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Abstract: Sliding-mode (SM) based differentiation is exact on a large class of functions and
robust to the presence of input noises. The best-possible differentiator accuracy is for the first-
time calculated. A few differentiators and their discretizations are presented. As an important
application of the differentiation technique we propose the first robust exact method for the
estimation of the equivalent control and of a number of its derivatives from a SM control input.
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1. INTRODUCTION

Sliding-mode (SM) control (SMC) is one of the main con-
trol techniques available for controlling uncertain systems.
The approach is based on the exact keeping of properly
chosen constraints of the form s = 0, where s is called
the sliding variable and is available in real time (Utkin
(1992); Edwards and Spurgeon (1998)). The constraint is
kept due to the persistent control switching preventing any
deviation of the system from the constraint s = 0 in spite
of system uncertainties. The SM s = 0 is established in
finite time and is kept indefinitely.

The closed-loop SMC system possesses remarkable accu-
racy, robustness (Bernuau et al. (2014); Utkin (1992)) and
insensitivity to the matched disturbances. The main SMC
shortcut is known as the chattering effect (Fridman (2001,
2003)).

Conventional SMs require the relative degree (Isidori
(1995)) of s to be 1. If the control for the first time appears
in s(r) the relative degree equals r, and the output can
be in finite time stabilized at zero by means of the rth-
order SM (r-SM) (Bartolini et al. (2003); Floquet et al.
(2003); Levant (1993, 2003); Man et al. (1994); Moreno
and Osorio (2012); Polyakov and Fridman (2014); Shtessel
and Shkolnikov (2003); Yang and Yang (2011)). Thus
conventional SMs are of the order 1.

By introducing integrators, i.e. artificially increasing the
sliding order, one can effectively attenuate the chattering
(Bartolini et al. (1998); Levant (1993, 2010)) that still
reveals itself in the residual SM dynamics due to unac-
counted for system dynamics (Boiko and Fridman (2005))
and/or discretization effects (Yan et al. (2016)).

SMC is known for its effective applications in observation,
in particular, for the robust differentiation (Yu and Xu
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(1996)). HOSM-based kth-order differentiators provide for
the theoretically exact estimations of the derivatives up
to the order k, provided an upper-bound L > 0 for the
(k+1)th-derivative absolute value is known (Angulo et al.
(2013); Bartolini et al. (2000); Efimov and Fridman (2011);
Levant (1998, 2003, 2014)). The accuracy is estimated also
in in the presence of discrete noisy sampling (Livne and
Levant (2014); Barbot et al. (2016)).

Other popular approaches (Atassi and Khalil (2000); Fliess
et al. (2008)) require the knowledge of the noise features
(magnitude and/or frequency bounds) in order to properly
adjust the differentiator. No concrete set of parameters
ensures theoretical exactness of such differentiators.

In this paper we for the first-time calculate the correspond-
ing best possible (not asymptotic) differentiation accuracy.
Further we review a number of the known homogeneous
continuous and discrete-time arbitrary-order differentia-
tors with constant and variable L.

The presented technique is applied for the nonlinear fil-
tering. A novel robust exact equivalent-control observer
is presented. Simulation demonstrates the difficulty of the
equivalent-control estimation and the advantages of the
proposed method.

2. DIFFERENTIATION PROBLEM AND ACCURACY

The differentiation problem is usually considered ill-posed.
The issue is resolved if the ideal differentiation is actually
replaced with filtering. Thus the problem is to single
out a smooth component to be differentiated, whereas
the difference is considered as the noise to be neglected.
Following is the problem statement specific to this paper.

Denote WI(k, L) the set of all scalar functions defined on
a closed time interval I = [t0, t1], and featuring a known
Lipschitz constant L > 0 of their kth derivative. We allow
finite intervals I = [t0, t1], as well as infinite intervals
I = R+ = [0,∞), I = R.



Differentiation problem. Let the input signal f(t) =
f0(t) + η(t) ∈ R, t ≥ 0, consist of a bounded Lebesgue-
measurable noise η(t) with unknown features, and an
unknown basic signal f0 ∈WR+

(k, L) with the known Lip-
schitz constant L > 0. The noise magnitude ε = supI |η(t)|
is assumed unknown. The problem is to estimate the

derivatives f0(t), ḟ0(t), ..., f
(k)
0 (t) in real time. The estima-

tions are to be exact in the absence of noises after some
finite-time transient.

