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Abstract—The proposed simple modification of discrete homo-
geneous sliding-mode-based differentiators improves the accu-
racy and significantly lowers the output chattering in the absence
of noises, while preserving the differentiation accuracy in their
presence. The approach is extended to general discretely sam-
pled homogeneous discontinuous systems. Numeric experiments
confirm the theoretical results.

Index Terms—Sliding-mode control, nonlinear filtering, esti-
mation, discrete event systems, uncertain systems.

I. INTRODUCTION

Sliding-mode (SM) control (SMC) [17], [45], [47] is based
on exactly keeping proper functions (SM variables) at zero.
It is known for its finite-time (FT) convergence and high
accuracy in spite of system uncertainties.

SM-based ndth-order differentiators in FT produce exact
derivative estimations zi = f

(i)
0 (t), i = 0, 1, ..., nd, of the

signal f0(t), provided |f (nd+1)
0 | ≤ L0 holds for some known

L0 > 0 [2], [15], [16], [18], [30]. The asymptotics of errors
zi−f (i)

0 in the presence of bounded sampling noises are proved
to be the best possible [39]. The recent filtering differentiators
[40], [38] also suppress unbounded noises having a small local
kth-order iterated integral, k ≤ nf . The number nf is called
the filtering order.

SM algorithms are often undermined by the chattering
effect due to additional dynamics, noises or discretization
[11], [17], [32], [45], [46], [47]. The SM regularization [21],
[46] compromises the SMC accuracy and its insensitivity to
matched disturbancies. Increasing the relative degree moves
the discontinuities to the higher derivatives of sliding variables
[6], [7], [20], [29], [30], [42] and often utilizes the homogene-
ity approach [8], [31], but the additional dynamics may rise
the sensitivity to noises [11]. Implicit discretization schemes
[1], [24] are effective, but often difficult to implement.

In this paper we propose a simple low-chattering discretiza-

tion of homogeneous SM-based differentiators and generalize

it to a general homogeneous SM-discretization approach.
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Practical modern filters are discrete-time computation
schemes with a maximal sampling period τ . Such a scheme

is further considered a filter discretization, if in the noise-free

case its outputs converge to the outputs of their continuous-

time counterparts as τ → 0. In our case the convergence is
uniform over any compact region of errors and time.

Unfortunately, the outputs of the standard discrete SM-based
differentiators [39], [38], [40] feature strong chattering for low
sampling rates and large L0.

Recent sophisticated low-chattering discrete schemes [27],
[26], [43], [44], and implicit SM discretizations [12], [13], [14]
are proposed to counteract these phenomena. These schemes
usually require complicated calculations sometimes including
real-time numeric solution of nonlinear algebraic equations
at each sampling step. Their analysis in the presence of
sampling noises is difficult. In numeric experiments these
schemes typically perform worse or similarly to the standard
schemes [38], [39], if significant noises are combined with
overestimated L0.

The new discretization scheme is only activated when some
homogeneous inequality on errors and τ holds. It guaranties
at least the original accuracy [38] in the presence of noises.
In the absence of noises it reduces outputs’ chattering and
removes any influence of overestimated L0.

The approach is extended to a general chattering-mitigation
method of SM discretization which guaranties the preservation
of the homogeneity-based accuracy.

Our conference paper [23] restricts the approach to differen-
tiators with the low-chattering discretization of the zero homo-
geneity degree and contains no proofs. Here we provide proofs,
new extensive simulation results and all needed parameters up
to nd + nf = 12.

Notation. A binary operation � of two sets is defined as A �
B = {a � b| a ∈ A, b ∈ B}, a �B = {a} �B. A function of a
set is the set of function values on this set. The norm ||x|| stays
for the standard Euclidian norm of x, Bε = {x | ||x|| ≤ ε};
||x||h is a homogeneous norm, Bh,ε = {x | ||x||h ≤ ε}.



For any sampled sequence φ(tj) denote δjφ = φ(tj+1) −
φ(tj), also sat a = max(−1,min(1, a)); ~γk = (γ0, ..., γk) for
any sequence γi, ~γi,j = (γi, ..., γj), i ≤ j; R+ = [0,∞);
baeb = |a|b sign a, bae0 = sign a.

II. WEIGHTED HOMOGENEITY BASICS

Recall that a solution of a differential inclusion (DI)

ẋ ∈ F (x), x ∈ Rnx , F (x) ⊂ TxRnx . (1)

is any locally absolutely continuous function x(t), satisfying
DI (1) for almost all t. Here TxRnx denotes the tangent space
to Rnx at the point x.

DI (1) is further called Filippov DI, if the vector set F (x)

is non-empty, compact and convex for any x, and F is upper-
semicontinuous [19], [31], i.e. the maximal distance of the
vectors of F (x) from the vector set F (y) vanishes as x→ y.

Let φ : Rnx → TRnx be Lebesgue-measurable and
locally essentially bounded. A differential equation (DE) ẋ =

φ(x), x ∈ Rnx , is understood in the Filippov sense, if it is
replaced with the Filippov DI ẋ ∈ KF [φ](x),

KF [φ](x) =
⋂

µLN=0

⋂
δ>0

co φ((x+Bδ)\N). (2)

Here co is the convex closure operation, µL is the Lebesgue
measure, and (2) is the famous Filippov procedure [19]. In the
non-autonomous case we formally add the DE ṫ = 1.

