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Abstract

Output-feedback high-order sliding-mode (HOSM) controls include HOSM-based
differentiators and, therefore, possess complicated discontinuous dynamics. Their
practical application naturally involves discrete noisy output sampling and numeric
integration of the internal variables. Resulting hybrid systems are shown to be sta-
ble, and the corresponding asymptotic sliding-mode accuracies are calculated in the
presence of Euler integration and discrete sampling, whereas both might feature vari-
able or constant time steps. Discrete differentiators are developed which restore the
optimal accuracy of their continuous-time counterparts. Numeric criteria detect the
end of the differentiator transient. Simulation confirms the presented results.

1.1 Introduction

According to the Sliding Mode Control (SMC) approach the dynamics uncertainty
is to be removed keeping an appropriate constraint σ = 0. Due to the system un-
certainty the control exactly keeping the constraint is unknown, and the control is
switched providing for returning to the constraint each time the equality σ = 0 turns
out to be violated. It results in high-frequency switching of the control, and the
corresponding motion mode σ ≡ 0 features theoretically infinite control switching
frequency and is called Sliding Mode (SM), whereas σ is called the sliding variable
[52, 16, 49]. Further for simplicity σ is assumed to be a scalar function.

The advantages and disadvantages of the approach are obvious. On one hand
the control is simple and effective. It is especially simple, if σ̇ contains control
(the relative-degree-1 case), and the control takes the form of a simple relay u =
−α signσ . The constraint σ = 0 is established in finite time, and the uncertainty is
effectively diminished [52, 16, 49]. On the other hand the control is discontinuous
on the constraint manifold, and the high-frequency switching can cause dangerous
system vibrations (the chattering effect [52, 5, 20]).
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High-Order Sliding Modes (HOSMs) [8, 27, 29, 41, 45, 50] were historically
proposed to overcome the above chattering-effect problem and to solve the problem
of establishing the constraint in finite time also in the case when the relative degree
differs from 1.

Suppose that the equality σ = 0 is kept on the solutions of a closed-loop system.
The sliding order r is the lowest integer r, such that the rth-order total-time derivative
σ (k) is not a continuous function of the state variables and time [27, 29]. The cor-
responding motion σ ≡ 0 is called rth-order SM, and for brevity is called r-sliding
mode (r-SM).

The chattering attenuation is obtained by artificially increasing the number k of
the derivative σ (k) which contains the discontinuity. Consider u(l) as the virtual
control, and suppose that σ (r) is the first total time derivative of σ to contain the
control u, then σ (r+l) is to be the first to contain the virtual control u(l). Thus, one
has to establish the (r+ l)-SM σ = 0 in finite time by means of discontinuous u(l)

[7, 27, 11]. It has been shown [33] that in this case the high-energy chattering is
removed.

Note that the chattering reduction is not due to the continuity of the correspond-
ing control u(t), but due to simultaneously keeping continuous functions of system
variables σ , σ̇ , ...,σ (k+l−1) at zero [33]. Homogeneous HOSMs also feature high
accuracy in the presence of small switching imperfections and noises [27, 30].

Standard SMs [16, 52] are of the first order, i.e. already σ̇ contains discontinu-
ous control u, r = 1. Thus, the chattering attenuation is obtained using 2-SMs and
discontinuous u̇ [7, 8, 27].

Relative degree is defined as the lowest total derivative order of the output σ

which explicitly contains control [24]. Families of universal controls are recursively
constructed and solve the problem for any relative degree r [30, 49] of the output σ

by means of discontinuous r-SM control. In particular, the finite-time stabilization
of σ is possible by means of control, continuous everywhere except the manifold
σ = σ̇ = · · · = σ (r−1) = 0 [31]. The controllers are complemented by the robust
exact SM-based differentiators in finite time providing for the unavailable derivatives
σ , ...,σ (r−1) [29].

SM control is proved to be insensitive to disturbances in the control channel
(matched disturbances), robust with respect to sampling noises and small delays.
Homogeneous SMs [30] are proved to be robust to small disturbances, including
those which change the relative degree [39], and to the presence of fast stable sensors
and actuators [21, 33].

It is natural to introduce appropriate nonlinear constraints, describing finite-time
stable differential equations Σ(t,σ , ...,σ (r−1)) = 0. Then keeping Σ ≡ 0 in 1-SM
would lead to the establishment of the r-SM σ ≡ 0 in finite time. Unfortunately, this
idea does only easily work with r = 2, when σ = σ̇ + |σ |1/2 signσ can be taken.
For higher r one typically encounters the problem of unbounded gradients of the
respective functions Σ, which results in singular unbounded 1-SM controls [41]. The
problem is usually solved in the framework of the homogeneity theory [9, 23, 30, 46].

The results described above constitute a solid foundation for extensive applica-
tions of SMC for solution of various control and observation problems under uncer-
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tainty conditions [2, 6, 8, 11, 14, 15, 17, 19, 22, 41, 45, 44, 50]. Lyapunov functions
are found and used for HOSM controllers [42, 47, 48, 13].

The asymptotic accuracy of the r-SM was studied in [27]. It has been found
there that the best possible accuracy of a SM in the presence of discrete switching
is directly defined by its sliding order r. In particular, the best possible asymptotic
accuracy with the sampling time interval τ > 0 is σ ( j) = O(τr− j), j = 0,1, . . . ,r−1.
And indeed the homogeneity technique [30] provides for that accuracy. Moreover,
the accuracy is preserved, if the derivatives are estimated by homogeneous differen-
tiators [29]. More exactly, the asymptotic accuracy σ ( j) = O(max(τr− j,ε(r− j)/r))
is obtained for the sampling accuracy ε > 0 of the σ -measurements. Unfortunately,
this result is restricted to the ideal case, when the system is described by the Filippov
differential equations with zero-hold measurements.

The output-feedback HOSM control contains differentiators (i.e. observers) in
the feedback. Also the chattering attenuation procedure described above inserts inte-
grators in the feedback. Thus, the produced feedback often (actually almost always)
has its own dynamics. In reality the control input is produced by a modern computer
unit, integrators are replaced by some discrete integral approximation, most usually
by one-step Euler approximation. The resulting closed loop system features complex
interaction of the discrete controller with the continuous-time dynamic system, i.e.
is a heterogeneous, hybrid system. The area was practically terra incognita 2-3 years
ago. Not only the accuracy, even the stability of the hybrid system was not proved.
The authors have got considerable advances in this field. This article presents an
intermediate summary of the current state of the research.

1.2 Preliminaries: sliding order and SM accuracy

Realization of SM control inevitably includes discrete switching and noisy measure-
ments. Here we estimate the worst and the best possible realization accuracy of
HOSMs in the presence of noises and discrete switching, and show that possible
practical SM accuracies are strictly determined by the numbers of the output deriva-
tives in which the discontinuity appears for the first time.

1.2.1 Accuracy of SMs in the absence of noises

The following lemma actually describes SM accuracy in the presence of discrete
control swithing. It extends a similar result of [27] and is similarly proved.

Lemma 1. Let ω(t) be a scalar function having continuous derivative ω(l) on the
segment [0,τ], τ > 0. Then for each natural number l there exist such c0,c1, ...,cl−1 >
0 and d1,d2, ...,dl−1 > 0 that for any δ > 0

1. if |ω(l)| ≥ δ holds on the segment, then

max |ω| ≥ c0δτ
l ,max |ω̇| ≥ c1δτ

l−1, ...,max |ω(l−1)| ≥ cl−1δτ; (1.1)
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2. if |ω(l)| ≤ δ and |ω| ≤ d0δτ l hold over the segment [0,τ] for some d0, then

max |ω̇| ≤ (d0d1 +1)δτ
l−1, ...,max |ω(l−1)| ≤ (d0dl−1 +1)δτ. (1.2)

Obviously the second statement of the Lemma provides for a rather crude esti-
mation, since with d0 = 0 all derivatives of ω should vanish. Lemma 1 shows that
the accuracy of keeping an output σ = 0 is directly connected with the number of
its continuous total time derivatives. This naturally implies the following definition
[27], directly formulated for the vector output σ .