The stated problem is solvable under some intrinsic accu-
racy restrictions. Let φ(t), t ∈ I, be a bounded function
with almost everywhere bounded measurable φ(k+1). De-
note MI,i(φ) = ess supI |φ(i)(t)|. The inequalities

MI,i(φ) ≤ βI,i,kM
i

k+1
I,k+1(φ)M

k+1−i
k+1

I,0 (φ), i = 0, ..., k, (1)

are called the Landau-Kolmogorov inequalities. Here
βI,i,k > 0 are the least possible constants such that (1)

hold for any bounded φ with bounded φ(k+1). Taking
φ = sinωt one gets βI,i,k ≥ 1.

Such constants do not exist for any finite interval I.
Indeed, it is enough to consider linear φ(t) = at+ b.

It is proved that constants βI,i,k exist for I = R,R+ (Kol-
mogoroff (1962); Schoenberg and Cavaretta (1970)). Ex-
istence of MI,0(φ),MI,k+1(φ) causes existence of MI,1(φ),
..., MI,k(φ) and inequality (1). In particular, βR+,1,1 = 2

and βR,1,1 =
√

2 (Landau, 1913).

A formula is only known for βR,i,k, and was found in
1939 by Kolmogoroff (1962). We denote Ki,k = βR,i,k.
He also proved that 1 ≤ Ki,k ≤ π/2 and calculated Ki,k

for k = 1, ..., 6. Moreover, the inequalities (1) turn into
equalities for the so-called comparison functions.

Theorem 1. Let I0 = [t0, t1] (including infinite values
t0 = −∞ and/or t1 =∞), I1 = [t0−∆, t1+∆], and let t1−
t0, ∆ > 0 be large enough. Then for any ε̂, φ ∈WI1(k, L̂),
such that MI1,0(φ) ≤ ε̂, the inequalities

MI0,i(φ) ≤ Ki,kL̂
i

k+1 ε̂
k+1−i
k+1 , i = 0, ..., k, (2)

hold on I0. Moreover, they become equalities for some
functions.

Proof. The theorem is implied by (1) for I0 = R. The
following is the modification of the proof by Kolmogorov
for the case of finite or one-side-bounded intervals.

Levant (1998) has calculated such constants K̂i,k ≥ 1 that
provided t1 − t0 is sufficiently large, and φ ∈ WI0(k, L0),
MI0,0(φ) ≤ ε0 the inequalities

MI0,i(φ) ≤ K̂i,kL
i

k+1
0 ε

k+1−i
k+1

0 , i = 0, ..., k, (3)

hold on I0 independently of ∆, t0, t1. Obviously K̂i,k ≥
Ki,k. According to (3) inequalities (2) hold for all functions
with MI0,k+1(φ) ≤ L0, provided L0 is small enough,

and L0 ≤ L̂, ε0 ≤ ε̂. Thus only consider functions with
MI1,k+1(φ) > L0 (obviously MI1,k+1(φ) ≥MI0,k+1(φ)).

Following Kolmogorov, consider the comparison functions
aφk(b(t + c)), φk ∈ Φk, where Φk is the set of functions

φk satisfying the equality (1) for I = R, with φ
(k+1)
k = ±1

and the period 2π. In particular, φ
(k+1)
k has the continuity

interval π/2, and φ̇k ∈ Φk−1. Also aφk(b(t+c)) satisfies the
equality (1). Denote mi = MR,i(φk), i = 0, 1, ..., k. Thus
mk+1 = 1.

Following Kolmogorov, any function φ is compared with
the functions φ̃ = aφk(b(t + c)), φk ∈ Φk, for a, b found

from the conditions MI1,k+1(φ̃) = MI,k+1(φ), MI1,0(φ̃) ≥
MI1,0(φ). Thus

a ≥MI1,0(φ)/m0, b ≥ [m0MI,k+1(φ)/MI1,0(φ) ]1/(k+1).

Since MI1,k+1(φ) > L0, get b ≥ (m0L0/ε̂ )1/(k+1).