All DEs are further understood in the Filippov sense.

Weighted-homogeneity notions. The homogeneous weights
m1, ...,mnx > 0 of the coordinates x1, ..., xnx in Rnx are
some fixed numbers deg xi = mi > 0. The homogeneous
dilation [4] is defined for any κ ≥ 0 as the transformation

dκ : (x1, x2, ..., xnx) 7→ (κm1x1, κ
m2x2, ..., κ

mnxxnx).

A function g : Rnx → Rmx is said to have the homogeneity
degree (HD) (weight) q ∈ R, deg g = q, if g(x) = κ−qg(dκx)

holds for any x ∈ Rnx and any κ > 0.
The DI ẋ ∈ F (x), x ∈ Rnx , and the vector-set field F (x) ⊂

TxRnx are called homogeneous of the HD q, if the identity
F (x) = κ−qd−1

κ F (dκx) holds for any x and κ > 0 [31].
It implies the invariance of the DI with respect to the time-
coordinate transformation (t, x) 7→ (κ−qt, dκx), κ > 0 [31].
The number −q ∈ R can be interpreted as the weight of the
time t, deg t = −q.

In the case of DEs ẋi = φi(x), i = 1, ..., nx, F (x) =

{φ(x)}, and the DE homogeneity is reduced to deg ẋi =

deg xi − deg t = mi + q = deg φi [4]. Filippov’s procedure
(2) preserves the homogeneity of the DE ẋ = φ(x).

A set S ⊂ Rn+1 is called homogeneous if dκS = S.
The HDs q, m1, ...,mnx are defined up to proportionality.
Any continuous positive-definite function ||x||h of the HD

1 is called a homogeneous norm. The quotient of any two
homogeneous norms is uniformly bounded and separated from
zero for x 6= 0.

In particular, denote ||x||h∞ = maxi |xi|1/mi . This norm
induces norms in the lower-dimensional coordinate subspaces.

If q > 0 then asymptotic stability (AS, also meaning
”asymptotically stable”) of the DI implies fixed-time (FxT)
convergence to any ball around 0, AS is exponential for q = 0,
and AS implies FT stability if q < 0 [31], [36], [35].

Disturbed system accuracy (adapted from [36]). Let (1) be a
homogeneous AS Filippov DI of the HD q < 0. Consider

ẋ ∈ Fd(t, x(·), ρ), t, ρ ≥ 0, deg ρ = 1,

Fd = F (x(t− [0, ρ−q]) +Bh,φ(x(t),ρ)) + Ψ(x(t), ρ),

Ψ = (ψ1(x, ρ), ..., ψnx(x, ρ))T [−1, 1], i = 1, ..., nx,

φ, ψi : Rnx+1 → R+, deg φ = 1, degψi = mi + q,

(3)

where φ,Ψ are continuous, ρ measures the disturbance inten-
sity, φ(x, 0) ≡ 0,Ψi(x, 0) ≡ 0, and φ, ψi are monotonously
increasing in ρ. Then for some µ > 0 and any ρ > 0 all
its extendable-in-time solutions in FT establish the inequality
||x||h ≤ µρ. The required initial-condition assumptions [36]
automatically hold in the widespread case of sampled systems,
when only x(t0), t0 = 0, influences the solution x(t), t ≥ 0.

III. INTRODUCTION TO HOMOGENEOUS DIFFERENTIATION

By Lipnd L0 we denote the set of all scalar functions defined
on R+ = [0,∞), whose ndth derivative has the Lipschitz
constant L0 ≥ 0.

Let the input signal f(t) = f0(t)+η(t), t ≥ 0, be available
(sampled) in real time. The Lebesgue-measurable noise η(t)

and f0 ∈ Lipnd L0 are unknown, L0 > 0, nd ≥ 0 are known.
It is proved [39] that ∀ε∗ > 0 ∃t0 > 0 (also ∀t0 > 0 ∃ε∗ >

0) such that for any ε0, 0 < ε0 ≤ ε∗, and any f0, f1 ∈ Lipn L0

the inequality supt≥0 |f1(t)− f0(t)| ≤ ε0 implies

sup
t≥t0
|f (i)

1 (t)− f (i)
0 (t)| ≤ Ki,nd(2L0)

i
nd+1 ε

nd+1−i
nd+1

0 (4)

for i = 0, 1, ..., nd. Here Ki,nd are the Kolmogorov constants
[28], and (4) turn into equalities on certain functions [39].

It is known that Ki,nd ∈ [1, π/2], in particular, K1,1 =
√

2.
Taking η = f1 − f0 obtain an unremovable restriction on the
best possible accuracy of noisy differentiation.

Let an ndth-order differentiator produce locally absolutely-
continuous estimations z0, ..., znd : R+ → R of the derivatives



f0(t), ḟ0(t), ..., f
(nd)
0 (t), and let it be exact on any inputs from

Lipnd L0 after some FT transient.

