0 | independently of noises and sampling periods. Therefore, it follows

from Theorem 3 that zi is only allowed to have local extrema near the points

where |f (i+1)
0 | vanishes, i = 0, 1, ..., n− 1. Also see the simulation, Fig. 2.

4. Discrete filtering differentiators

Assumption 3 is formulated in continuous-time notions including differenti-

ation and integration. Unfortunately, in reality a filter is a discrete dynamic

system obtaining discretely sampled input f(t).

Let the sampling take place at the times t0, t1, ..., t0 = 0, 0 < tj+1− tj = τj ,

limj→∞ tj = ∞. The sampling steps are assumed bounded, τj ≤ τ , though τ

can be unknown.

It follows from the Nyquist-Shannon sampling rate principle that not all
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sampling-time sequences are admissible, since noises small in average under one

sequence can be large under another.

Assumption 4. The set of admissible sampling-time sequences contains se-

quences for any τ > 0. In particular, the number of sequences is infinite.

Notation. Denote δjφ = φ(tj+1)− φ(tj) for any sampled vector signal φ(tj).

Definition 4. A discretely sampled signal ν : R+ → R is said to be a signal

of the global sampling filtering order k ≥ 0 and the global kth order integral

sampling magnitude a ≥ 0 if for each admissible sequence tj there exists a

discrete vector signal ξ(tj) = (ξ0(tj), ..., ξk(tj))
T ∈ Rk+1, j = 0, 1, ..., which

satisfies the relations

δjξi = ξi+1(tj)τj , i = 0, 1, ..., k − 1,

ξk(tj) = ν(tj), |ξ0(tj)| ≤ a.

The following assumption on noises is the most convenient.

Assumption 5. The sampled noise signal is comprised of nf + 1 components,

η(tj) = η0(tj) + η1(tj) + ...+ ηnf (tj). The discretely sampled signals ηl(tj) are

of the global sampling filtering order l and integral magnitude εl, l = 0, 1, ..., nf .

Components η1, ..., ηnf possibly are unbounded.

Assumption 5 is proved to hold for the steady-state SMC and nf = 1 if the

deviation of the SMC from the equivalent-control ueq is considered the noise.

That allows direct extraction of ueq, ..., u
(n)
eq by a filtering differentiator [34]. The

assumption also often holds due to the statistical features of the noise (see [35],

and Section 5.3).

The proposed homogeneous discretization of the standard filtering differen-

tiator (11) has the form

δjw = Ωn,nf (w, z0(tj)− f(tj), L,~λ)τj ,

δjz = Dn,nf (w1(tj), z(tj), L,~λ)τj + Tn(z(tj), τj),
(16)
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where the Taylor-like term Tn ∈ Rn+1 is defined as

Tn,0 = 1
2!z2(tj)τ

2
j + ...+ 1

n!zn(tj)τ
n
j ,

Tn,1 = 1
2!z3(tj)τ

2
j + ...+ 1

(n−1)!zn(tj)τ
n−1
j ,

...

Tn,n−2 = 1
2!zn(tj)τ

2
j ,

Tn,n−1 = 0, Tn,n = 0.

(17)

An example is provided in (27). The following is the proposed homogeneous

discretization of the tracking differentiator (14):

δjw = Ωn,nf (w, ζ0(tj)− z0(tj) + f(tj), L+ αnL,~λ)τj ,

δjζ = Dn,nf (w1(tj), ζ(tj), L+ αnL,~λ)τj ,

δjz = Ψn(tj)τj + Tn(z(tj), τj),

Ψn(tj) = (z1(tj), ..., zn(tj), αnLψn+1(ζ(tj)/L))T .

(18)

Theorem 4. Under Assumptions 1, 4, 5 discrete differentiators (16) and (18)

provide the same accuracy (12) as Theorems 2 and 3 respectively, but for

ρ = max[τ, max
0≤l≤nf

( εlL )
1

n+l+1 ] (19)

Example 6. Fix any small εl > 0 and let the sampling step be constant and

equal τ > 0. Take any discrete signal ξl(tj), |ξl(tj)| ≤ εl, tj = jτ , j = 0, 1, ....

For example ξl(tj) = (−1)jε can be taken.

Let ξi−1(tj) = δjξi/τ , i = l, l − 1, ..., 1. Define ηl(tj) = ξ0(tj). It is a

signal of the global sampling filtering order l and the lth-order integral sampling

magnitude εl.

Obviously ηl(tj) = O(εlτ
−l) and is very large for small τ . Nevertheless,

according to Theorem 4, for l ≤ nf its impact (19) on the accuracy of differen-

tiators (16) and (18) is determined by ε
1/(n+l)
l /L only. �

Definition 5. A discretely sampled signal ν(tj) is said to be locally filterable

of the local sampling filtering order k > 0 if there exist numbers T > 0, and

a0, a1, ..., ak−1 ≥ 0, such that for any sufficiently small τ , admissible sequence

{tj}, and any sampling instant tj0 ≥ 0 there exists a discrete vector signal

ξ(tj) = (ξ0(tj), ..., ξk(tj))
T ∈ Rk+1, j = j0, j0+1, ..., j1, tj1 ∈ [tj0+T, tj0+T+τ ],
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which satisfies the relations

δjξi = ξi+1(tj)τj , i = 0, 1, ..., k − 1,

ξk(tj) = ν(tj),

|ξi(tj)| ≤ ai, i = 0, 1, ..., k − 1.