The comparison procedure by Kolmogorov requires that
all the functions be defined in the (π/b)-vicinity of any
t ∈ I0, i.e. ∆ ≥ π/b, t1 − t0 ≥ π/b is needed. When
MI,k+1(φ) is close to zero, the fraction π/b is unbounded.
That is why the proof by Kolmogorov is not valid for
bounded intervals. We have avoided it due to the lemma
by Levant (1998).

The comparison functions φ̃(t) with MR,k+1(φ̃) = L̂ and

MR,0(φ̃) = ε̂ turn (2) into equalities. �

Proposition 1. Let a differentiator solve the above-stated

problem producing the steady-state estimations f̂
(i)
0 , i =

0, 1, ..., k, t ≥ t0, for sufficiently large t0. Let also the noise
satisfy |η(t)| ≤ ε, f = f0 + η. Then for smooth inputs
f ∈W (k, L), for t ≥ t0, i = 0, ..., k get

max
f,f0∈W (k,L)

|f̂ (i)0 (t)− f (i)0 (t)| = Ki,k(2L)
i

k+1 ε
k+1−i
k+1 . (4)

In particular, for f ∈ W (k, L) and k = 1 get K1,1 =
√

2

and maxf,f0 |
̂̇
f0(t) − ḟ0(t)| = 2

√
Lε. Thus, for any k get

maxf,f0 |f̂
(k)
0 (t)− f (k)0 (t)| ∈ [1, π2 ](2L)

k
k+1 ε

1
k+1 .

Proof. Since f, f0 ∈ W (k, L), f is exactly differentiated.
Then f − f0 ∈ W (k, 2L) and the upper estimation (4)

follows from (2) with L̂ = 2L, ε̂ = ε.

Prove the worst-case estimation. Let φ(t) be the compar-
ison function by Kolmogoroff (1962) with max |φ(t)| = ε
and max |φ(k+1)(t)| = 2L. For these functions (1) becomes
equality, φ is also periodic. Let now f = 1

2φ, f0 = − 1
2φ. �

3. HOSM-BASED DIFFERENTIATION

The number of developed SM-based differentiators is al-
ready very high. We only present here some differentiators
developed by the authors.

3.1 Homogeneous differentiators

Denote bweγ = |w|γ signw if γ > 0 or w 6= 0; let bwe0 =
signw. The outputs zj of the following differentiator

Levant (2003) estimate the derivatives f
(j)
0 , j = 0, . . . , n.

The recursive form of the differentiator is

ż0 = −λkL
1

k+1 bz0 − f(t)e
k

k+1 + z1,

ż1 = −λk−1L
1
k bz1 − ż0e

k−1
n + z2,

...

żk−1 = −λ1L
1
2 bzk−1 − żk−2e

1
2 + zk,

żk = −λ0L sign(zk − żk−1).

(5)



An infinite sequence of parameters λi can be built,
valid for all natural k. In particular, {λ0, λ1, ...} =
{1.1, 1.5, 2, 3, 5, 7, 10, 12, ...} suffice for k ≤ 7. In the ab-
sence of noises the differentiator provides for the exact
estimations in finite time. Equations (5) can be rewritten
in the usual non-recursive form

ż0 = −λ̃kL
1

k+1 bz0 − f(t)e
k

k+1 + z1,

ż1 = −λ̃k−1L
2

k+1 bz0 − f(t)e
k−1
k+1 + z2,

...

żk−1 = −λ̃1L
k

k+1 bz0 − f(t)e
1

k+1 + zk,

żk = −λ̃0L sign(z0 − f(t)).

(6)

It is easy to see that λ̃0 = λ0, λ̃k = λk, and λ̃j =

λj λ̃
j/(j+1)
j+1 , j = k − 1, k − 2, . . . , 1.

Notation. Assuming that the sequence λ = {λj}, j =

0, 1, ..., is used to produce the coefficients λ̃j , denote (6)
by the equality ż = Dk(z, f, L,λ).

Let the noise be absent. Subtracting f (i+1)(t) from the
both sides of the equation for żi of (6), denoting σi =
(zi − f (i))/L, i = 0, ..., k, σ = (σ0, ..., σk)T , and using
f (k+1)(t) ∈ [−L,L], obtain the differentiator error dynam-
ics σ̇ ∈ Dk(σ, 0, 1,λ) + ek[−1, 1], ek = (0, ..., 0, 1)T ,

σ̇0 = −λ̃kbσ0e
k

k+1 + σ1,

σ̇1 = −λ̃k−1bσ0e
k−1
k+1 + σ2,

...