A differentiator is called asymptotically optimal [39], if for
some µi > 0, any f0 ∈ Lipnd(L0) and any bounded noise η,
ess sup |η(t)| ≤ ε0, it in FT provides the estimation accuracy

|zi(t)− f (i)
0 (t)| ≤ µiL

i
nd+1
0 ε

nd+1−i
nd+1

0 , i = 0, 1, ..., nd. (5)

Obviously, µi ≥ 2
i

nd+1Ki,nd ≥ 2
i

nd+1 holds.

Asymptotically-optimal differentiators introduced in [30]
were recently extended to the filtering SM-based differentia-
tors [40], [38]. The filtering differentiator of the differentiation
order nd ≥ 0 and the filtering order nf ≥ 0 has the form

ẇ1 = −λ̃nd+nfL
1

nd+nf+1 bw1e
nd+nf
nd+nf+1 + w2,

...

ẇnf−1 = −λ̃nd+2L
nf−1

nd+nf+1 bw1e
nd+2

nd+nf+1 + wnf ,

ẇnf = −λ̃nd+1L
nf

nd+nf+1 bw1e
nd+1

nd+nf+1 + wnf+1,

wnf+1 = z0 − f(t),

(6)

ż0 = −λ̃ndL
nf+1

nd+nf+1 bw1e
nd

nd+nf+1 + z1,

...

żnd−1 = −λ̃1L
nd+nf
nd+nf+1 bw1e

1
nd+nf+1 + znd ,

żnd = −λ̃0L sign(w1).

(7)

L = L0 > 0. (8)

In the sequel L becomes variable. If nf = 0 DEs (6) reduce
to w1 = z0 − f(t) producing the standard differentiator [30].

Let η = 0. Denote n = nd + nf , ζi = wi+1/L0 for i =

0, ..., nf − 1, and ζi+nf = (zi − f (i)
0 )/L0 for i = 0, ..., nd.

Now subtracting f
(k+1)
0 from the both sides of the equation

for zk in (7), k = 0, ..., nd, dividing (6) and (7) by L0, and
taking into account f (nd+1)

0 /L0 ∈ [−1, 1] obtain the FT stable
Filippov DI

ζ̇0 = −λ̃nbζ0e
n
n+1 + ζ1,

...

ζ̇n−1 = −λ̃1bζ0e
1

n+1 + ζn,

ζ̇n ∈ −λ̃0 sign(ζ0) + [−1, 1],

(9)

where KF [sign(·)](0) = [−1, 1] is substituted for sign 0 when
ζ0 = 0 [19].

The error dynamics (9) are homogeneous with deg ζi = n+

1− i, deg t = 1 [31] and coincide with the error dynamics of
the standard differentiator [30] corresponding to nd = n, nf =

0. Hence, the standard features [30], [5] are directly extended
to the filtering differentiators. In particular, parameters λ̃i, i =

0, ..., n, are the same for all nd, nf keeping nd + nf = n.

Filtering explanation by example. Let η(t) = η0(t) + η1(t).
Then nd = 0, nf = 1 yields the 0th-order differentiator

ẇ1 = −λ̃1L
1
2
0 bw1e

1
2 + z0 − f0 − η0 − η1,

ż0 = −λ̃0L0 sign(z0 − f0 − η0 − η1),
(10)

where |ḟ0| ≤ L0. Let η0 and ξ =
∫ t

0
η1(s)ds be small; ζ0 =

(w1 + ξ)/L0, ζ1 = (z0 − f0)/L0. Now (10) is rewritten as

ζ̇0 = −λ̃1bζ0 − ξ/L0e
1
2 + ζ1 − η0/L0,

ζ̇1 ∈ −λ̃0 sign(ζ0 − ξ/L0) + [−1, 1],
(11)

which corresponds to the FT stable dynamics (9) for n =

0 + 1 = 1 with small disturbances ξ/L0, η0/L0. �

Differentiator (6), (7) is identically rewritten in the recursive
form [30], [38] with the parameters λ0, λ1, ..., λnd+nf > 0,
whereas the relations λ̃0 = λ0, λ̃n = λn, and λ̃j =

λj λ̃
j/(j+1)
j+1 , j = n− 1, n− 2, . . . , 1, n = nd + nf , hold.

An infinite sequence of parameters ~λ = {λ0, λ1, ...}
can be built starting with any λ0 > 1 [25], [30]. The
sequence ~λ7 [37], [39] is extended here to ~λ12, ~λ =

{1.1, 1.5, 2, 3, 5, 7, 10, 12, 14, 17, 20, 26, 32, ...}. Correspond-
ing parameters ~̃λnd+nf , are presented in Fig. 1 [23].