(20)

Numbers ai are called the local (k − i)th-order sampling integral magnitudes

of ν. Signals of local sampling filtering order 0 by definition are just bounded

signals of the magnitude a0.

The following lemma is analogous to Lemma 1 and allows application of

Theorem 4 in the case of locally filterable noises.

Lemma 2. Let all admissible sampling time sequences satisfy the condition

sup τj/ inf τj ≤ cτ for some cτ > 0. Then any discretely sampled signal ν(tj) of

the local sampling filtering order k ≥ 0 from the Definition 5 can be represented

as ν = η0 + η1 + ηk, where η0, η1, ηk are signals of the (global) sampling filtering

orders 0, 1, k.

Fix any number ρ0 > 0. Then, provided ρ = ||a||h∞ ≤ ρ0 the sampling

integral magnitudes of the signals η0, η1, ηk are calculated as γ0ρ/T , γ1ρ, γkρ
k

respectively, where the constants γ0, γ1, γk > 0 only depend on k and ρ0.

In the important particular case k = 1 the condition sup τj/ inf τj ≤ const is

not needed and there is no dependence on ρ0. In that case get ρ = a0, ν = η0+η1,

and independently of ρ0 get γ0 = 1, γ1 = 2, i.e. |η0| ≤ a0/T , and the first-order

integral sampling magnitude of η1 is 2a0.

Remark 2. The case of the local filtering order 1 is the most important in both

continuous and discrete cases, since it ensures the applicability of the filtering

differentiators for any filtering order nf ≥ 1. Higher filtering orders nf never

destroy the accuracy asymptotics, but may improve them. This reasoning ignores

the asymptotics coefficients, which requires checking different options for nf if

τ is relatively large.

In general one needs very small sampling steps to reveal the small average

value of the noise. The following strong assumption on some noise components
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extends Assumption 5. It is natural in filtering theory, since it guaranties the

stability of the average value with respect to sampling.

Assumption 6. The sampled noise is comprised of nf +1 components, η(tj) =

η0(tj)+η1(tj)+...+ηnf (tj), where ηl = η
l
+η̄l, l = 0, ..., nf . The discretely sam-

pled signals η
l
(tj) are of the sampling filtering order l and integral magnitude εl,

η̄0 = 0. Each noise component η̄l(t) is of the (continuous-time global) filtering

order l and lth-order integral magnitude ε̄l. It is also absolutely continuous with

| ˙̄ηl| ≤ Lηl for l = 1, ..., nf .

Naturally, Lηl can be unknown and large.

Theorem 5. Under Assumptions 1, 4, 6 discrete differentiators (16) and (18)

provide the same accuracy (12) as Theorems 2 and 3 respectively, but for

ρ = max[τ, max
0≤l≤nf

(
εl
L )

1
n+l+1 , max

1≤l≤nf
max

1≤k≤l+1
(
Lηl
L ( ε̄l

Lηl
)
k
l+1 )

1
n+k ]. (21)

Similarly to Remark 1, also here one does not need to check Assumption

6 in order to use the differentiator. Due to Lemma 2 all noises appearing in

Examples of Section 3 are also filterable by the discrete filtering differentiators

of both types.

Example 7. In continuation of Example 1 consider the input noise ηl(t) =

γ cosω∗t. Then Lηl = γω∗, εl = 2γ/ωl∗. Suppose that η = ηl, nf ≥ l. Then

from (21) obtain

ρ = max[τ,max1≤k≤l(
γ2k

Lω∗k
)

1
n+k+1 ] = max[τ, 2

ω∗
max1≤k≤l(

γω∗
n+1

2n+1L )
1

n+k+1 ].

Obviously, for L ≤ γ(ω∗/2)
n+1

get that ρ ≈ 2/ω∗ for large l and small τ . �

Thus also here one can successfully apply the discrete filtering differentiators

when the noises are only locally filterable. Also here one can arbitrarily increase

the filtering order preserving the accuracy asymptotics optimality. Note that

the coefficients (not the powers) of the accuracy asymptotics depend on nf .

One also has to take into account the influence of the digital round-up errors

for high sampling rates and accuracies [33, 44].
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5. Numeric experiments

Consider the input signal

f(t) = f0(t) + η(t), f0(t) = −0.4 sin t+ 0.8 cos(0.8t). (22)

5.1. Comparison with the “standard” differentiator

Let the noise be

η(t) = η1(t) + η2(t),

η1 = cos(10000t+ 0.7791),

η2 = 0.0375 sin2(100t)bcos 100te−1/2 − 0.075bcos(100t)e3/2

= 5 · 10−6 d2

dt2 bcos(100t)e
3
2

(23)

where η1 is a high-frequency harmonic signal, η2 is an unbounded signal of the

filtering order 2 and the integral magnitude 5 · 10−6. It is saturated at ±1000.