Definition 1. Suppose the constraint σ(x) = 0, σ : Rk→ Rm, is identically kept on
some solutions of a dynamic system ẋ = v(x), x ∈ Rk, understood in the Filippov
sense, v(x) is any Lebesgue-measurable locally bounded vector-function. Then the
solutions keeping σ(x) = 0 are said to be in the (r1,r2, ...,rm)th-order sliding mode,
if

1. the total time derivatives σ
( j)
i (x) are continuous functions of x, j ≤ ri−1;

2. the r-sliding set Lr =
{

x |σ ( j)
i (x) = 0, j ≤ ri−1, i = 1, ...,m

}
is not empty,

and locally consists of Filippov solutions;

3. σ
(r1)
1 ,σ

(r2)
2 , ...,σ

(rm)
m are discontinuous functions of x or do not exist.

In the non-autonomous case the time t is considered as an additional coordinate,
and the equation ṫ = 1 is formally added.

Recall that a scalar output σ(t,x) of a smooth SISO system

ẋ = a(t,x)+b(t,x)u, (1.3)

has a relative degree r, if the rth total time derivative of σ is the first to explicitly
contain the control, and the corresponding control coefficient does not vanish. In the
MIMO case the dimensions of u and σ are to be equal, for each component σi of the
output a partial relative degree ri is to exist with respect to some control component,

and the matrix
(

∂σ
(ri)
i

∂u j

)
is to be nonsingular [24].

It follows from the sliding-order definition that SM order is component-wise
larger or equal than vector relative degree, if the latter exists. It can be higher, if, for
example, the control itself features some discontinuous dynamics. An r-SM is called
unstable, asymptotically stable, finite-time stable, etc., if the r-sliding manifold Lr
features the same property.

Consider a MIMO dynamic system (1.3). Let the output σ(t,x) and the input u
be vectors, σ : Rn+1→ Rm, u ∈ Rl , a, b be smooth. The system is assumed to have
the partial relative degrees r = (r1, ...,rm), ri > 0, which means that the successive
total time derivatives σ

( j)
i , j = 0,1, ...,ri−1, i = 1, ...,m, do not contain controls, but

controls appear in σ
(ri)
i . Respectively, get a vector equation

σ
(r) = h(t,x)+g(t,x)u, (1.4)
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where σ (r) denotes (σ (r1)
1 , ...,σ

(rm)
m )T . As a direct consequence of Lemma 1 obtain

the following Theorem.

Theorem 1. Let system (1.3) be smooth with partial relative degrees r = (r1, ...,rm).
Then for some constants cri,0, ...,cri,ri−1, dri,1, ..., dri,ri−1 > 0, i = 1, ...,m the fol-
lowing is true for each component σi. Over any time interval of the length τ with
continuous control u(t) ∈ Rl

1. if |σ (ri)
i | ≥ δi holds on the segment for some δi > 0, then

max |σi| ≥ cri,0δiτ
ri ,max |σ̇i| ≥ cri,1δiτ

ri−1, ...,max |σ (ri−1)| ≥ cri,ri−1δiτ;(1.5)

2. if |σ (ri)
i | ≤ δi and |σi| ≤ dri,0δiτ

r hold over the segment for some dri,0 and
δi > 0, then

max |σ̇ | ≤ (dri,0dri,1 +1)δiτ
ri−1, ...,max |σ (ri−1)| ≤ (dri,0dri,ri−1 +1)δiτ. (1.6)

In particular, in the case of the SISO SMC problem, it follows from the Theorem
that no one can expect an accuracy better than σ =O(τr) , σ̇ =O

(
τr−1

)
, ...,σ (r−1)=

O(τ) in the sliding mode σ ≈ 0, if σ (r) is separated from zero between the switch-
ings. On the other hand, if σ (r) exists and is bounded, then keeping σ ≈ 0 implies
that also σ ( j) ≈ 0, j = 1, . . . ,r−1.

As follows from the second statement of the Theorem, the r-SM accuracy can be
higher than σ ( j) = O(τr− j), if σ (r) is kept close to zero. For example, the implicit
Euler method [1] actually increases the order of the real (i.e. approximate) SM due
to the on-line estimation of the equivalent control, which allows to decrease the dis-
continuous component of the control. Unfortunately such estimation requires some
additional system knowledge.

1.2.2 Accuracy of sliding modes in the presence of noises

Once more consider the uncertain SMC problem (1.3), (1.4). Recall that it is possible
to provide for the exact finite-time establishment of the r-SM σ ≡ 0 using only output
measurements [29, 30].

Theorem 2. Suppose that the control, based on the input measurements only, pro-
vides for the exact finite-time establishment of the r-SM σ ≡ 0 for any function h,
satisfying ‖h‖ ≤C. Let σi be measured with a Lebesgue-measurable noise ηi(t) of
the maximal magnitude εi ≥ 0, ηi(t)≤ εi, with unknown features, i = 1, . . . ,m. Then
the worst-case SM accuracy cannot be better than

|σi| ≤ εi, |σ̇ | ≤ c̃i,1ε

ri−1
ri

i , ..., |σ (ri−1)
i | ≤ c̃i,ri−1ε

1
ri

i ,

c̃i, j =

(
C

m
1
2

) j
ri
, j = 1, . . . ,ri, i = 1, . . . ,m.

(1.7)
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Proof. Let the output satisfy the equation σ (r) = g(t,x)u, i.e. (1.4) with ‖h‖ ≤
C, h ≡ 0. Let now the measured signal σ̂i be of the form σ̂i(t,x) = σi(t,x) +
εi cos((m−1/2C/ε)1/rit), i.e. the noise be equal ε cos((m−1/2C/ε)1/rit). Then the
noisy signal σ̂i satisfies

σ
(ri)
i =

(
cos

((
C

εm
1
2

) 1
r

t

))(r)

+g(t,x)u,

∣∣∣∣∣∣
(

cos

((
C

εm
1
2

) 1
r

t

))(r)
∣∣∣∣∣∣≤ C

m
1
2
.

Respectively, according to the assumptions, the control will successfully establish

and keep σ̂i ≡ 0, which corresponds to |σ ( j)
i | ≤

(
C√
m

) j
r

ε
r− j

r , j = 0, . . . ,r−1.
Note that both Theorems 1, 2 are true for any τ and εi, neither τ nor εi need to be

small.
Under the conditions of Theorem 2 let the output σ be measured with noises of

the magnitudes εi > 0 at some discrete time instants, and let the control be updated
at each sampling instant and remain constant between the sampling moments. Then
the inequalities (1.5) hold independently of the noise presence over each sampling
time interval of the length τ on which the inequality |σ (ri)

i |> δi > 0 is held.
The situation is more complicated, if the maximal sampling step tends to zero.

Some additional assumptions are needed to ensure that the corresponding solutions
uniformly converge to solutions with continuous sampling. If such a convergence
takes place, then, according to (1.7), the worst case SM accuracy is not better than

|σ ( j)
i |= O(ε

r− j
r

i ).
Example. The output σ of the SISO system (1.3), (1.19) of the relative degree r is
traditionally nullified by keeping the constraint Σ=

( d
dt +λ

)r−1
σ = 0 in 1-SM Σ≡ 0

[52, 16]. Let τ be the sampling step, then Σ = O(τ) is the only possible accuracy
according to Theorem 1. The respective overall r-SM accuracy is σ = O(τ) , σ̇ =
O(τ) , ...,σ (r−1) = O(τ) [51]. It definitely satisfies (1.5), but is much worse than the
best possible accuracy (1.6).

1.3 Accuracy of homogeneous differential inclusions

Recall that a solution of a DI ẋ ∈ F(x), F(x) ⊂ Rn, is defined as any absolutely
continuous function x(t), satisfying the DI for almost all t. We call a DI ẋ ∈ F(x)
Filippov DI, if F(x) ⊂ Rn is non-empty, compact and convex for any x, and F is an
upper-semicontinuous set function. The latter means that the maximal distance of
the points of F(x) from the set F(y) tends to zero, as x→ y.

It is well-known that such DIs feature most standard features, i.e. existence and
extendability of solutions, except the uniqueness of solutions [18]. Asymptotically
stable Filippov DIs have smooth Lyapunov functions [12].