Fig. 1. Parameters λ̃0, λ̃1, ..., λ̃nd+nf of differentiator (6), (7) for nd+nf =

0, 1, ..., 12, ~λ = {1.1, 1.5, 2, 3, 5, 7, 10, 12, 14, 17, 20, 26, 32, ...}

Parameters ~λnd+nf and ~λ = λ0, λ1, ... are further always
assumed properly chosen. Introduce short notation for (6), (7),

ẇ = Ωnd,nf (w, z0 − f, L,~λ), ż = Dnd,nf (w1, z, L,~λ). (12)

Let ess sup η(t) = ε0. In the presence of discrete mea-
surements with the maximal sampling time interval τ > 0

differentiator (12), (8) in FT provides the steady-state accuracy

|zi(t)− f (i)
0 (t)| ≤ µiL0ρ

nd+1−i, i = 0, 1, ..., nd,

|w1(t)| ≤ µw,1L0ρ
nd+nf+1 if nf > 0

(13)

for ρ = max[(ε0/L0)1/(nd+1), τ ], and some µw,1, µi > 0 only
depending on parameters ~λn [30], [36]. Inequalities |wk(t)| ≤
µw,kL0ρ

nd+nf+2−k hold for k = 1, .., nf and some µw,k > 0.

Formulas (13) also remain true for continuous sampling
formally corresponding to τ = 0 and ρ = (ε0/L0)1/(nd+1). It
renders the filtering differentiator asymptotically optimal. The
same accuracy asymptotics (with different constants µi, µw,k)



is maintained by properly discretized differentiators [22], [36].

A. Continuous-time filtering

A (noise) function ν(t), ν : [0,∞)→ R, is called a signal

of the (global) filtering order k ≥ 0 [38], if ν is a locally
integrable Lebesgue-measurable function, and there exists a
globally bounded locally-absolutely-continuous solution ξ(t)

of the equation ξ(k) = ν. Any number exceeding ess sup |ξ(t)|
is called the kth-order integral magnitude of ν.

Assumption 1. Assume that the noise η(t) incorporated in the

input signal f(t) = f0(t) + η(t), is representable in the form

η(t) = η0(t)+η1(t)+...+ηnf (t), where each ηk, k = 0, ..., nf ,

is a signal of the global filtering order k and the kth-order

integral magnitude εk ≥ 0. Thus, ess sup |η0| ≤ ε0, whereas

ηk, k = 1, ..., nf , are potentially unbounded.

It is proved in [38] that under Assumption 1 differentiator
(12), (8) in FT provides accuracy (13) for

ρ = max[( ε0L0
)

1
nd+1 , ( ε1L0

)
1

nd+2 , ..., (
εnf
L0

)
1

nd+nf+1 ], (14)

where {µi}, µw,1 only depend on the choice of ~λ.
The accuracy estimation (13), (14) holds for any possible

expansion η = η0 + ...+ηnf (Assumption 1). Thus, the actual
accuracy always corresponds to the best (mostly unknown)

noise expansion. Moreover, experiments show (Section VI)
that the filtering differentiator is capable of suppressing noises
of a wider class.
Example 1. The noise η = A dk

dtk
bcosω∗tek−0.5, A > 0,

k ≥ 1, is unbounded, has the global filtering order k and
the integral magnitude A.
Example 2. The noise η = A cos(ω∗t), A > 0, features
any filtering order k ≥ 0 and the integral magnitude 2A/ωk∗ .
Consider the trivial expansion η = ηnf . It follows from (13),

(14) that ρ = O(A
1

nd+nf+1ω

−nf
nd+nf+1
∗ ). Hence, the higher

nf the better the accuracy, provided ω∗ > 1. Moreover, the
influence of the magnitude A diminishes for large nf .

Thus, increasing the filtering order nf widens the class of
filterable noises and correspondingly improves the accuracy
asymptotics (13), (14) (Examples 1, 2).

Locally filterable signals are introduced and proved to be
sums of three signals of the same or lower global filtering
orders [25], [38].

B. Discrete filtering

Any modern filter is discrete and handles a discretely
sampled input f(tj). Assumption 1 is sensitive to sampling

rate: for example, high-frequency signals can be sampled as
a constant. Thus, the sampling instants sequence t0, t1, ...,

t0 = 0, is assumed to satisfy tj+1− tj = τj ≤ τ and exist for

any possibly unknown maximal sampling interval τ > 0.

The discrete version of differentiator (12) has the form

δjw = Ωnd,nf (w(tj), z0(tj)− f(tj), L,~λ)τj ,

δjz = Dnd,nf (w1(tj), z(tj), L,~λ)τj + Tnd(z(tj), τj),
(15)

where Tnd ∈ Rnd+1 has the Taylor-like components

Tnd,0 = 1
2!z2(tj)τ

2
j + ...+ 1

nd!znd(tj)τ
nd
j ,

Tnd,1 = 1
2!z3(tj)τ

2
j + ...+ 1

(nd−1)!znd(tj)τ
nd−1
j ,

...

Tnd,nd−2 = 1
2!znd(tj)τ

2
j , Tnd,nd−1 = Tnd,nd = 0.

(16)

The vector term Tnd provides for the homogeneity of the
discrete error dynamics [5]. Recall that meantime L = L0.

A discretely sampled signal ν : R+ → R is said to be a
signal of the (global) sampling filtering order k ≥ 0 and the

(global) kth order integral sampling magnitude a ≥ 0 if for
each admissible sequence tj there exists a discrete vector sig-
nal ξ(tj) = (ξ0(tj), ..., ξk(tj))

T ∈ Rk+1, j = 0, 1, ..., which
satisfies the relations δjξi = ξi+1(tj)τj , i = 0, 1, ..., k − 1,
ξk(tj) = ν(tj), and the bound |ξ0(tj)| ≤ a.