Obviously |f (k)
0 | ≤ 1 for all k ≥ 2.

The filtering differentiator (16) of the differentiation order n = 2 and the

filtering order 3 is applied with L = 1, τj = τ = 10−5 and zero initial conditions,

z(0) = 0, w(0) = 0. The coefficients are taken from Table 1 from line 5 = 2 + 3.

The standard differentiator (6) with n = 2, L = 1 and zero initial values is

taken for the comparison.

The performance of the differentiators is demonstrated in Fig. 1. The stan-

dard differentiator demonstrates its remarkable stability, but nothing more.

The accuracy of the filtering differentiator for t ∈ [35, 40] is provided by the

component-wise inequality

(|w1|, |w2|, |w3|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤

(7.8 · 10−8, 1.0 · 10−5, 8.1 · 10−4, 3.7 · 10−3, 0.030, 0.14). (24)

The following is its accuracy in the absence of noises for the comparison:

(|w1|, |w2|, |w3|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤

(4.1 · 10−28, 9.8 · 10−23, 9.2 · 10−18, 3.8 · 10−13, 7.7 · 10−9, 8.3 · 10−5). (25)
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Figure 1: Comparison of differentiators (16), (17) with n = 2, nf = 3, L = 1, and (6) with

n = 2, L = 1, for τ = 10−5 and the input (22), (23). The graph of f is cut from above and

below. Estimations of f0, ḟ0, f̈0 are shown.

The simulation has shown that the unbounded deterministic noises like η2

from (23) are the worst possible noises for the filtering differentiators. In fact

removing η1 almost does not affect the accuracy (24).

5.2. Comparison with the tracking differentiator

The tracking differentiator (14) naturally demonstrates slower convergence

and lower accuracy. On the other hand it provides for the special feature: its

derivative estimations are consistent.

Consider another two-components’ noise

η(t) = η1(t) + η2(t),

η1 = cos(10000t+ 0.7791), η2 ∈ N(0, 0.52)
(26)

where η2 is normally distributed with the standard deviation 0.5. Apply the
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standard filtering differentiator (16), (17)

δjw1 = τ [−5L1/5 bw1(tj)e4/5 + w2(tj)],

δjw2 = τ [−10.03L2/5 bw1(tj)e3/5 + z0(tj)− f(tj)],

δjz0 = τ [−9.30L3/5 bw1(tj)e2/5 + z1(tj)] + τ2

2 z2(tj),

δjz1 = τ [−4.57L4/5 bw1(tj)e1/5 + z2(tj)],

δjz2 = τ [−1.1L sign(w1(tj))],

(27)

where n = nf = 2, L = 1, τ = 10−7. Recall that by definition δjφ = φ(tj+1)−

φ(tj). For the comparison apply the tracking filtering differentiator (18) with

the same parameters and SM controller number 2 from (15). Initial values are

once more zeroed.

In order to reveal the consistency of its derivative estimations consider the

differential identities from Example 5. Derivatives of z2
1/2 approximating E =

ḟ2
0 /2 are estimated by the auxiliary filtering differentiator with n = 2, nf = 1

and L̃ = 400, where L̃ > |E(4)| is directly checked. If the estimations z0, z1, z2

were consistent, ż0 = z1, ż1 = z2, the following identities would hold:

d
dt (

1
2z

2
1)− z1z2 ≡ 0, d2

dt2 ( 1
2z

2
1)− z1z3 − z2

2 ≡ 0.

The differentiator performances are demonstrated in Fig. 2. The comparison

shows that the filtering tracking differentiator has worse characteristics, but it

still performs better than the standard differentiator (6) in the presence of noises

(compare with Fig. (23)). The resulting accuracy of the filtering differentiator

(16) is provided by the component-wise inequality

(|w1|, |w2|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤

(7.5 · 10−7, 9.6 · 10−5, 1.6 · 10−3, 2.0 · 10−2, 0.13). (28)

The accuracies of the tracking filtering differentiator (18) are

(|w1|, |w2|, |ζ0|, |ζ1|, |ζ2|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤

(8.8 · 10−7, 1.2 · 10−4, 6.7 · 10−2, 0.18, 0.83, 0.066, 0.139, 0.74). (29)
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The above identities are significantly destroyed (Fig. 2) by the standard filtering

differentiator in spite of its better accuracy (28). On the other hand both

identities are kept with high accuracy of 1.5 · 10−9, 0.001 respectively by its

tracking counterpart. The latter accuracy is probably due to the estimation

error by the applied auxiliary differentiator.

Figure 2: Comparison of differentiators (16) and (18) with n = nf = 2, SMC (15), L = 1,

τ = 10−7 for the input (22), (26). Estimations of f0, ḟ0 and f̈0 are shown, and the identities’

errors.
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5.3. Comparison with the Kalman filter

Compare the standard Kalman filter approach to the filtering differentiator.