σ̇k−1 = −λ̃1bσ0e
1

k+1 + σk,

σ̇k ∈ −λ̃0 signσ0 + [−1, 1].

(7)

It is homogeneous with deg t = −1, deg σi = n + 1 − i.
Thus, according to Levant (2003, 2005), for sampling time
periods not exceeding τ > 0 and the maximal possible
sampling error ε ≥ 0 the differentiation accuracy

|zi(t)− f (i)0 (t)| ≤ νiLρk+1−i, i = 0, 1, ..., k,

ρ = max[(ε/L)1/(k+1), τ ]
(8)

is ensured, where the constant numbers νi ≥ 1 only depend
on λ. This accuracy is asymptotically optimal (Proposition
1), i.e. only the coefficients νi can be improved.

3.2 Differentiators with variable parameter L

Differentiator (6) is also applicable with variable L(t),

provided |L̇/L| ≤ M for some M > 0. Unfortunately,
convergence is only ensured provided |σ(0)| is small enough
(Levant and Livne (2012)).

The following differentiator features the fast global con-
vergence for variable L(t) (Levant (2014)):

ż0 = v0 = −ϕ0(L(t), z0 − f(t)) + z1,
ż1 = v1 = −ϕ1(L(t), z1 − v0) + z2,
...
żk = −ϕk(L(t), zk − vk−1),

ϕi(L, s) = λk−iL
1

k−i+1 bse
k−i
k−i+1 + µk−iMs.

There exists a sequence (λj , µj) valid for all k and M ≥ 0.
In particular, the sequence (1.1, 2), (1.5, 3), (2, 4), (3, 7),
(5, 9), (7, 13), (10, 19), (12, 23), ... has been validated for
k ≤ 7. The corresponding non-recursive form

ż0 = −ϕ0(L(t), z0 − f(t)) + z1,
ż1 = −ϕ1(L(t), ϕ0(L(t), z0 − f(t))) + z2,
...
żn = −ϕk(...(L(t), ϕ0(L(t), z0 − f(t))...))

(9)

is much less convenient. Denote it ż = φ̄k(z, f, L,λ,µ).

Let the measurement error η(t) satisfy |η(t)/L(t)| ≤ ε̃, ρ =
max[τ, ε̃1/(k+1)]. Then for sufficiently small ρ the provided

accuracy once more is of the form |zi − f (i)0 | ≤ νiLρn+1−i.

4. DIFFERENTIATION AS NONLINEAR FILTERING

4.1 Homogeneous tracking differentiator

In practice the differentiators are not exact, and z loses
the desired smoothness, while still providing estimations

of the derivatives f
(i)
0 . One would like z0 to be the filtered

input f , i.e. z0 ∈WR+
(k, L̂), for some L̂ ≥ L.

Denote ż0 = z1, ..., żk−1 = zk, zk = u by ż = J0z + eku,
where J0 is the corresponding Jordan matrix. The follow-
ing is the so-called homogeneous tracking differentiator
(Levant (2013)):

ż = J0z − 1
2 ekL̂Ψk(ζ),

ζ̇ = Dk(ζ, z0 − f, L̂,λ), L̂− 2L ≥ ∆L > 0.
(10)

Here Ψk is any homogeneous k-SM controller of the
magnitude 1. Adjusting its parameters one can ensure the
convergence for any ∆L > 0, but the less ∆L the longer
the convergence. Differentiator (10) is homogeneous and
for bounded ∆L/L provides for the standard accuracy (8).

4.2 Extraction of equivalent control

Equivalent control extraction is a classical problem of
SMC. Suppose that the system ẋ = a(t, x) + b(t, x)u,
x ∈ Rnx , with the output s(t, x), u, s ∈ R, possesses the
relative degree r. Then s(r) = h(t, x) + g(t, x)u, where h, g
are typically uncertain functions, and g is separated from
zero. The same dynamics of s can be rewritten as

s(r) = g(t, x)(u− ueq(t, x)), ueq = −h(t,x)g(t,x . (11)

Problem. Let s ≈ 0 be kept in real r-SM by means of the
control u(t) along some solution x(t). The task is to real-
time estimate the equivalent control ueq(t, x(t)) and k− 1
its derivatives using the functions u(t), s(t, x(t)) available
in real time. We will call k − 1 the order of the filter.