Assumption 2. The discrete noise η(tj) is representable as

η = η0+...+ηnf , where the signals ηl(tj) are of the sampling

filtering order l and integral magnitude εl, l = 0, ..., nf .

It is proved [38] that under Assumption 2 differentiator (12),
(8) provides the accuracy (13) for

ρ = max[τ, max
0≤l≤nf

( εlL0
)

1
nd+l+1 ]. (17)

In general one needs very small sampling steps to reveal
the small average value of the noise. The following alternative

assumption is natural in processing Fourier series and audio
filtering.

Assumption 3. Each noise ηl is absolutely continuous with

|η̇l| ≤ Lηl, Lηl > 0, l = 1, ..., nf .

Formally define Lη0 = 1, then [38] under Assumptions 1,
3 the resulting accuracy (13) corresponds to

ρ = max[τ, max
0≤l≤nf

max
0≤k≤l

(
Lηl
L0

( εl
Lηl

)
k+1
l+1 )

1
nd+k+1 ]. (18)

Assumptions 2 and 3 can also be combined [38]. Also
here signals of local sampling filtering orders are defined and
shown to be representable as combinations of three globally
filterable sampled signals [25], [38].



Example 3. Independent equally-distributed random sampling
noises ν(tj) of the zero mean value in practice constitute a
noise of the local discrete filtering order 1 [34]. The SMC
is representable as the sum of the equivalent control and a
chattering noise of the discrete filtering order 1 and a small
integral magnitude. Filtering differentiators with nf ≥ 1 prac-
tically completely remove such noises, provided the sampling
rate is sufficiently high [34], [40].

Harmonic noises (Example 2) satisfy Assumption 3 and
have any global or local sampling filtering order. Unbounded
noises of Example 1 are of the same local sampling order k,
provided they are saturated at some (even large) value.

Thus, discrete filtering differentiators are practically exact
for infinitesimal τ in the absence of noises, and asymptotically
optimal in the presence of bounded noises. They suppress
some very large noises, in particular singled out by Assump-
tions 1, and 2 or 3.

IV. NEW DISCRETE DIFFERENTIATION SCHEME

Two drawbacks of differentiators (15), (8) are their slow
convergence from large initial errors and outputs chattering.
The first one is, for example, treated in [2], [37], [41].

Outputs zi, i = 0, ..., nd, chatter due to the discontinuity
in (7), large maximal sampling period τ , too large L0, and
sampling noises. A tight estimation L0 of sup |f (nd+1)

0 (t)| is
rare, also τ is often hardware determined.

Our goal is to propose a new simple scheme which would

preserve accuracy asymptotics (13), (17) or (13), (18) of SM-

based differentiators for f0 ∈ Lipnd L0, while improving the

performance in the absence of noises for f = f0 ∈ Lipnd Lf

for any Lf < L0 in spite of its unavailability.

A. New discretization scheme

According to the accuracy (13), (17) the values of w1 and
wnf+1 = z0 − f indicate the convergence of scheme (15).

Let an upper bound τ of the sampling step be available.
Choose some q ≥ −1/(n+ 1), kτ > 0, n = nd + nf . Denote
sat s = max[−1,min(1, s)]. The proposed discretization is

L(tj) = L0 sat
(
|w1(tj)|
L0wτ

)1+(nd+nf+1)q

,

q ≥ − 1
nd+nf+1 , wτ = kττ

nd+nf+1, kτ > 0.
(19)

As τ → 0, new dynamics (19) are only applied over infinitely

thin state-space layer. Hence (19) is just a special discretiza-
tion applied at the discontinuity surface w1 = 0. For the
brevity we further call it discrete L-adaptation.

Theorem 1. A: Discrete filter (15), (16), (19) in FT pro-

vides for the steady-state accuracy (13), (17) or (13), (18)
with coefficients independent of q. In the absence of noises

the corresponding piece-wise-linear-in-time Euler solutions

w(t), z(t) uniformly converge to solutions of (6), (7), (8).
B: Let kτ > 0 be sufficiently large, then for sufficiently small

ετ > 0, any τ > 0 and any noise η(t), |η| ≤ ετL0τ
nd+1, each

solution of (15), (19) in FT stabilizes in the set |w1| ≤ L0wτ .

The choice of kτ only depends on the choice of ~λn.

All proofs are placed in the Appendix. Due to Theorem
1B any sufficiently large value of kτ > 0 fits all q for any
fixed nd, nf . Numerically checked values of kτ (nd, nf ), n =

nd + nf ≤ 12, are listed in Section VI, Tab. I.

B. Homogeneity features of the proposed adaptation

Starting from some moment |w1| ≤ L0wτ is kept. Substi-
tuting (19) under that condition obtain

L(tj)
i+1
n+1 bw1e

n−i
n+1 = ε

−(i+1)
w bw1e1+(i+1)q

,

εw = Lq0k
q+

1
n+1

τ τ1+(n+1)q, i = 0, 1, ..., n.