Consider the sampled input

f(tj) = f0(tj) + η(tj), f0(tj) = cos(5tj), η(tj) ∈ N (0, σ2), σ = 1,

with the sampling step τ = 10−7. The Kalman prediction and innovation equa-

tions are

x̂j+1 = Φj x̂j ,

y(tj) = f(tj)−Hx̂j ,
(30)

where x̂j and y(tj) respectively are the estimation of (f0, ḟ0, f̈0)T and the

Kalman innovation. The state transition and the measurement models are

Φj =


1 τ τ2

2

0 1 τ

0 0 1

 , H =
[

1 0 0
]

respectively.

The covariance matrix of x̂j is propagated in the standard fashion with the

process-noise covariance matrix

Qj =


0 0 0

0 0 0

0 0 τ

 ,
and the Kalman update is correspondingly applied with the scalar measurement

covariance matrix R = σ2.

The term τ is introduced in Qj for the model mismatch compensation. En-

larging this term weakens the model-based prediction and aggravates the in-

evitable performance deterioration in the presence of deterministic noises like

(23).

The filtering differentiator (27) with n = nf = 2, L = 53 = 125 is applied to

the same input. The resulting filtering performance is presented in Fig. 3
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Figure 3: Comparison of the filtering differentiator (16) with n = nf = 2, L = 125, τ = 10−7

with the Kalman filter (30).

6. Conclusions

The proposed homogeneous filtering differentiators are capable to filter out

complicated noises of small average values. The filtering power of a differentiator

is determined by its filtering order. The higher the filtering order the better the

differentiation accuracy asymptotics in the presence of noises. The accuracy

asymptotics are calculated and a proper homogeneous discretization is proposed.

The nth-order filtering differentiators and their discrete counterparts feature

the same optimal accuracy asymptotics as their predecessors [18] in the presence

of bounded noises. In particular they are exact in the absence of noises on the

signals f0 ∈ Lipn(L) for the differentiator parameter L > 0.

The noise is assumed representable as a sum of a finite number of noises of

different filtering orders, whereas noises of the filtering order 0 are just bounded

measurable noises of any nature. The calculated accuracy estimation depends

on that noise expansion. Since the expansion is not unique, and the differen-

tiator does not “know” it, the actual accuracy corresponds to the best possible

expansion unknown to the “user”.

The proposed homogeneous tracking differentiators and their filtering mod-

ifications are capable to yield the smooth derivative estimations zk ≈ f
(k)
0 sat-
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isfying the natural relation żk = zk+1, which is advantageous in some practical

applications. Having the same main features as the “standard” filtering differ-

entiators, they have slower convergence and worse asymptotics coefficients.

Extensive simulation of proposed differentiators has shown their capability

of filtering complicated large noises. Moreover, they seem to be decent rivals

to the Kalman filter in coping with Gaussian noises. Nevertheless, rigorous

analysis of SM-based differentiation in the presence of random input noises has

never been done, and any conclusions in that aspect would be premature. Some

qualitative analysis is available in [35].

Appendix .1. Proofs for the continuous-time case

Proof of Theorem 2. According to the filtering-order definition introduce the

functions ξk(t), |ξk| ≤ εk, ξ
(k)
k (t) = νk(t), k = 1, ..., nf . Let

ω̃1 = w1 + ξnf , ω̃2 = w2 + ξ̇nf + ξnf−1, ...,

ω̃nf = wnf + ξ
(nf−1)
nf + ...+ ξ̇2 + ξ1;

σ̃i = zi − f i0, i = 0, ..., n.

(.1)

Then f = f0 + η + ξ̇1 + ...+ ξ
(nf )
nf , and one can rewrite (9) in the form

˙̃ω1 = −λ̃n+nfL
1

n+nf+1
⌊
ω̃1 − ξnf

⌉ n+nf
n+nf+1 + ω̃2 − ξnf−1,

˙̃ω2 = −λ̃n+nf−1L
2

n+nf+1
⌊
ω̃1 − ξnf

⌉n+nf−1

n+nf+1 + ω̃3 − ξnf−2,

...

˙̃ωnf−1 = −λ̃n+2L
nf−1

n+nf+1
⌊
ω̃1 − ξnf

⌉ n+2
n+nf+1 + ω̃nf − ξ2,

˙̃ωnf = −λ̃n+1L
nf

n+nf+1
⌊
ω̃1 − ξnf

⌉ n+1
n+nf+1 + σ̃0 + η0,

˙̃σ0 = −λ̃nL
nf+1

n+nf+1
⌊
ω̃1 − ξnf

⌉ n
n+nf+1 + z1,

...

˙̃σn−1 = −λ̃1L
n+nf
n+nf+1

⌊
ω̃1 − ξnf

⌉ 1
n+nf+1 + σ̃n,

˙̃σn ∈ −λ̃0L sign(ω̃1 − ξnf ) + [−L,L].

(.2)
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Divide by L and denote ωk = ω̃k/L, σk = σ̃k/L. Rewrite (.2) as the inclusion

ω̇1 ∈ −λ̃n+nf

⌊
ω1 + ρn+nf+1[−1, 1]

⌉ n+nf
n+nf+1 + ω2 + ρn+nf [−1, 1],

ω̇2 ∈ −λ̃n+nf−1

⌊
ω1 + ρn+nf+1[−1, 1]

⌉n+nf−1

n+nf+1 + ω3 + ρn+nf−1[−1, 1],

...