Control u(t) typically is a discontinuous high-frequency
switching function. Note that in the ideal r-SM s ≡ 0 the
corresponding control is not a concrete function of time.
It does not equal the equivalent control ueq(t, x(t)), though
ueq formally appears in the equations of the SM dynamics.

Only the number L appearing below is needed for the novel
filter design. The numbers ε, L are required for the classical
equivalent-control-extraction method by Utkin (1992).

Assumption 1. The control u(t) is a Lebesgue-measurable
function of time. From the starting moment of observation
t = 0 a real SM is established keeping |s(r−1)| ≤ ε. Both
the input u and the function ueq are uniformly bounded,
||u|| ≤ UM , ||ueq(t, x(t))|| ≤ UM . Equivalent control (11)
is also supposed to have k − 1 total time derivatives, the



last one being Lipschitzian, |u(k)eq (t, x(t), u(t))| ≤ L, L > 0.
The function ġ(t, x(t), u(t)) = g′t + g′x(a+ bu) is bounded,
|ġ| ≤ Dg, also 1/g(t, x(t)) is bounded, |1/g| ≤ Cg−1 .

The classical method of the problem solution belongs to
Utkin (1992). The filter order is 0, k = 1, and the filter

α−1żu + zu = u(t), zu(0) = 0, zu ∈ R, α > 0. (12)

provides for the estimation

|zu − ueq(t)| ≤ e−αt(UM + Cg−1ε) + Lα−1

+ C2
g−1Dgε+ 2Cg−1αε, (13)

which is proved integrating by parts similarly to Utkin
(1992).

Thus, |zu−ueq(t)| = o(1) +O(L/α) +O(αε). The optimal

strategy is to choose α proportional to (L/ε)1/2 providing
for the accuracy |zu − ueq(t)| = O(ε1/2). Respectively, it
requires the knowledge of ε and L.

The following (k − 1)th-order filter is based on the modi-
fication of the homogeneous differentiator (6) of the order
k. Denote z− = (z−1, z0, ..., zk−1)T , e0 = (1, 0, ..., 0)T ∈
Rk+1, and choose any γ > 0. Then the filter gets the form

ż−2 = u(t)− γz−2,
ż− = Dk(z−, z−2, L,λ)− e0γz−2 (14)

The solutions are understood in the Filippov sense. Here

the output zi approximates u
(i)
eq , i = 0, 1, ..., k−1, while z−2

and z−1 are auxiliary internal variables. The parameters

λ̃j > 1, j = 0, ..., k, are the same as in (6).

Though the observer converges for any initial values, it is
reasonable to take z(0) = 0. The role of the first equation
is clarified below in Lemma 1.

Lemma 1. Consider the auxiliary equation

ẇe = ueq(t)− γwe, we(0) = 0. (15)

Then (14) provides for

|z−2 − we| ≤ ρ1 = ε[3Cg−1 + γ−1C2
g−1Dg] (16)

for any t ≥ 0.

Thus the problem is reduced to the differentiation of the
signal we available with a noise of the magnitude ρ1. The
proof of the lemma is technical and is omitted.

Theorem 2. Under Assumption 1 for any ε ≥ 0 observer
(14) in finite time provides for the accuracy

|zi − u(i)eq | ≤ νiL
1+i
k+1 ρk−i, ρ = max

[
ρ

1
k+1
1 , (γρ1)

1
k

]
,

(17)
where νi > 0 depend on the parameters of the observer,
i = 0, 1, ..., k− 1. For the chosen initial value z(0) = 0 the
transient time is uniformly bounded and depends only on
UM/L,Λ, γ.

Usually γ = 1 is taken. Theorem 2 implies exact estimation
of ueq if ε = 0. It has been mentioned that one cannot
filter the control in the ideal SM s ≡ 0, since u ceases
to be a function of time. Nevertheless, one can formally
link (14) to the equations of the system. The produced
complex system is linear in control, i.e. the equivalent-
control principle (Utkin (1992)) is applicable.

The resulting overall Filippov dynamics contains filter (14)
with ueq substituted for u. Respectively the filter produces
exact estimations of ueq and its derivatives. In practice it
only means that when the switching imperfections (noises,

time delays, etc.) vanish, ε→ 0, and zi− u(i)eq → 0 as well.