“HOSMdiscretization” — 2017/4/1 — 1:56 — page 7 — #7

Discretization of High Order Sliding Modes 7

1.3.1 Weighted homogeneity of differential inclusions

Introduce the weights m1,m2, . . . ,mn > 0 of the coordinates x1,x2, . . . ,xn in Rn. De-
fine the dilation

dκ : (x1,x2, ...,xn) 7→ (κm1x1,κ
m2x2, ...,κ

mnxn),

where κ > 0. Recall [4], [25] that a function f : Rn→ R is said to have the homo-
geneity degree (weight) q ∈R, deg f = q, if the identity f (x) = κ−q f (dκ x) holds for
any x and κ > 0.

Definition 2 ( [30]). A vector-set field F(x) ⊂ Rn (DI ẋ ∈ F(x)), x ∈ Rn, is called
homogeneous of the degree q ∈ R, if the identity F(x) = κ−qd−1

κ F(dκ x) holds for
any x and κ > 0.

Consider a differential equation ẋ = f (x), ẋi = fi(x), as a particular case of DI,
when the set F(x) contains only one vector f (x). Then the above definition is re-
duced to the standard definition deg ẋi = deg fi = mi + q [4], [25]. Note that the
non-zero homogeneity degree q of a vector-set field can always be scaled to ±1 by
an appropriate proportional change of the weights m1, ...,mn.

Also note that the homogeneity of a vector-set field F(x) can equivalently be
defined as the invariance of the DI ẋ ∈ F(x) with respect to the combined time-
coordinate transformation

Gκ : (t,x) 7→ (κ pt,dκ x), κ > 0,

where p, p = −q, might naturally be considered as the weight of t. Indeed, the
homogeneity condition can be rewritten as

ẋ ∈ F(x)⇔ d(dκ x)
d(κ pt)

∈ F(dκ x).

Theorem 3 ([30, 34, 43]). Let a Filippov DI be homogeneous of a negative homo-
geneity degree. Then finite-time (FT) stability, asymptotic stability and contractivity
features are equivalent. The maximal (minimal) stabilization time is a well-defined
upper (lower) semi-continuous function of the initial conditions.

Here the upper (lower) semi-continuity of a scalar function φ means that limsupx→y φ(x) ≤
φ(y) (liminfx→y φ(x) ≥ φ(y)). The contractivity [30] is equivalent to the existence
of T > 0, R > r > 0, such that all solutions starting in the ball ||x|| ≤ R at the time 0
are in the smaller ball ||x|| ≤ r at the time T . It can be also proved that FT stability of
ẋ∈ F(x) implies the inequalities degF = q < 0, deg ẋi = degxi+degF = mi+q≥ 0,
i = 1, . . . ,n.

1.3.2 Accuracy of disturbed homogeneous differential inclusions

It is well-known that FT-stable homogeneous differential inclusions feature robust-
ness with respect to various disturbances, delays and sampling errors [10, 30, 32, 39,
40, 43]. Estimate the steady-state accuracy of a disturbed differential inclusion

ẋ ∈ F(x,γ), x ∈ Rn, γ ∈ Rν , (1.8)
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where γ is the vector disturbance parameter. The set field F(x,γ) ⊂ Rn is a non-
empty compact convex set-valued function, upper-semicontinuous at all points (x,0),
x ∈ Rn.

Introduce the dilations

dκ : (x1, ...,xn) 7→ (κm1s1, ...,κ
mnsn), m1, ...,mn > 0,

∆κ : (γ1, ...,γν) 7→ (κω1γ1, ...,κ
ωµ γµ), ω1, ...,ων > 0.

Inclusion (1.8) is assumed homogeneous in both x and γ , while the undisturbed
inclusion ẋ ∈ F(x,0) is assumed FT stable with the homogeneity degree q = −p,
p > 0. Hence, mi ≥ p. The homogeneity of (1.8) means that the transformation

(t,x,γ) 7→ (κ pt,dκ x,∆κ γ), κ > 0, (1.9)

establishes a one-to-one correspondence between the solutions of the inclusion (1.8)
with different parameters γ . In other words, F(x,γ) = κ p d−1

κ F(dκ x,∆κ γ). In partic-
ular, the standard homogeneity F(x,0) = κ p d−1

κ F(dκ x,0) is obtained for γ = 0.
In its turn γ ∈ Γ(ρ,x) ⊂ Rν , where Γ is a homogeneous compact non-empty

set-valued function with the magnitude parameter ρ ≥ 0, i.e. ∀κ,ρ > 0∀x ∈ Rn :
Γ(κmρ ρ,dκ x) = ∆κ Γ(ρ,x), mρ > 0. The function Γ monotonously increases with
respect to the parameter ρ , i.e. 0 ≤ ρ ≤ ρ̂ implies Γ(ρ,x) ⊂ Γ(ρ̂,x). It is also
assumed that Γ(0,x) = {0} ⊂ Rn and Γ(ρ,x) is Hausdorff-continuous in ρ,x at the
points (0,x).

It is easy to see that the time-coordinate-parameter transformation

G̃κ : (t,ρ,x) 7→ (κ pt,κmρ ρ,dκ x) (1.10)

establishes a one-to-one correspondence between the solutions of ẋ ∈ F(x,Γ(ρ,x))
with different values of ρ .

Obviously, due to the homogeneity of Γ and the compactness of the disk ||x|| ≤R,
for any R > 0 and any ε > 0 there exists ρ > 0, such that ||x|| ≤ R implies that
∀z ∈ Γ(ρ,x): ‖z‖< ε . Also, with any fixed ρ ≥ 0 the function Γ maps bounded sets
to bounded sets.

Now, consider the general retarded differential inclusion

ẋ ∈ F(x(t− τ[0,1]),Γ(ρ,x(t− τ[0,1]))), (1.11)

where τ ≥ 0 is the maximal possible time delay.
The presence of the delays in (1.11) requires some initial conditions

x(t) = ξ (t), t ∈ [−τ,0], ξ ∈ Ξ(τ,ρ,x0). (1.12)

The sets Ξ(τ,ρ,x0) should posses some natural homogeneity properties, which are
automatically satisfied, provided Ξ = Ξ̃ϖ (τ,ρ,x0), where Ξ̃ϖ (τ,ρ,x0) is comprised
of the solutions of the simple Filippov differential inclusion

ξ̇i ∈ ϖ
(
‖ξ‖h +ρ1/mρ

)mi−p
[−1,1],

i = 1, ...,n, ξ (0) = x0, −τ ≤ t ≤ 0.
(1.13)

Recall that mi ≥ p. It is also formally assumed here that ∀c ≥ 0 : c0 ≡ 1. In-
clusion (1.13) is homogeneous (i.e. invariant) with respect to the transformation
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(t,τ,ρ,ξ ) 7→ (κt,κ pτ,κmρ ρ,dκ ξ ). The parameter ϖ is chosen sufficiently large to
include the initial conditions of a considered concrete system.

Obviously, regular solutions of ẋ∈ F(x,0) always satisfy (1.11), i.e., solutions of
(1.11) always exist. Also, solutions of the inclusion with “discrete measurements”
and uniformly-bounded “noises” always exist. They correspond to the solutions
with the right-hand side of the inclusion frozen between the “sampling instants”,
ẋ(t) = ẋ(tk) ∈ F(x(tk),Γ(ρ,x(tk))), t ∈ [tk, tk+1], with the time periods tk+1− tk ≤ τ .
Both types of solutions are compatible with the above construction (1.13) of initial
conditions.

Theorem 4 ([30, 39]). After a finite-time transient all solutions of the disturbed
differential inclusion (1.11) enter the region |xi(t)| ≤ µiδ

wi , δ = max{ρ1/mρ ,τ1/p},
to stay there forever. The constants µi > 0 do not depend on ρ ≥ 0.

1.3.3 Accuracy of finite-time stable homogeneous systems

This subsection demonstrates application of Theorem 4.