ω̇nf−1 ∈ −λ̃n+2

⌊
ω1 + ρn+nf+1[−1, 1]

⌉ n+2
n+nf+1 + ωnf + ρn+2[−1, 1],

ω̇nf ∈ −λ̃n+1

⌊
ω1 + ρn+nf+1[−1, 1]

⌉ n+1
n+nf+1 + σ0 + ρn+1[−1, 1],

(.3)

σ̇0 ∈ −λ̃n
⌊
ω1 + ρn+nf+1[−1, 1]

⌉ n
n+nf+1 + z1,

...

σ̇n−1 ∈ −λ̃1

⌊
ω1 + ρn+nf+1[−1, 1]

⌉ 1
n+nf+1 + σn,

σ̇n ∈ −λ̃0 sign(ω1 + ρn+nf+1[−1, 1]) + [−1, 1].

(.4)

which is the perturbation of the FT stable homogeneous error dynamics (7) of

the standard (n+nf )th-order differentiator (6) obtained by substituting n+nf

for n. Obviously, degωk = n + nf + 2 − k, deg zi = n + 1 − i, deg t = −q = 1,

the HD is −1, deg ρ = 1 is assigned.

It follows from [46] that sup |σi| ≤ µiρ
n+1−i, sup |ωk| ≤ µ̂wkρ

n+nf+2−k for

some µi, µ̂wk > 0. Now the accuracy of zi is directly obtained from these rela-

tions. The estimation of w1 is obtained from Lω1 = ω̃1 = w1 +ξnf . Estimations

of wk, k > 1, can be similarly obtained from (.1) under additional assumptions

on the noises. �

Denote ~σ = (σ, ..., σ(n))T . Then (.3), (.4) can be rewritten as

ω̇ ∈ Ωn,nf (ω + ~ρ, σ0 + ρn+1[−1, 1], 1, ~λ),

~̇σ ∈ Dn,nf (ω1 + ρn+nf+1[−1, 1], ~σ, 1, ~λ) + h,

~σ = (σ0, ..., σn)T , h = (0, ..., 0, [−1, 1])T ∈ Rn+1

~ρ = [−1, 1](ρn+nf+1, ρn+nf , ..., ρn+2)T ∈ Rnf .

(.5)

Proof of Theorem 3. First consider the case without noises. Denote σ =

(z0 − f0)/L, ζ̃ = ζ/L, w̃ = w/L and rewrite (14) in the form

˙̃w = Ωn,nf (w̃, ζ̃0 − σ, 1 + αn, ~λ),

˙̃
ζ = Dn,nf (w̃1, ζ̃, 1 + αn, ~λ),

σ(n+1) ∈ αnψn+1(ζ̃) + [−1, 1].

(.6)
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It follows from |σ(n+1)| ≤ 1 + αn and Theorem 2 that ζ̃ ≡ ~σ is ensured in FT.

Now due to the choice of ψn+1(·) in FT get ~σ ≡ 0. The observation that (.6)

is homogeneous with the weights deg ζ̃i = deg σ(i) = n + 1 − i, i = 0, 1, ..., n,

deg w̃l = n+ nf + 2− l, l = 1, ..., nf , and the HD −1, implies the FT stability

of (.6) due to Section 2.1.

Now consider the presence of noises. Similarly to the proof of Theorem 2

introduce ω1 = [w1 + ξnf ]/L, ..., ωnf = [wnf + ξ
(nf−1)
nf + ... + ξ̇2 + ξ1]/L, and

obtain

ω̇ ∈ Ωn,nf (ω + ~ρ, ζ̃0 − σ + ρn+1[−1, 1], 1 + αn, ~λ),

˙̃
ζ ∈ Dn,nf (ω1 + ρn+nf+1[−1, 1], ζ̃, 1 + αn, ~λ),

σ(n+1) ∈ αnψn+1(ζ̃) + [−1, 1];

~ρ = [−1, 1](ρn+nf+1, ρn+nf , ..., ρn+2)T .

(.7)

The required accuracy is once more due to the above results from Section

2.1 and [46]. �

Proof of Lemma 1. Let ξj be a bounded solution of the equation ξ
(k)
j = ν(t)

over the interval t ∈ [jT, (j + 1)T ], j = 0, 1, 2, .... It is known that |ξ(i)
j | ≤ ai,

i = 0, 1, ..., k − 1. The task is to build the global solution ξ(t), and the global

representation ν = η0 + η1 + ηk, where η0, η1, ηk are of global filtering orders

0, 1, k respectively.

Introduce the vector function ~ξ = (ξ, ξ̇, ..., ξ(k−1))T , similarly ~ξj are defined.

By definition ~̇ξj = Jk~ξj + bν(t), t ∈ [(j − 1)T, jT ]. Here b = (0, ..., 0, 1)T ∈ Rk

and Jk is the upper-triangular Jordan block with the zero diagonal.