(20)

Therefore, the corresponding local dynamics are

δjw1 = τj [−λ̃nε−1
w bw1e1+q

+ w2]|tj ,
δjw2 = τj [−λ̃n−1ε

−2
w bw1e1+2q

+ w3]|tj ,
...

δjwnf = τj [−λ̃nd+1ε
−nf
w bw1e1+nfq + wnf+1]|tj ,

wnf+1 = z0 − f, n = nd + nf ,

(21)

δjz0 = τj [−λ̃n ε
−(nf+1)
w bw1e1+(nf+1)q

+ z1]|tj + Tnd,0,

...

δjznd−1 = τj [−λ̃1 ε
−n
w bw1e1+nq

+ znd ]|tj + Tnd,nd−1,

δjznd = τj [−λ̃0 ε
−(n+1)
w bw1e1+(n+1)q

]|tj + Tnd,nd .

Tnd,nd−1 = Tnd,nd = 0,
(22)

where Tnd is introduced in (16). In its turn scheme (20), (21),
(22) is the homogeneous discretization [25] of the filter

ẇ1 = −λ̃nε−1
w bw1e1+q

+ w2,

...

ẇnf = −λ̃nd+1ε
−nf
w bw1e1+nfq + wnf+1,

wnf+1 = z0 − f, n = nd + nf ,

(23)

ż0 = −λ̃n ε
−(nf+1)
w bw1e1+(nf+1)q

+ z1,

...

żnd−1 = −λ̃1 ε
−n
w bw1e1+nq

+ znd ,

żnd = −λ̃0 ε
−(n+1)
w bw1e1+(n+1)q

.

(24)

Parameter εw is small for small τ and q > −1/(n+ 1). Filter
(23), (24) is naturally to be called homogeneous filtering high-



gain observer (FHGO) [25]. It turns into the classical high-
gain observer (HGO) [3] for q = 0 and nf = 0.

If f = 0 system (23), (24) becomes homogeneous of the
HD q with degw1 = 1, degw2 = 1+q, ..., deg znd = 1+nq,
deg żnd = 1 + (n + 1)q ≥ 0. It is AS for a proper choice of
the coefficients, and can be used for the differentiation of the
input f provided εw << 1 [25].

The case q = 0 implies that εw = k
1/(n+1)
τ τ and both

continuous-time and discrete dynamics, (23), (24) and (21),
(22), do not depend on L0. The roots of the corresponding
characteristic polynomial pτ (s) = sn+1 + ε−1

w λ̃ns
n + ... +

ε
−(n+1)
w λ̃0 are proportional to ε−1

w [3].

The so-called continuous differentiator [15], [41] is obtained
for nf = 0, −1/(nd+1) < q < 0 and finite εw. Small positive
values of q were considered in [2] for nf = 0.

In the case q = qn = −1/(n+ 1) get εw = L
−1/(n+1)
0 , and

the original filtering differentiator is restored, which does not
contain high gains.

Lemma 1. An infinite sequence λ0, λ1, ..., can be built for the

HD qn = − 1
n+1 , so that in the absence of noises continuous-

time filters (23), (24) be asymptotically stable for any f0,

f
(nd+1)
0 (t) ≡ 0, any nd, nf ≥ 0, and q ∈ {qn, 0}. For that

end for each n ≥ 1, n = nd+nf , one simply takes λn+1 large

enough, provided λ0, ..., λn > 0 are already properly chosen.

Any λ0 > 1 is valid for n = 0. The sequence segments ~λn,

λ̃0, ..., λ̃n stay valid for sufficiently small variations of q.

Suppose that the noise is bounded, |η| ≤ ε0. Intro-
duce auxiliary parameters ε̂0 = ε

nf
w ε0, and τ̂ = ε−1

w τ =

L−q0 k
−q− 1

n+1
τ τ−(n+1)q to be used in the following Theorem.

Theorem 2. Following Theorem 1B let kτ be large enough,

n = nd + nf , τ > 0 and coefficients λ̃0, ..., λ̃n be valid for

q = −(n+ 1)−1, 0 and any close values of q (Lemma 1).

• Let |f (nd+1)
0 (t)| ≤ Lf for some Lf , 0 < Lf ≤ L0. Then,

for τ small enough if q < 0, any τ if q = 0, and τ large

enough if q > 0, there exists such ε0 > 0 that for any

noise η(t), |η| ≤ ε0, after a FT transient the accuracy

|zi(t)− f (i)
0 (t)| ≤ µiε

−nf−i
w ρ1+(nf+i)q,

|wk(t)| ≤ µwkε−k+1
w ρ1+(k−1)q,

i = 0, 1, ..., nd, k = 1, 2, ..., nf ,

(25)

is established for some µi, µwk > 0 only depending on

the choice of λ0, ..., λn, kτ and q for

ρ =

max[ε̂
1

1+nf q

0 , (Lfε
n+1
w )

1
1+(n+1)q ], q ≥ 0;

max[τ̂−
1
q , ε̂

1
1+nf q

0 , (Lfε
n+1
w )

1
1+(n+1)q ], q < 0.

The discrete filter (15), (19) is AS if q ≥ 0, ε0 = 0 and

Lf = 0 or sup limt→∞ f
(nd+1)
0 (t) = 0.