1.3.3.1 Accuracy of homogeneous finite-time stable systems

Consider a FT-stable Filippov homogeneous differential inclusion ẋ ∈ F(x), deg t =
1, degxi =mi, i= 1, ...,nx. Let x be measured at discrete time instants tk, tk+1−tk ≤ τ

with the measurement errors |ηi(tk)| ≤ εi. Then the solutions satisfy the differential
inclusion ẋ ∈ F(x(t − τ[0,1]) + ε[−1,1]). Respectively the accuracy xi = O(ρm j),

j = 1, ...,nx, is established in finite time, where ρ = max{τ,maxi ε

1
mi

i }. Note that
that estimation corresponds to the simplest case, when the process is described by
a differential inclusion between the sampling instants. No discrete dynamics is in-
volved.

1.3.3.2 Accuracy of a hybrid system

Consider a FT-stable homogeneous differential inclusion

ẋ ∈ F(x,z), (1.14)
ż ∈Ψ(h(x),z). (1.15)

Here (1.15) represents a possibly discontinuous “feedback” understood in the Filip-
pov sense. The system is assumed to describe error dynamics of some controlled
process. The uncertainties and time dependence are taken into account by some ap-
propriate expansion of the sets on the right-hand side. Let the system homogeneity
degree be −1, deg t = 1, and degxi = mi, i = 1, ...,nx, degzi = mzi, i = 1, ...,nz. The
output h is a homogeneous vector-function, deghi = mhi > 0, i = 1, ...,nh. The vector
variable z ∈ Rnz is the internal controller state.

In “practice” the output h(x) is sampled at the time instants tk, 0 ≤ tk+1− tk ≤
τ , with the error η ∈ Rnh , ηi ∈ εi[−1,1], i = 1, ...,nh, and some “actuator” delay
τ̃k. The dynamic feedback (1.15) becomes a discrete system defined at the discrete
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time instants tk, j, j = 0, ..., lk, tk,0 = tk + τ̃k, tk,lk = tk+1,0 = tk+1 + τ̃k+1. Naturally
tk+1 + τ̃k+1 > tk + τ̃k is assumed to hold. It is also assumed that 0 < tk, j+1− tk, j =
τk, j < τ(τ), i.e. the maximal integration step τ can be chosen in dependence on an
upper bound τ of the sampling periods τk. Also τ̃k ≤ τ̃ holds.

The resulting feedback is approximated by the Euler integration, producing the
hybrid system

ẋ ∈ F(x,z(tk, j)),
z(tk, j+1) ∈ z(tk, j)+Ψ(h(x(tk + τ̃k)))+ηi(tk + τ̃k),z(tk, j))τk, j.
j = 0, ..., lk−1.

(1.16)

Note that a random element is taken from the set Ψ at each time step k, j. The
solution component z(tk, j) of (1.16) can be equivalently described by solutions of
equations with piece-wise-constant right-hand sides, which take the same values at
the time instants tk, j. Indeed, the intermediate values of z do not affect the process
component x changing continuously in time. Thus, the components x(t) of solu-
tions of (1.16) coincide with the x components of some solutions of the differential
inclusion

ẋ ∈ F(x,z(t +(τ̃ + τ)[−1,0]))),
ż(t) ∈Ψ(h(x(t +(τ̃ + τ)[−1,0]))+ ε[−1,1],z(t + τ[−1,0])). (1.17)

In its turn these solutions satisfy

ẋ ∈ F(x,z(t +ρ[−1,0]))),
ż(t) ∈Ψ(h(x(t +ρ[−1,0]))+~ρmh [−1,1],z(t +ρ[−1,0])). (1.18)

where ρ = max{τ̃ +τ,maxi ε

1
mhi

i } and~ρmh = (ρmh1 , ...,ρmhnh )T . Introduce also some
appropriate initial values as it is done in section 1.3.2.

It follows now from Theorem 4 that the accuracy x j = O(ρm j), j = 1, ...,nx, is
established in finite time.

1.4 Homogeneous continuous-time SM control

In this section we develop SMC which realizes the best possible asymptotic SM
accuracy (1.6), (1.7) calculated in the previous section. All over this section the
accuracies are calculated under the assumption that, whereas the sampling is discrete,
the differential equations/inclusions still take place between the samplings.

1.4.1 Homogeneous SISO SM control

Consider the SISO SMC problem (1.3) with smooth functions a and b. The system
is understood in the Filippov sense [18]. Let the smooth scalar output σ(t,x) have
the relative degree r, which means that

σ
(r) = h(t,x)+g(t,x)u, (1.19)
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where h, g are uncertain smooth functions, g(t,x) 6= 0. As usual [27, 29, 30] assume
that h, g are bounded,

|h(t,x)| ≤C, 0 < Km ≤ g(t,x)≤ KM, (1.20)

Such bounds exist at least for any compact operational region. Any solution of (1.3)
is assumed infinitely extendable in time, provided σ , its derivatives and u remain
bounded along the solution.

The above are the only system conditions needed in Section 1.4.1. The system
uncertainty is defined by the numbers r,C,Km,KM which are supposed to be known.

The uncertain dynamics (1.19) can be replaced by the concrete differential inclu-
sion

σ
(r) ∈ [−C,C]+ [Km,KM]u. (1.21)

Most r-SM controllers are build as controllers for (1.21) making ~σ = (σ , σ̇ , ...,
σ (r−1)) vanish in finite time.

In order to use the results from section 1.3.1 the closed-loop inclusion is to be
homogeneous with negative homogeneity degree. Scaling the system homogeneity
degree to −1, deg t = 1, obtain that with C > 0 inevitably degσ (r) = 0, on the other
hand, degσ (r) = degσ (r−1)− deg t. Thus, the only possible homogeneity weights
are degσ = r, . . . , degσ (r−1) = 1. This homogeneity is called r-sliding homogeneity
[30]. Respectively, the control

u =Ur(~σ) (1.22)

is called r-sliding homogeneous, if degu = 0, i.e.

Ur(σ , σ̇ , ...,σ (r−1))≡Ur(κ
r
σ ,κr−1

σ̇ , ...,κσ
(r−1)). (1.23)

holds for any κ > 0, ~σ ∈Rr. Since the control is required to be locally bounded [18],
due to (1.23) it is also globally bounded. The right-hand side of the inclusion (1.21),
(1.22) is assumed minimally enlarged at the points of the discontinuity of (1.22) to
satisfy the Filippov conditions [18].

Replace σ ∈R with ω ∈R in the following formulas, enabling the further usage
of the controllers for different components of the vector output σ in the MIMO case.
Let β1,r, . . . ,βr−1,r be some predefined positive coefficients, and α be the chosen
control magnitude. Then the simplest family of r-sliding homogeneous controllers
of the form

u =−αΨr−1,r(ω, ω̇, . . . ,ω(r−1)), (1.24)

called embedded SM controllers [29], are provided by the following resursion. Let
d ≥ r, define

ϕ0,r = ω, N0,r = |ω|1/r, Ψ0,r = signω;
ϕ j,r = ω( j)+β j,rN

r− j
j−1,rΨ j−1,r,Ψ j,r = signϕ j,r,

N j,r =
(
|ω|d/r + |ω̇|d/(r−1)+ . . .+ |ω( j−1)|d/(r+1− j)

)1/d
.

(1.25)
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The following are valid parametric sets {β1,r, . . . ,βr−1,r},dr for r = 2, . . . ,4: r =
2, {1}, d1 = 1; r = 3, {1,2}, d2 = 6; r = 4, {0.5,1,3}, d4 = 12. It is further assumed
that β1,r, . . . ,βr−1,r are always properly chosen, which means that the differential
equations ϕr−1,r = 0 are finite-time stable [38].

Provided the parameters β j,r are properly chosen [38] and α is sufficiently large,
under the above assumptions (1.19), (1.20) the listed r-SM controllers solve the
stated problem of finite-time establishing and keeping σ ≡ 0 [29] by means of uni-
formly bounded control and for any initial conditions.

Another well-known family of SM controllers, called quasi-continuous SM con-
trollers [31], also features control continuous everywhere except the r-sliding set
ω = ω̇ = . . . = ω(r−1) = 0. Such controllers feature considerably less chattering.
Other constructions of similar homogeneous HOSM controllers and the choice of
parameters are considered in [30, 38].

1.4.1.1 Differentiator.

Any r-sliding homogeneous controller can be combined with an (r−1)th-order dif-
ferentiator [29] producing an output feedback controller. Its applicability in this case
is possible, since σ (r) is bounded due to the boundedness of the feedback function
u =−αΨr−1,r(~σ) in (1.21).