One needs to combine functions ~ξj into one function ~ξ(t), t ≥ 0. It can be

done by solving the equations

~̇ξ = Jk~ξ + b(ν(t) + u(t)),

~ξ(jT ) = ~ξj(jT ), j = 0, 1, ...,

ν = ηk + ν̃, ; ηk = ν + u, ν̃ = −u,

(.8)

where u is a virtual control. The lemma is proved if the signal ν̃ = −u can be

represented as a sum of two signals of the filtering orders 0 and 1 and the corre-

sponding integral magnitudes proportional to ρ/T and ρ = ||a||h∞ respectively.
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First consider the case k = 1 (k = 0 is trivial). Then ρ = a0, ξj : [jT, (j +

1)T ] → R, |ξj | ≤ a0, and taking u(t) = (ξj+1((j + 1)T ) − ξj(jT ))/T for t ∈

[jT, (j + 1)T ] proves the Lemma.

Now consider the general case k > 0. Without losing the generality assume

j = 0. Denote x(t) = ~ξ(t)−~ξj(t), x = (x1, ..., xk)T , ∆ = ξ1(T )−ξ0(T ). Then the

problem is to find u : [0, T ] → R such that x(0) = 0, x(T ) = ∆, while roughly

speaking x(t) components are to be of the order ρk, ..., ρ, ẋ = Jkx + bu(t), t ∈

[0, T ].

In its turn that problem is equivalent to the stabilization problem in the

backward time t̂
d
dt̂
x = −Jkx− bu(t̂), t̂ ∈ [0, T ],

x(0) = ∆, x(T ) = 0.
(.9)

The further proof is based on the following lemma to be proved a bit later.

Lemma 3. There are such constants UM ,M > 0 that for each y∗ ∈ Rk,

||y∗||h∞ ≤ 2ρ0, and T∗ = ||y∗||h∞/(2ρ0) there exists control u∗(s), s ∈ [0, T∗],

|u∗(s)| ≤ UM , which satisfies the equations

d
dsy = −Jkx− bu∗(s), s ∈ [0, T∗],

y(0) = y∗, y(T∗) = 0, |u∗(s)| ≤ UM ,

maxs |yi(s)− y∗i| ≤M ||y∗||k+1−i
h∞ , i = 1, 2, ..., k.

(.10)

The differential equation in (.10) is homogeneous with the HD −1 and the

weights deg y1 = k,deg y2 = k−1, ...,deg yk = 1 in the sense that for any control

u(s) the transformation

(s, y, u(·))→ (κs, κky1, ..., κyk, u(κ ·))

preserves its solutions for any κ > 0.

Obviously ||∆||h∞ ≤ ||2a||h∞ ≤ 2ρ. Apply the transformation t̂ = Ts,

xi = T k+1−iyi. Thus according to Lemma 3 system (.9) is stabilized in the time

T∗ = ||∆||h∞/(2ρ0)T ≤ T by the control u = u∗(t̂). Define u = 0 for t̂ ∈ (T∗, T ].

Return to the forward time. We have succeeded to build the global solution

of (.8) keeping |~ξi| ≤ |~ξji(t) + xji(t)| ≤ ρi + 2iMρi. Thus |ξ| ≤ γkMρk, where
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γk = 1+2kM , |ξ(k−1)| ≤ γ̃1ρ, where γ̃1 = 1+2M , whereas η̃ = −u(t) is a signal

of the local filtering order 1 and the filtering magnitude γ̃1ρ.

Applying now the lemma for the case k = 1, which is already proved, rep-

resent η̃ = η1 + η0. Here η1 is a signal of the global filtering order 1 and the

integral magnitude γ1ρ, γ1 = 2γ̃1 = 2 + 4M . In its turn η0 is a bounded noise

of the magnitude γ0ρ/T , γ0 = γ̃1 = 1 + 2M . �

Proof of Lemma 3. Rewrite the system in the form

d
dsθ = Jkθ + bv,

v = αΨ(θ), θ(0) = θ0,
(.11)

where θi = (−1)i+1yi, i = 1, ..., k, v = (−1)ku∗, the controller Ψ is to be chosen.

System (.11) is easily stabilized in FT by a proper homogeneous k-SM control

v = αΨ(θ). For example a controller from the series (15) can be taken (with

different coefficients) [16]. Its parameters can be easily adjusted so that the

system stabilizes in the time not exceeding 1 for any initial conditions ||θ0||h∞ ≤

2ρ0.

Introduce the linear dilation transformation dκ : y → (κky1, κ
k−1y1, ..., κyk)T

for system (.11) which corresponds to the k-SM homogeneity condition ∀κ > 0 :

Ψ(dκθ) = Ψ(θ)). The locally bounded function Ψ is always uniformly bounded

[19].

Consider the set Ω2ρ = {θ ∈ Rk | ||θ||h∞ ≤ 2ρ0}. Let Θ(θ0, s) be the solution

of the Cauchy problem (.11) corresponding to the chosen control.