• In the case q = 0 the corresponding steady-state dynam-

ics of the scheme (15), (19) do not depend on L0. The

accuracy formula (25) takes the simpler form

|zi(t)− f (i)
0 (t)| ≤ µi max[ρ−iτ ε0, Lfρ

nd+1−i
τ ],

|wk(t)| ≤ µwk max[ρ
nf+1−k
τ ε0, Lfρ

n+2−k
τ ].

ρτ = k
1

n+1
τ τ = w

1
n+1
τ .

(26)

Remark 1. The number Lf is not assumed available. We keep

the presence of the constant kτ in (26), since it tends to be

large for large n (Section VI, Tab. I).

If q < 0, Lf = ε0 = 0 the local discrete filter (21), (22) in

FT converges into a ball [35]. I.e. the chattering due to large

τ still exists, and it weakens as q approaches 0.

Remark 2. Theorem 1 assures that the standard accuracy

asymptotics are never lost. The presented accuracies (25) and

(26) improve for Lf < L0, but only hold for noises which do

not stir the system from the layer |w1| ≤ L0kττ
n+1. We have

no good estimation for the case, when the steady-state system

spends only part of the time in the layer.

Also note that even large filterable noises still keep the layer,

if ~εnf from Assumption 2 are small enough (Example 4 of

Section VI). The corresponding technical analysis is omitted.

Parameters λ̃i listed in Section III, Fig. 1, satisfy the
requirements of Theorem 2 for q = 0, and any q close to 0

(Lemma 1, also the Bhat-Bernstein principle [2], [10], [41]).

V. GENERAL LOWER-CHATTERING DISCRETIZATION

Let the homogeneous AS Filippov DI (1) of the HD q < 0

be presentable in the form ẋ ∈ F (x) = Fξ(x, signx1) for
x1 6= 0, and Fξ(x, [−1, 1]) ⊂ F (x) at the hyperplane x1 = 0.
Here Fξ(x, θ) ⊂ TxRnx depends on the parameter θ ∈ R,
|θ| ≤ 1, is non-empty, compact, upper-semicontinuous in x, θ
at x1 = 0, and homogeneous in x of the HD q for each θ.

Introduce the noisy-sampling parameter ρ and a discretiza-
tion of (1) satisfying the inclusion

δjx ∈ τj [Fξ(x̂(tj), sign x̂1(tj)) + Ψ(x̂(tj), τ
−1/q
j )],

x ∈ Rnx , ρ = max[ε, τ−1/q].
(27)

Here 0 < τj = δjt ≤ τ , τ is the maximal sampling period,
x̂ ∈ x + Bh,ε is the available ”noisy” value of x, Ψ(·, ·) is
a vector-set field described in (3) and below (Section II), and
ε ≥ 0 is the unknown noise intensity. According to Section
II after a FT transient solutions of (27) keep ||x||h ≤ µρ for
some µ > 0 [36].



Choose any kτ > 0. Then by the discrete Θ-adaptatation

of (27) we understand a modified discretization of the form

δjx ∈ τj [Fξ(x̂(tj),Θ(tj)) + Ψ(x̂(tj), τ
−1/q
j )], (28)

where the variable Θ(tj) satisfies the conditions |Θ(tj)| ≤ 1,
and Θ(tj) = sign x̂1(tj) whenever |x̂1(tj)| ≥ kττ−m1/q .

Replacing δjx/τj with piece-wise constant ẋ obtain piece-
wise linear Euler solutions xτ (t) corresponding to (28).

Theorem 3. Euler solutions xτ (t) uniformly over any compact

region of the state (x, t) converge to solutions of (1) as ρ→ 0.

For any kτ > 0 there is such µξ > 0 that for any ε ≥ 0, τ > 0

solutions of (28) in FT provide for ||x(tj)||h,∞ ≤ µξρ.

Hence, one can test any discrete Θ-adaptatation, |Θ(tj)| ≤
1, in attempt of diminishing the chattering of scheme (27) at
the surface x1 = 0 without comromising the system accuracy.
The approach is applicable in simulation and control and is
extendable to higher dimensions of x1, θ.

VI. NUMERIC EXPERIMENTS

Assigning a valid value to kτ is extremely simple, though
not completely mathematically rigorous. One takes the input
f(t) = 10−18 canceling the digital-noise influence, sets L0 =

1, τ = 1, and then runs the discrete differentiator (15), (16)
over the time interval t ∈ [0, 40000] for w(0) = 0, z(0) = 0.
Additional initial values z(0) = (±1, ...,±1)T are needed for
n ≤ 5. Then the observed max |w1| is moderately increased
and assigned to kτ . For example, kτ = 1.3 max |w1| may be
used, but we have preferred round values. Recall that w1 =

z0 − f for nf = 0.
Produced values of kτ are listed in Tab. I, whereas parame-

ters λ̃i, i = 0, ..., n, appear in Fig. 1. They have been checked
to ensure claims of Theorem 1B for any q and of Theorem 2
for q = 0. Recall that increasing kτ is always allowed.