Let the input signal f (t) consist of a bounded Lebesgue-measurable noise with
unknown features, and an unknown basic signal f0(t), whose nd th derivative has a
known Lipschitz constant L > 0. These are the only restrictions on the input of the
differentiator. While the number L is to be known, one does not need to know the
noise magnitude.

The outputs z j of the following differentiator estimate the derivatives f ( j)
0 , j =

0, . . . ,nd . The recursive form of the differentiator is

ż0 =−λnd L
1

nd+1 |z0− f (t)|
nd

nd+1 sign(z0− f (t))+ z1,

ż1 =−λnd−1L
1

nd |z1− ż0|
nd−1

nd sign(z1− ż0)+ z2,
...

żnd−1 =−λ1L
1
2 |znd−1− żnd−2|

1
2 sign(znd−1− żnd−2)+ znd ,

żnd =−λ0L sign(znd − żnd−1).

(1.26)

Parameters λi of differentiator (1.26) are chosen in advance for each nd . An infinite
sequence of parameters λi can be built, valid for all natural nd [29]. In particular,
one can choose λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5, λ5 = 8 [31] or λ0 = 1.1,
λ1 = 1.5, λ2 = 3, λ3 = 5, λ4 = 8, λ5 = 12, which is enough for nd ≤ 5. In the
absence of noises the differentiator provides for the exact estimations in finite time.
Equations (1.26) can be rewritten in the usual non-recursive form

ż0 = −λ̃nd L
1

nd+1 |z0− f (t)|
nd

nd+1 sign(z0− f (t))+ z1,

ż1 = −λ̃nd−1L
2

nd+1 |z0− f (t)|
nd−1
nd+1 sign(z0− f (t))+ z2,

...

żnd−1 = −λ̃1L
nd

nd+1 |z0− f (t)|
1

nd+1 sign(z0− f (t))+ znd ,

żnd = −λ̃0L sign(z0− f (t)).

(1.27)
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It is easy to see that λ̃0 = λ0, λ̃nd = λnd , and λ̃ j = λ jλ̃
j/( j+1)
j+1 , j = nd−1,nd−2, . . . ,1.

Notation. Assuming that the sequence λ j, j = 0,1, ..., is the same over the whole
chapter, denote (1.27) by the equality ż = Dnd (z, f ,L). Also for any w 6= 0 and γ > 0
denote bweγ = |w|γ signw; b0eγ = 0; bwe0 = signw.

Let the noise be absent. Subtracting f (i+1)(t) from the both sides of the equation
for żi of (1.27), denoting σd,i = zi− f (i), i = 0, ...,nd , and using f (nd+1)(t) ∈ [−L,L]
obtain the differentiator error dynamics

σ̇d,0 = −λ̃nd L
1

nd+1
⌊
σd,0

⌉ nd
nd+1 +σd,1,

σ̇d,1 = −λ̃nd−1L
2

nd+1
⌊
σd,1

⌉ nd−1
nd+1 +σd,2,

...

σ̇d,nd−1 = −λ̃1L
nd

nd+1
⌊
σd,nd−1

⌉ 1
nd+1 +σd,nd ,

σ̇d,nd ∈ −λ̃0L signσd,nd +L[−1,1].

(1.28)

It is homogeneous with deg t = −1, degσd,i = nd + 1− i [29]. Thus, according to
section 1.3.3.1 with sampling time periods not exceeding τ > 0 and the maximal
possible sampling error ε ≥ 0 the differentiation accuracy |z j− f ( j)

0 | ≤ µ jLρnd+1− j,
ρ = max(τnd+1− j,(ε/L)(nd+1− j)/(nd+1)), is ensured, where the constant numbers
µ j > 0 only depend on the parameters λ0, ...,λnd of the differentiator. This accuracy
is known to be asymptotically optimal in the presence of noises [26, 28], which
means that only the coefficients µ j can be improved.

1.4.1.2 Differentiator initialization.

Although one can take arbitrary initial values of differentiator for its feedback appli-
cation, it may considerably destroy the initial system transient, since at the beginning
the differentiator outputs will have no resemblance to the right derivatives. The over-
all performance can be drastically improved if the initial values of the differentiator
are chosen right.

The most simple method is to take z0(t0) = f (t0) and zi(t0) = 0, i = 1, . . . ,nd ,
where t0 is the first sampling time. Then one just provides some reasonable time for
the differentiator convergence prior to the control application.

Another method, which we consider preferable if the noise magnitude is avail-
able, is to choose some initial time increments of the length ∆t, consisting of a num-
ber of real sampling intervals. The nd +1 sampling values of the input f are stored
for nd such successive time increments, and then the initial values of the differen-
tiator are calculated by divided differences. During all this period the control is not
applied, i.e. is kept at zero. Then the differentiator is practically already in the
steady state from the very beginning. This initialization process is robust with re-
spect to noises of the magnitude of the order ∆tnd+1, i.e. ∆t is to be chosen with
respect to the maximal possible noise. A small additional time for the initial error
elimination can still be considered.

One can also apply non-homogeneous differentiator modifications [3, 13, 35]
with faster convergence. In that case the global system homogeneity is lost.
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1.4.1.3 Differentiator with variable Lipschitz parameter L.

It is proved that if L continuously changes in time, then if at some moment differenti-
ation errors are zero, they will stay at zero forever. Obviously such statement cannot
withstand a practice exam.

Practically important result is that if L is differentiable, and |L̇|/L≤M for some
M, then for some δ > 0 the differentiator converges provided the initial errors satisfy

|z j− f ( j)
0 | ≤ δL [36]. The accuracy |z j− f ( j)

0 | ≤ µ jLmax(τnd+1− j,ε
nd+1− j

nd+1 ) is kept
provided the noise satisfies |η(t)| ≤ L(t)ε [36].

Globally convergent differentiator with fast convergence and |L̇|/L≤M has been
recently presented [35]. Note that its parameters depend on M.

1.4.1.4 Output feedback control.

Consider the system (1.3) of the relative degree r under the conditions (1.19), (1.20)
with a bounded control (1.22). Incorporating the (r− 1)th order differentiator into
the feedback equations, obtain the SISO output-feedback r-sliding controller

u =Ur(z), ż = Dr−1(z,σ ,L), (1.29)

where L ≥ C +KM sup |Ur|. Suppose that (1.21), (1.22) is finite-time stable. Then
the output-feedback controller (1.29) ensures the finite-time establishment of the r-
sliding mode ~σ = 0. Moreover [30], if (1.22) is r-sliding homogeneous, the closed-
loop inclusion (1.21), (1.29) is homogeneous with degzi = degσ (i) = r− i and the
system homogeneity degree -1. Respectively, due to section 1.3.3.1, if σ is sampled
with the accuracy ε ≥ 0 and the sampling intervals not exceeding τ > 0, then the
asymptotic SM accuracy σ ( j) = O(max(τr− j,ε(r− j)/r)) is obtained.

1.4.2 Homogeneous MIMO SM control

Once more consider dynamic system (1.3),

ẋ = a(t,x)+b(t,x)u, σ = σ(t,x), (1.30)

but let now σ and u be vectors, σ : Rn+1→ Rm, u ∈ Rm. The system is assumed to
have the vector relative degree r = (r1, ...,rm), ri > 0. It means that the successive
total time derivatives σ

( j)
i , j = 0,1, ...,ri− 1, i = 1, ...,m, do not contain controls,

and can be used as a part of new coordinates [24]. Respectively, (1.19) turns to be a
vector equation,

σ
(r) = h(t,x)+g(t,x)u, (1.31)

where σ (r) denotes (σ (r1)
1 , ...,σ

(rm)
m )T , the functions h, and g are unknown and smooth.

The function g is a non-singular matrix. It is often called high-frequency gain matrix.
Let g be represented in the form g = Kḡ, where K > 0 defines the “size” of the

matrix g, and ḡ corresponds to the matrix “direction”. A nominal “direction” matrix
G(t,x) is assumed nonsingular and available in real time, so that

g(t,x) = K(t,x)(G(t,x)+∆g(t,x)),
∥∥∆gG−1∥∥

1 ≤ p < 1. (1.32)
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Here ∆g is the uncertain deviation of ḡ from G, and the norm ‖·‖1 of the matrix
A = (ai j) is defined as ‖A‖1 = max

i
∑
j
|ai j|. The estimation G can be any Lebesgue-

measurable function, p is a known constant. Mark that similar assumptions are
adopted in [14].