Proof outline. Denote σ−1 = z−1 − we, σi = zi − u(i)eq ,
i = 0, ..., k − 1. Similarly to (7) due to Lemma 1 the error
dynamics satisfies

σ̇ ∈ Dk(σ, ρ1[−1, 1], L,λ)− e0ρ1[−1, 1] + ek[−L,L].

Enlarge the right-hand side taking

σ̇ ∈ Dk(σ, ρk+1[−1, 1], L,λ)− e0ρk[−1, 1] + ek[−L,L].

The obtained disturbed differential inclusion is homoge-
neous of the degree −1 with the weights deg σi = k−i, i =
−1, 0, ..., k, and deg ρ = 1 (Levant and Livne (2016)). Here
ρ measures the intensity of the homogeneous disturbance
(Bernuau et al. (2014), Levant and Livne (2016)). It is
finite-time stable for ρ = 0, thus for arbitrary ρ ≥ 0 obtain
the desired accuracy (17) (Levant and Livne (2016)). �

5. DISCRETIZATION

Discrete-time measurements and realization of the filters
by discrete technics requires their replacement with recur-
sive discrete dynamics, i.e. discretization.

Discrete differentiation. Let f(t) be sampled at the
instants tj = t0, t1, ..., t0 = 0, tj+1 − tj = τj > 0,
τj ≤ τ . Replacement of the differentiators with one-Euler-
step integration leads to the deterioration of the accuracy
(8). The proper discretization of (6) is as follows:

z(tj+1) = z(tj) +Dk(z(tj), f(tj), L,λ)τj + Tk(z(tj), τj),
(18)

where Tk(z(tj), τj) ∈ Rk+1 contains Taylor-like terms.

ζ =

(
ζ0
...
ζk

)
, Tk(ζ, ω) =



k−1∑
s=2

1
s!ζsω

s

k−1∑
s=3

1
(s−1)!ζsω

s−1

...
1
2!ζk−2ω

2 + 1
3!ζk−1ω

3

1
2!ζk−1ω

2

0
0


. (19)

In particular T1(ζ, ω) = 0 ∈ R2.

Discrete differentiator (18) features homogeneous discrete
error dynamics, globally converges and provides for the
standard accuracy (8) (Livne and Levant (2014)). The
same is true for the discretization of the tracking differ-
entiator (10)

z(tj+1) = z(tj) + [J0z(tj)− 1
2 ekL̂Ψk(ζ(tj)]τj

+Tk(z(tj), τj),

ζ(tj+1) = ζ(tj) +Dk(ζ(tj), z0(tj)− f(tj), L̂,λ)τj .

(20)

The discrete version of (9)

z(tj+1) = z(tj) + φ̄k(z(tj), f(tj), L,λ,µ)τj + Tk(z(tj), τj),
(21)

also provides for the same accuracy as its continuous-time
predecessor.



Discrete extraction of equivalent control. Let the
sampled control be constant over the sampling intervals.
Direct integration of (12) over t ∈ [tj , tj+1] results in

zu(tj+1) = e−ατlzu(tj) + (1− e−ατj )u(tj), (22)

which is equivalent to (12) in that case.

Discrete version of filter (14) gets the form

z−2(tj+1) = e−γτjz−2(tj) + 1
γ (1− e−γτj )u(tj),

z−(tj+1) = z−(tj)
+[Dk(z−(tj), z−2(tj), L,λ)− e0γz−2(tj)]τj

+Tk(z−(tj), τj).

(23)

The first equation of (23) is obtained by exact integration.

Let τ, ε > 0 be sufficiently small, then discrete filter (23)
provides for the accuracy

|zi(tj)− u(i)eq (tj)| ≤ νiρk−i, ρ = max

[
ε

1
k+1 , τ

]
, (24)

where i = 0, ..., k−1, νi > 0 are some constants determined
by the parameters of the assumptions and the filter. The
proof is based on results by Levant and Livne (2016).

6. SIMULATION

Let a simple SMC system

ṡ = cos t+ (2 + sin(3t))u, u = −3 sign s. (25)

generate the input discrete signal u(t). Assumption 1 holds
here for any k. In particular |u̇eq|, |üeq| ≤ L = 30. Choose
γ = 1. The initial value s(0) = 5 is taken. The SM s ≡ 0
is kept starting from t = 0.7.