Choose the required constants as UM = maxθ0∈Ω2ρ
maxs∈[0,1] |Θ(θ0, s)|, M =

maxθ0∈Ω2ρ maxs∈[0,1] ||Θ(θ0, s)||h∞. Now taking θ∗ = (y∗1,−y∗2, ..., (−1)k−1y∗k),

and u∗(s) = (−1)kαΨ(Θ(θ0, s)) obtain the statement of the Lemma. �

Appendix .2. Proofs for the discrete-time case

Proof of Theorem 4. Consider the case of differentiator (16). The case of the

tracking differentiator is similar.

Similarly to the proof of Theorem 2 introduce ξl,k(tj) satisfying δjξl,k =

ξl,k+1τj for k = 0, 1, ..., l − 1, ξl,l(tj) = ηl(tj), |ξl,0(tj)| ≤ εl, l = 1, 2, ..., nf .
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Define

ω1(tj) = [w1(tj) + ξnf ,0(tj)]/L,

ω2(tj) = [w2(tj) + ξnf ,1(tj) + ξnf−1,0(tj)]/L,

...,

ωnf (tj) = [wnf (tj) + ξnf ,nf−1(tj) + ...+ ξ2,1(tj) + ξ1,0(tj)]/L,

σi(tj) = [zi(tj)− f (i)
0 (tj)]/L.

Then (16) can be rewritten as

δjω = τjΩn,nf (ω(tj)− df (tj), σ0(tj) + η0(tj)/L, 1, ~λ),

δjΣ = τj [Dn,nf (ω1(tj)− ξnf ,0(tj),Σ(tj), 1, ~λ) + d(tj)]

+Tn(Σ(tj), τj) +R(tj);

df (tj) = (ξnf ,0(tj), ξnf−1,0(tj), ..., ξ1,0(tj))
T ,

d(tj) = (0, ..., 0,−f (n+1)
0 (tj))

T ,

R(tj) ∈ [−1, 1](
τn+1
j

(n+1)! , ...,
τ2
j

(2)! , 0, 0)T ,

(.12)

where the vector R contains the residual Taylor terms of f
(i)
0 of different orders.

In their turn discrete solutions of (.12) can be presented as piece-wise linear

solutions of the retarded DI

ω̇ ∈ Ωn,nf (ω + ~ρ, σ0 + ρn+1[−1, 1], 1, ~λ)|t=tj ,

Σ̇ ∈ [Dn,nf (ω1 + ρn+nf+1[−1, 1],Σ, 1, ~λ) + h]|t=tj
+Tn(Σ, ρ)|t=tjρ−1 + R̂;

~ρ = [−1, 1](ρn+nf+1, ρn+nf , ..., ρn+2)T , t ∈ [tj , tj+1),

h = [−1, 1](0, ..., 0, 1)T , R̂ = [−1, 1]( τn

(n+1)! , ...,
τ
2! , 0, 0)T .

(.13)

Now the required accuracy once more follows from Section 2.1 and [46]. �

Proof of Lemma 2. The proof employs the proof idea of Lemma 1. Divide

the time axis into intervals [tjl , tjl+1
] containing integer number Nl of sampling

intervals, jl+1 − jl = Nl such that tjl+1
− tjl ≤ T < tjl+1+1. In the following τ

is assumed to be sufficiently small, which allows using the symbol O(τ).

There is a solution ~ξl(tj) = (ξl,0(tj), ..., ξl,k−1(tj))
T ∈ Rk of (20) defined over

each such interval. A global solution ~ξ is to be built for the equation

δj~ξ = τj [Jk~ξ(tj) + bν(tj) + bu(tj)], (.14)
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where Jk, b are as in (.8), u is the virtual control and

ν(tj) = ηk(tj) + η̃(tj), η̃(tj) = −u(tj), ηk(tj) = ν(tj) + u(tj).

In the case k = 1 get ρ = a0, ~ξj is scalar, |ξj | ≤ a0, and taking u(tj) =

(ξl+1(tjl+1
)− ξl(tjl+1

))/(tjl+1
− tjl) for tj ∈ [tjl , tjl+1

] proves the Lemma.

Let now k > 1. Without losing the generality assume l = 0. Denote x(tj) =

~ξ(tj)−~ξ0(tj), x = (x1, ..., xk)T , ∆ = ξ1(tj1)−ξ0(tj1). Then the problem is to find

u(tj) ∈ R, j ∈ [0, N0] such that x(t0) = 0, x(tN0
) = ∆, while roughly speaking

x1(tj), ..., xk(tj) are to be of the order ρk, ..., ρ, and δjx = Jkx(tj) + bu(tj).

In its turn that problem is equivalent to the stabilization problem in the

backward time t̂j = tN0 − tN0−j

δjx = −Jkx(t̂j)− bu(t̂j), t̂j ∈ [0, Nτ ],

x(t0) = ∆, x(tN ) = 0.
(.15)

Like in the proof of Lemma 1 apply the stabilization Lemma 3 FT stabilizing

x from the value ∆ in continuous time by continuous-time control û. Let û = 0

afterwards. The resulting control û(t̂) is in continuous backward time t̂ ∈ [0, T ].