Similarly to (1.20), assume that the uncertain vector function h and the scalar
function K are bounded,

‖h(t,x)‖ ≤C, 0 < Km ≤ K(t,x)≤ KM, (1.33)

where C, Km, KM are known constants.
It is also assumed that trajectories of (1.30) are infinitely extendible in time for

any Lebesgue-measurable control with uniformly bounded ||gu||/H.
The above are the only system conditions needed in Section 1.4.2. The system

uncertainty is defined by r,C,Km,KM, p and G(t,x) which are respectively assumed
to be known or available.

Note that the avaialability of G(t,x) in real time does not necessarily mean that
x(t) is available, and G is known analitically. For example, the aerodynamic char-
acteristics of an aircraft are usually available as approximate table functions of the
observable dynamic pressure and altitude.

Introduce a virtual control v,

u = G(t,x)−1v. (1.34)

Then dynamics (1.31) take the form

σ
(r) = h(t,x)+K(t,x)(I +∆g(t,x)G−1(t,x))v, (1.35)

where I is the unit matrix.
Introduce the notation ~σi = (σi, . . . ,σ

(ri−1)
i ), ~σ = (~σ1, . . . ,~σm). Choose the com-

ponents of v = (v1, . . . ,vm)
T in the form of the embedded ri-sliding homogeneous

controller (1.24), (1.25)

vi =−αΨri−1,ri(~σi), i = 0,1, . . . ,m, u = G(t,x)−1v, (1.36)

where α > 0. Now the closed-loop system satisfies the decoupled (r1,r2, . . . ,rm)-
sliding homogeneous inclusion

σ
(ri)
i ∈ [−C,C]−α[Km(1− p),KM(1+ p)]Ψri−1,ri(~σi), i = 1, . . . ,m, (1.37)

with the weights degσ
( j)
i = ri− j. According to section 1.4.1, (1.37) is finite-time

stable with sufficiently large α .
Respectively the output-feedback control gets the form

vi =−αΨri−1,ri(zi), i = 0,1, . . . ,m, u = G(t,x)−1v,
żi = Dri−1(L,σi,zi), L≥C+2KMα.

(1.38)

The closed-loop inclusion is still homogeneous with degσ
( j)
i = degzi, j = ri− j. The

following theorem follows from the section 1.3.3.1.
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Theorem 5. Let the MIMO system (1.30), (1.31) satisfy conditions (1.32), (1.33).
Then output-feedback control (1.38) provides for the finite-time establishment and
keeping of the r-SM σ = 0. Let σi be measured with the sampling accuracy εi ≥ 0,
i = 1,2, . . . ,m, and the sampling intervals not exceeding τ > 0, then the asymptotic
SM accuracy σ

( j)
i = O(max(τri− j,ε

(ri− j)/ri
i )) is obtained.

As we have seen, the obtained SM asymptotics are the best possible. Note that
one can here use quasi-continuous controllers [31, 38], but the corresponding tech-
nique is more complicated [37], though provides for superior performance.

1.5 Discretization of SM differentiators

In reality described differentiators are realized by means of computers. This turns
a real-time differentiator into a discrete dynamic system. In this section we present
the discretization methods for SM-based differentiators, analyze their accuracy and
on-line detection of their convergence.

1.5.1 Discrete differentiators and their accuracy

Consider the differentiator (1.26) or (1.27), which is represented as ż = Dnd ( f ,z,L).
Let the basic input f0(t) be sampled at the time instants tk, 0 ≤ tk+1− tk = τk ≤ τ ,
with the error η ∈ R, η ∈ ε[−1,1], f = f0 +η , | f (nd+1)

0 | ≤ L. Differentiator (1.27)
is a discontinuous dynamic system. Therefore, its only reliable numeric integration
is based on the Euler method. Also the discretization is naturally to be based on the
Euler integration.

The simplest way is to perform one Euler integration step between each two
successive measurements. The respective discretization is

z(tk+1) = z(tk)+Dnd ( f (tk),z(tk),L)τk. (1.39)

The accuracies obtained in section 1.4.1.1 correspond to the case when between
the measurements the differentiator is described by differential equations. It corre-
sponds to the infinite number of infinitesimally small Euler-integration steps between
the measurements at tk, tk+1. In practice only finite number lk of such steps is taken.
Let the Euler steps take place at the discrete time instants tk, j, j = 0, ..., lk, tk,0 = tk,
tk,lk = tk+1 = tk+1,0. Thus, all sampling instants are also the instants of the integration
subdivision. It is also assumed that 0 < tk, j+1− tk, j = τk, j < τ(τ), i.e. in general τ

may depend on τ .
It is natural to take the discretization

z(tk, j+1) = z(tk, j)+Dnd ( f (tk),z(tk, j),L)τk, j, j = 0, ..., lk−1.

It is not the dicretization we use. The idea is never to use the differences of the input
signal f and z0 taken at different time instants. Thus, the proposed discretization is

z(tk, j+1) = z(tk, j)+∆nd ( f (tk),z(tk, j),L)τk, j, j = 0, ..., lk−1, (1.40)
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where the vector function ∆nd ( f (tk),z(tk, j),L) has the components

∆nd ,0 = −λ̃nd L
1

nd+1 bz0(tk)− f (tk)e
nd

nd+1 + z1(tk, j),

∆nd ,1 = −λ̃nd−1L
2

nd+1 bz0(tk)− f (tk)e
nd−1
nd+1 + z2(tk, j),

...

∆nd ,nd−1 = −λ̃1L
nd

nd+1 bz0(tk)− f (tk)e
1

nd+1 + znd (tk, j),
∆nd ,nd = −λ̃0L sign(z0(tk)− f (tk)).

(1.41)

One can expect that the resulting accuracy is worse than the standard differentiator
accuracy from Section 1.4.1.1, but it is to be reclaimed for τ → 0, lk→ ∞.

Unfortunately the results of section 1.3.3.1 are not valid for such systems. One
needs to use the technique described in section 1.3.3.2 to estimate the resulting ac-
curacy. Following are the currently known results, some of which are declared here
for the first time. In particular, the standard accuracy from section 1.4.1.1 is always
preserved for the standard 1st-order differentiator, nd = 1, [40].

1. Let the integration steps be equal, tk, j+1−tk, j = τk, j = τ . Let ρ =max[( ε

L )
1

nd+1 ,τ].

Also suppose that the derivatives f (i)0 of the orders 2,3, ...,nd + 1, are bounded:

| f (i)0 | ≤ Di, Dnd+1 = L. Then there exist such constants µi > 0 that independently
of the sampling intervals’ choice the following inequalities hold after a finite time
transient:

|z0(tk, j)− f0(tk, j)| ≤ µ0Lρnd+1;
|zi(tk, j)− f (i)0 (tk, j)| ≤ µiLρnd+1−i + jτDi+1, i = 1,2, ...,nd .

(1.42)

Note that this result is published in [40] for the case when the integration steps
and the sampling intervals coincide, lk = 1, τ = τ . The proof is very similar to one
presented in [40].
2. Let the maximal integration and sampling steps, τ and τ , be small enough. Also
suppose that the derivatives f (i)0 of the orders 2,3, ...,nd +1, are bounded: | f (i)0 | ≤Di,
Dnd+1 = L. Then there exist such constants µi > 0 that independently of the sampling
and integration intervals’ choice the inequalities

|zi(tk, j)− f (i)0 (tk, j)| ≤ µiLρnd+1−i, i = 0,1, ...,nd , (1.43)

hold after a finite time transient. Here ρ = max[(ε/L)1/(nd+1),τ1/nd ,τ]. Note that
contrary to other cases here µi depend on D2/L, ...,Dnd/L. Obviously, the standard
asymptotics of the section 1.4.1.1 is restored for τ ≤ τnd .