System (25) is simulated by the Euler method with the
sampling/integration step τ = 10−4, 10−5, corresponding
to the accuracies |s| ≤ ε = O(τ), ε = 1.8 · 10−3 and
ε = 1.8 · 10−4 respectively.

The new discrete filter (23) of the order 0, k = 1, has the
form
z−2(tj+1) = e−γτjz−2(tj) + 1

γ (1− e−γτj )u(tj),

z−1(tj+1) = z−1(tj)+

(−1.5L
1
2 bz−1(tj)− z−2(tj)e

1
2 − γz−2(tj) + z0(tj))τ,

z0(tj+1) = z0(tj)− 1.1L sign(z−1(tj)− z−2(tj))τ.
(26)

The 1st-order filter (23) for ueq, u̇eq, k = 2, has the form

z−2(tj+1) = e−γτjz−2(tj) + 1
γ (1− e−γτj )u(tj),

z−1(tj+1) = z−1(tj)+

(−2L
1
3 bz−1(tj)− z−2(tj)e

2
3 − γz−2(tj) + z0(tj))τ

+ 1
2z1(tj)τ

2,
z0(tj+1) = z0(tj)+

(−2.12L
2
3 bz−1(tj)− z−2(tj)e

1
3 + z1(tj))τ,

z1(tj+1) = z1(tj)− 1.1L sign(z−1(tj)− z−2(tj))τ.

(27)

According to (13) and (24) filter (12) (or (22)) with
α = O(τ−1/2) and the output zu, and the new filter (23) of
the order 0 (k = 1) should provide for the same accuracy
zu − ueq = O(

√
τ), z0 − ueq = O(

√
τ), while the filter (23)

of the 1st order (k = 2) should provide for the accuracy
z0 − ueq = O(τ2/3), z1 − u̇eq = O(τ1/3).

Note that contrary to the linear filter new filters do not
require any parameters’ adjustment with respect to the
SM accuracy ε. The only parameter L = 30 remains fixed.

Performance of the classic filter (14) over the interval
[3, 4] is shown in Fig. 1. Each value of τ requires proper
adjustment of α. For τ = 10−4 the best accuracy |zu −
ueq| ≤ 0.06 is obtained for α = 50 = 0.5τ−1/2, whereas for
τ = 10−5 the best accuracy |zu−ueq| ≤ 0.018 is obtained

for α = 160 ≈ 0.5τ−1/2 = 50
√

10.

One can compare the filters under zoom in Fig. 2. Filter
(26) provides for practically the same accuracies |z0 −
ueq| ≤ 0.06 and |z0 − ueq| ≤ 0.019 as (12), but keeping
the same parameter L = 30 (Fig. 2, left). Filter (27) with
L = 30 provides for the better accuracies |z0−ueq| ≤ 0.008,
|z1 − u̇eq| ≤ 0.44 for τ = 10−4, and |z0 − ueq| ≤ 0.0015,
|z1 − u̇eq| ≤ 0.19 for τ = 10−5 (Fig. 2, right). Note the
chattering of the linear filter. Performance of filter (27)
over the segment [3, 6] is shown in Fig. 3.

Fig. 1. Performance of the classic linear filter (12) over
the interval [3, 4]. The roughly best performance for
τ = 10−4 is obtained for α = 50, while the value
α = 160 is the best for τ = 10−5.

Fig. 2. Comparison of the optimally-adjusted classical
filter (22) with the novel filter (26) (k = 1) on the
left, and (27) of the order 1 (k = 2) on the right.

7. CONCLUSION

The best-possible numeric differentiation accuracy has
been calculated for the first-time.

A few types of the SM-based robust exact differentiators
have been presented as well as the parameters for the 7th-
order differentiation.

The classical method of the equivalent-control extraction
from SM control is not capable of exact estimation. Such
robust exact method for estimation of the equivalent



Fig. 3. Performance of the novel filter (27) of the order 1
over the interval [3, 6]. Both ueq and u̇eq are extracted.

control and its derivatives is for the first time proposed.
The method does not need the SM-accuracy knowledge.

Discretization issues have been addressed.
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