Recall that tN0
− t0 ≤ T < tN0+1 − t0 ≤ tN0

− t0 + τ .

Discretize the obtained control by the simple zero-hold procedure. It turns

into the standard Euler integration (still in the backward time) of the solution

by Lemma 1 on the ending segment of the length not exceeding Tρ/ρ0. Let tĵ

be the end point of that discrete solution. Naturally, x(tN0
) = ∆, x(tĵ) ≈ 0.

Due to the homogeneity of system (.11) obtain [46]

||x(tĵ)||h∞ ≤ Kτ,

||x(tj)||h∞ ≤ (M + 1)ρ/ρ0, j = ĵ, ĵ + 1, ..., jN0
.

(.16)

for some K > 0, where K depends only on the choice of Ψ [19]. The param-

eter M is defined in Lemma 3 and is voluntarily increased by 1 to take the

discretization into account.

In order to close the difference apply the additional discrete control u(tj),

j = ĵ−1, ĵ−2, ..., ĵ−k at the additional k steps. Assign xj,1 = 0 for j = 0, ..., ĵ.
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The equation δjx = Jkx(tj)τj+bu(tj) is now easily solved for u(tj) and xj in

the backward direction for j = ĵ−1, ĵ−2, .... It is easy to see that starting from

j = ĵ − k − 1 all components of x vanish, and the equalities xj = 0, u(tj) = 0

hold for j ≤ ĵ − k− 1. Moreover, it follows from (.16) that |xj,i| ≤ K̃τk+1−i for

j ≤ ĵ − k− 1 and some K̃ depending on K (proved by induction in k). It is the

only place where the condition sup τj/ inf τj ≤ cτ of the lemma is used. Thus

the additional control u(tj), j > ĵ, and the corresponding solution x(tj) do not

destroy the magnitude requirements.

The rest is the same as for Lemma 1: the constructed signal ηk is of the

global sampling order k, whereas the found virtual control u is itself a locally

filterable signal of the order 1. Now u is represented as the sum of a bounded

signal η0 and a signal η1 of the global sampling filtering order 1 (see the case

k = 1 above). �

Proof of Theorem 5. The noise components η
l
, l = 0, ..., nf , are treated

exactly as in the proof of Theorem 4. The idea is now to approximate the noise

components η̄l, l = 1, ..., nf , which are of the (non-discrete) filtering orders

1, ..., nf by noises of the sampling filtering orders 1, ..., nf .

Consider one such component η̄l. Let ξ̄
(l)
l = η̄l, |ξ̄l| ≤ ε̄l, |ξ̄(l+1)

l | ≤ Lηl.

According to [33] starting from some moment inequalities |ξ̄(k)
l | ≤

π
2L

k
l+1

ηl ε
l+1−k
l+1

l

hold for k = 0, ..., l+1. Note that this can be rewritten as |ξ̄(k)
l |/L ≤ γρn+l−k+1

for some γ > 0, which exactly corresponds to the weight degωnf+1−l+k =

n+ nf + 2− (nf + 1− l + k), k ≤ l − 1, from the proof of Theorem 4.

Similarly to the proofs of Theorems 4 and 2, introduce

ω1(tj) = [w1(tj) + ξ
nf ,0

(tj) + ξ̄nf (tj)]/L,

...,

ωnf (tj) = [wnf (tj) + ξ
nf ,nf−1

(tj) + ...+ ξ
2,1

(tj) + ξ
1,0

(tj)]/L+

[ξ̄
(nf−1)
nf (tj) + ...+ ˙̄ξ2(tj) + ξ̄1(tj)]/L,

σi(tj) = [zi(tj)− f (i)
0 (tj)]/L.

Now, taking into account that |ξ̄(k)
l (tj+1) − ξ̄

(k)
l (tj)|/L ≤ sup |ξ̄(k+1)

l |τ/L ≤

γ1ρ
n+l−k+1 for some γ1 > 0, k = 0, ..., l, l = 1, ..., nf , obtain piece-wise linear
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solutions of the retarded DI

ω̇ ∈ Ωn,nf (ω + ~ρ, σ0 + ρn+1[−1, 1], 1, ~λ)|t=tj + ~ρ1,

Σ̇ ∈ [Dn,nf (ω1 + ρn+nf+1[−1, 1],Σ, 1, ~λ) + h]|t=tj
+Tn(Σ, ρ)|t=tjρ−1 + R̂;

~ρ = γ2[−1, 1](ρn+nf+1, ρn+nf , ..., ρn+2)T ,

~ρ1 = γ2[−1, 1](ρn+nf , ρn+nf−1, ..., ρn+1)T , t ∈ [tj , tj+1),

h = [−1, 1](0, ..., 0, 1)T , R̂ = [−1, 1]( τn

(n+1)! , ...,
τ
2! , 0, 0)T .

It only differs from (.13) by the presence of some γ2 > 1 in ~ρ and the additional

external disturbance term ~ρ1. Now the theorem once more follows from [46].

Note that the disturbance is of a bit more general form than in Section 2.1. �
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