Also the latter result is published in [40] for the case when the integration steps
and the sampling intervals coincide, lk = 1, τ = τ . The proof follows the general
lines of section 1.3.3.2. One has to represent the errors of the discrete system (1.40)
as solutions of some disturbed finite-time stable inclusion sampled at the times tk, j.

As we see, in general the asymptotic accuracy of the continuous-time differentia-
tor with discrete measurements is lost, when the differential equations are replaced
with discrete Euler integration and the differention order exceeds 1. It is restored if
the maximal integration step τ and the maximal sampling interval τ satisfy the in-
equality τ ≤ τnd . That choice of the integration step still can be feasible for nd = 2,
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but usually becomes impractical already for nd = 3. Also the requirement for deriva-
tives f (i)0 , i = 2, ...,nd , to be bounded is restrictive. The following discrete differen-
tiator resolves all these issues.
3. Homogeneous Discrete Differentiator. Choose

∆nd ,i(tk, j) = −λ̃nd−iL
i+1

nd+1 bz0(tk)− f (tk)e
nd−i
nd+1 + zi+1(tk, j)

+∑
nd−1
s=i+2

zs(tk, j)τ
s−1
k, j

(s−i)! , i = 0,1, ...,nd−1;
∆nd ,nd (tk, j+1) = −λ̃0L sign(z0(tk)− f (tk)).

(1.44)

New terms appear in the second line of (1.44) and are only present if nd > 1. Note
that (1.44) can be also rewritten in the recursive form [35]. Let the maximal inte-
gration and sampling steps, τ ≤ τ , be any positive numbers. Then there exist such
constants µi > 0 that independently of the function f0 and the choice of the sampling
intervals and integration steps the inequalities (1.43) hold after a finite time transient
for ρ = max[(ε/L)1/(nd+1),τ].

Obviously discrete differentiator (1.40), (1.44) completely reclaims the accuracy
of its continuous-time analogue. This result has been published in [40] for the case
when the integration steps and the sampling intervals coincide. It also seems that
additional integration steps do not cause any noticeable accuracy improvement.

1.5.2 Convergence criteria

It is practically important to detect the moment when the differentiator starts to pro-
duce reliable derivative estimations. Choose some parameter ρ > 0. Taking into
account the homogeneity features of the differentiator, we expect that if the noise
η(t), the maximal sampling interval τ , and the maximal integration step τ satisfy

|η | ≤ kη Lρ
nd+1, τ ≤ kτ ρ, (1.45)

and, if integration steps are variable and differ from the sampling steps,

τ ≤ kτ ρ
nd , (1.46)

then, respectively to the chosen discretization scheme, the differentiation accuracy
(1.42) or (1.43) is to be obtained in the steady state.

The only available real-time information consists here of the observed sampled
differences z0(tk)− f (tk), which are corrupted by noise and taken at discrete times
tk. According to the results of the previous subsection we can expect the steady-state
accuracy |z0(tk, j)− f (tk, j)| ≤ k f Lρnd+1 to be kept.

The idea is that provided this accuracy is observed for sufficiently long time,
one can assume that the transient is over. Due to the homogeneity reasoning that
observation time is to be proportional to ρ . Thus one expects

|z0(tk)− f (tk)| ≤ k f Lρ
nd+1, tk ∈ [t− ktρ, t] (1.47)

to hold for some kt > 0 starting from some moment t.
The general convergence criterion. For any sufficiently small ρ > 0
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1. for any choice of positive parameters µ0, ...,µnd there exists a set of positive
parameters kη ,kτ ,k f ,kt , and, maybe, kτ ,

2. for any choice of positive parameters kη ,kτ ,k f ,kt , and, maybe, kτ there exists
a set of positive parameters µ0, ...,µnd ,

such that for any input f (t), | f (nd+1)
0 | ≤ L (plus boundedness of | f (i)0 |, i ≥ 2 for the

discretization scheme (1.41)), provided (1.47) holds at the time moment t = t∗, it also
holds for any t ≥ t∗, and the accuracies (1.42) or (1.43) (respectively to the chosen
discretization scheme) are kept starting from the time t∗− ktρ .

Let us concretize the above criterion to remove any doubts.

• Continuous-time criterion [2], differentiator (1.26). The numeric integration
is excluded, (1.45) are the only restrictions. The accuracy (1.43) is observed
for any ρ > 0 (not only small).

• Equal integration steps, scheme (1.40), (1.41). Only (1.45) is required. The
observed accuracy is (1.42).

• Variable integration steps, scheme (1.40), (1.41). Both (1.45) and (1.46) are
required. The observed accuracy is (1.43). Choice of kη ,kτ ,k f ,kt , and kτ if
sampling and integration steps do not coincide, depends on D2/L, ...,Dnd/L.

• Improved scheme (1.40), (1.44). Only (1.45) is required. The accuracy (1.43)
is observed for any ρ > 0 (not only small).

All the above cases yield the same asymptotic accuracy in the case nd = 1.

1.5.3 Discrete differentiator with variable Lipschitz parameter L.

Let L be a variable function of t, and |L̇|/L≤M hold for some M, then all the above
schemes (1.40), (1.41) or (1.44) make sense [36]. The only difference is that each
time when the requirement of the boundedness of f ( j)

0 appears in the constant-L

case, it is replaced by the boundedness of f ( j)
0 (t)/L(t). Let also |η(t)| ≤ L(t)ε̂ then

the same accuracy (1.43) or (1.42) is obtained and kept for sufficiently small τ, ε̂ ,
whereas ε̂ is substituted for ε/L in the definitions of ρ . The globally convergent
differentiator with variable L [35] features the same accuracy.

The above convergence criteria are literally true for such differentiators, but ρ

and τ are required to be sufficiently small in all cases. Naturally the parameter L
appearing in the accuracies (1.42) or (1.43) depends on time. The corresponding
result has meantime been published for the improved discretization scheme (1.40),
(1.44) with coinciding integration and sampling steps [35].
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1.5.4 Simulation results

Due to the large scope of the presented results only a few illustrative examples are
provided. Consider the input function

f0 =
1
5 sin(3t +0.3)− 2

5 sin(2.2t +1.5)+ 1
10 sin(0.5t +4.7), (1.48)

which obviously has bounded derivatives. Assign L = 4,10,26,70 and 200 for nd =
1,2,3,4 and 5 respectively. Choose the parameters λ0 = 1.1, λ1 = 1.5, λ2 = 3,
λ3 = 5, λ4 = 8, λ5 = 12 of differentiators. Recall that τ and τ are respectively the
maximal values of the integration steps τk, j and the sampling steps τk; ε is the noise
magnitude. Naturally τk, j ≤ τk, τ ≤ τ hold. The variable values of τk and τk, j are
calculated on-line as random numbers uniformly distributed in the range from 0 to
the corresponding upper bound.

One of the main presented results is that the theoretical asymptotically optimal

differentiation accuracy zi− f (i)0 =O(ρnd+1−i), ρ =max(ε
1

nd+1 ,τ) of the continuous-
time differentiator is restored by the Euler-integration discrete differentiator with
variable integration and sampling steps, provided τ is of the order of τnd or higher.

Let nd = 5, ε = 0 for simplicity. For τ = 0.01 the ideal accuracy reclamation
would require taking τ proportional to 10−12 which is practically impossible. Instead
fix a reasonable value τ = 0.0001 and gradually increase τ starting from τ = τ cal-
culating the corresponding accuracies sup |zi− f (i)0 | = ||zi− f (i)0 ||∞ on a sufficiently
long steady-state time interval. One can expect that starting from some moment the
accuracies obey the above standard asymptotics.

Figure 1.1: Logarithmic graphs of the 5th-order differentiator accuracies with τ =
0.0001. The accuracies’ lines correspond to the derivative orders 0, 1, 2, 3, 4, 5 from
the bottom to the top. Integration and sampling steps are variable.

It is seen from Fig. 1.1 that the standard asymptotics is restored for τ > τc, where
the critical value τc ≈ e−5 ≈ 0.007. It corresponds to τ ≤ 6 ·106τ5. This relation is
expected to hold for any τ . In particular, one needs to take τ ≤ 0.0006 for τ = 0.01,
which is still feasible, and τ ≤ 6 · 10−9 for τ = 0.001, which is already practically
impossible.
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It is also seen from the graphs that the accuracies are solely defined by τ if τ < τc.
In other words, if τ ≥ 6 · 106τ5, too large integration steps influence the accuracy
stronger than the sampling interval itself. According to this reasoning τc ≈ 0.45τ1/5.
Note that τc depends not only on the parameters of the differentiator, but also on the
upper bounds of the input derivatives starting from the order 2.

Figure 1.2: Logarithmic graphs of the critical sampling period τc vs τ for nd =
1,2,3,4 from the bottom to the top. Integration and sampling steps are variable.

In order to check the above reasoning the simulation was carried out for differ-
entiators of the orders 1,2,3,4 for the same input (1.48). The critical values τc are
found as functions of τ . The hypothetical relation τc ≈ γcτ1/nd is confirmed by the
graphs in Fig. 1.2. The higher the differentiation order the more difficult and less
reliable is the detection of τc. Thus, there is no graph corresponding to nd = 5.

1.6 Discretization of SMs

Implementation of HOSM controllers usually requires the control values to be calcu-
lated and fed to the system at discrete time instants. In the case, when the controller
does not involve its own dynamics, in particular, if all needed derivatives are directly
sampled, the resulting system is adequately described by variable sampling noises
and delays, and by the analysis from section 1.3.3.1 .

The situation changes when the output feedback is applied, which incorporates a
dynamic observer. Let the sampling take place at the time instants tk, 0 < tk+1− tk =
τk ≤ τ . As we have seen (section 1.5), the differentiator accuracy deteriorates, if the
differentiator is replaced by its Euler approximation. Therefore, one would expect
that the accuracy of the output-feedback r-SM control also deteriorates. In fact, it is
not the case due to the overall homogeneity of the closed-loop error dynamics.

1.6.1 SISO case

Consider the system (1.3) of the relative degree r under the conditions (1.19), (1.20)
with a bounded control (1.22). Let the output-feedback control (1.29) be applied, and
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the differentiator be replaced by its simplest Euler discretization. Let the sampling
take place at the time instants tk, 0 < tk+1− tk = τk ≤ τ . The hybrid error dynamics
satisfies the differential inclusion

σ (r) ∈ [−C,C]+ [Km,KM]Ur(z(tk)), t ∈ [tk, tk+1]
z(tk+1) = z(tk)+ τkDr−1(z(tk),σ(tk),L),

(1.49)

where L ≥ C+KM sup |Ur|. Let σ be sampled with the accuracy ε ≥ 0. Applying
the reasoning of section 1.3.3.1 obtain that after a finite-time transient the system
features the asymptotic accuracies σ ( j) = O(max(τr− j,ε(r− j)/r)).

Consider now the chattering attenuation procedure based on the artificial increase
of the relative degree. Differentiating (1.19) obtain

σ
(r+1) = he(t,x,u)+g(t,x)u̇. (1.50)

Assume that the functions he and h′xb+ g′xbu are bounded in a vicinity of the
(r+1)-sliding mode σ ≡ 0,

|he(t,x,u)| ≤Ce, |h′x(t,x)b(t,x)+g′x(t,x)b(t,x)u| ≤C1e. (1.51)

This assumption is natural, since u is close to ueq = −h/g in the vicinity of the
(r+1)-sliding mode, and is therefore bounded at least locally. The applied feedback
control gets the form

u̇(t) =Ur+1(z(tk)), ż = Dr(z,σ ,Le), (1.52)

where z ∈ Rr+1, Le ≥ Ce +KMα , α = sup |Ur+1|. According to section 1.4.1.4 the
accuracy σ ( j) = O(max(τr+1− j,ε(r+1− j)/(r+1))) is to be obtained.

Its discretization produces

u(tk+1) = u(tk)+ τkUr+1(z(tk)), z(tk+1) = z(tk)+ τkDr(z(tk),σ(tk),Le).

The following theorem summarizes these two cases.

Theorem 6 ([37]). In the SISO case discretization does not destroy the closed-system
asymptotic accuracy under the standard conditions (1.20). Under additional condi-
tions (1.51) the same is true for the chattering attenuation procedure if the maximal
sampling interval τ is sufficiently small.

Note that the first part of the theorem has actually been proved above. The second
part is restricted to the case when only one integrator is inserted in the feedback and
the relative degree increases from r to r+1. The result is probably true also for the
introduction of any number of integrators, but the proof is still not available.

1.6.2 MIMO case

Like in the SISO case we differentiate (1.31) and obtain

σ
(r+(1,...,1)) = he(t,x,u)+g(t,x)u̇,
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where he(t,x,u) ∈ Rm. Similarly an additional assumption is needed. The functions
he and h′xb+g′xbu are bounded in a vicinity of the (r+(1, ...,1))-sliding mode ~σ ≡ 0,

||he(t,x,u)|| ≤Ce, ||h′x(t,x)b(t,x)+g′x(t,x)b(t,x)u|| ≤C1e. (1.53)

The theorem exactly analogous to Theorem 6 is also true in the MIMO case
due to the effective decoupling (1.35) of the system. Mark that that the proposed
homogeneous SM control (1.34), (1.36) or (1.38) is applied here.

1.6.3 Example

Consider a simple second-order system

ẋ0 = sin t + x1,
ẋ1 = cosx0 +u, σ = x0,

to be stabilized by continuous SM control. The solution is to apply the dynamic
control u̇ =−αΨ2,3(z), ż = D2(z,σ ,L). Its discretization yields

ẋ0 = sin t + x1,
ẋ1 = cosx0 +u(tk), σ = x0,
u(tk+1) = u(tk)− τkαΨ2,3(z0(tk),z1(tk),z2(tk)),
z(tk+1) = z(tk)+ τkD2(z(tk),σ(tk),L),

(1.54)

where the standard embedded 3-SM controller (1.25) is taken,

Ψ2,3(z) = sign(z2 +2(|z1|3 + |z0|2)1/6 sign(z1 + |z0|2/3 signz0)).

The continuous-time part of system (1.54) was integrated by the Euler method
with the integration step 10−4 and initial values x0(0) = 10, x1(0) = 5. The discrete-
time subsystem in (1.54) has the parameters λ0 = 1.1, λ1 = 1.5, λ2 = 2, L = 16,
α = 8 and z0(0) = z1(0) = z2(0) = 0.

The random positive sampling steps τk are uniformly distributed in the segment
[10−4,τ]. The stabilization of σ , σ̇ , σ̈ with 0 < τk ≤ τ = 0.01 is demonstrated
in Figs. 1.3a, b, and c respectively. Now let the maximal sampling step τ take
values 0.01,0.02, ...,0.1. Logarithmic plots of max[30,40] |σ (i)|, i = 0,1,2, together
with the corresponding best-fitting lines 2.9lnτ +8.1, 1.9lnτ +5.6 and 0.9lnτ +3.9
are shown in Fig. 1.3d. According to Theorem 6, the worst-case accuracy orders
correspond to the slope values 3, 2, 1, respectively. Thus, the simulation results are
in good compliance with the theory.

1.7 Conclusions

The accuracy of disturbed homogeneous finite-time stable differential inclusions is
analyzed and the results are applied to the accuracy analysis of homogeneous slid-
ing mode control systems. The current knowledge on the accuracy and performance
of dynamic systems closed by discretized dynamic homogeneous sliding-mode con-
trollers is presented.
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Figure 1.3: (a), (b), (c): Stabilization of σ , σ̇ , σ̈ with τ = 0.01; (d): asymptotics of
σ , σ̇ , σ̈ for the maximal sampling steps τ = 0.01,0.02, ...,0.1.

Different discretization schemes of homogeneous sliding-mode-based differen-
tiators are considered, and their accuracy is analyzed. For the first time the internal
numeric Euler integration is considered between the sampling instants, and the cor-
responding effect on the accuracy is studied. Differentiator convergence criteria are
presented. All the results are extended to the case of the variable Lipschitz parameter.

Discretization of output-feedback homogeneous sliding-mode controllers is shown
not to destroy the overall system accuracy in the presence of noises and discrete sam-
pling. The same is true if one discrete Euler integrator is introduced in the feedback
in order to effectively attenuate system chattering by the artificial increase of the rel-
ative degree. The results are true for both single-input single-output and multi-input
multi-output cases.
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