TABLE I
PARAMETERS kτ OF THE DISCRETE DIFFERENTIATOR (15), (19) FOR
~λ12 = 1.1, 1.5, 2, 3, 5, 7, 10, 12, 14, 17, 20, 26, 32, n = 0, 1, ..., 12

n nf = 0 nf = 1 nf = 2 nf = 3 nf = 4, ..., n

0 2
1 1 1
2 3 3 3
3 10 6 6 6
4 50 10 10 10 10
5 3000 400 400 400 400
6 1.5 · 105 2 · 104 104 104 104

7 3 · 107 107 3 · 106 3 · 106 3 · 106

8 1010 1.5 · 1010 1.5 · 109 1.5 · 109 1.5 · 109

9 1012 7 · 1012 5 · 1011 1.5 · 1011 1.5 · 1011

10 1014 1015 1013 3 · 1012 3 · 1012

11 8 · 1015 1017 1015 8 · 1013 2 · 1014

12 3 · 1018 8 · 1018 1016 7 · 1015 7 · 1015

In the sequel parameters λ̃i, kτ are taken from Fig. 1 and
Table I. We also use component-wise inequalities and the

notation |~σnd | = (|z0 − f0|, ..., |znd − f
(nd)
0 |), |~w1,nf | =

(|w1|, ..., |wnf |) (which differs from the notation in proofs).

First consider the input signal

f(t) = f0(t) + η(t), f0(t) = cos(t)− ln(t+ 1). (29)

Obviously sup limt→∞ |f (nd+1)
0 | = 1 for nd = 0, 1, ..., i.e.

L0 = 1 is applicable for any nd. In particular |f (4)
0 | < 1.01

and |f (6)
0 | < 1.03 hold for t ≥ 1 and t ≥ 1.1 respectively.

The input is sampled with the constant time step τj = τ and
the accuracy is calculated over the interval t ∈ [15, 30]. Initial
values z(0) = 0, w(0) = 0 are taken in all runs.

For τ small enough, any ”standard” discrete filtering differ-
entiator (DFD) (15) with nd = 3, nf ≥ 0, L0 ≥ 1 ”almost”
exactly differentiates input (29) in the absence of noises, i.e.
for η(t) ≡ 0. Still, though the accuracy asymptotics (13),
(17) are the same, the coefficients µi of (13) are larger for
larger nf lowering the accuracy for the same τ . Also the
convergence is slower for higher nf . The same is true for the
DFD with discrete L-adaptation (ADFD) (15), (19). Higher
filtering orders nf still ensure much better accuracy in the
presence of large noises.
1. ADFD preserves the accuracy of DFD. Compare the
ADFD (15), (19) with nd = 3, nf = 7, kτ = 3 · 1012, q = 0,
to the DFD (15) with nd = 3, nf = 7 for L0 = 1 and
L0 = 1000. First let τ = 10−5, η = 0. Recall that the DFD
coincides with the ADFD for q = −1/(3 + 7 + 1) = −1/11.
The corresponding accuracies are as follows:

(|~w1,7|, |~σ3|) ≤
(2 · 10−43, 3 · 10−38, 3 · 10−33, 1 · 10−28,

4 · 10−24, 7 · 10−20, 7 · 10−16,

3 · 10−12, 7 · 10−9, 7 · 10−6, 4 · 10−3), L0 = 1, q = − 1
11
;

(|~w1,7|, |~σ3|) ≤
(3 · 10−43, 4 · 10−38, 4 · 10−33, 2 · 10−28,

7 · 10−24, 1 · 10−19, 1 · 10−15,

6 · 10−12, 1 · 10−8, 1 · 10−5, 4 · 10−3), L0 = 1, 103, q = 0;

Both ADFD and DFD visually have exactly the same perfor-
mance for L0 = 1 (Fig. 2). The adaptation keeps L(t) < 1

corresponding to |w1| ≤ L0wτ for L0 = 1, 1000. Accuracies
for L0 = 1, 1000 coincide in 4 digits for q = 0.

Also for the enormous practically random noise η =

105 cos(108t+ π sin(104t)) ADFD and DFD demonstrate the
same performance and accuracy |~σ3| ≤ (0.0009, 0.01, 0.1, 0.4)

for L0 = 1 (Fig. 2). Moreover, L(tj) ≡ L0 holds.

2. Chattering reduction. Let nd = 3, nf = 2, τ = 0.05, η =

0. The steady-state accuracies by the DFDs are provided by
the component-wise inequalities |~σ3| ≤ (0.006, 0.06, 0.3, 0.8)

for L0 = 1 and |~σ3| ≤ (3, 15, 40, 60) for L0 = 1000 (Fig. 3).
Outputs’ chattering is considerable.



In comparison, the ADFD with q = 0 provides for the same
accuracy |~σ3| ≤ (0.007, 0.06, 0.3, 0.8) (practically as DFD
with L0 = 1) for both L0 = 1 and L0 = 1000 (accuracies
coincide!) and removes the output chattering (Fig. 3).

Fig. 2. The ADFD (15), (19), L0 = 1, nd = 3, nf = 7, τ = 10−5, q = 0,
kτ = 3 · 1012, preserves the accuracy and performance of DFD (12) for
the input (29) in the absence of noises and also in the presence of the noise
η = 105 cos(108t+π sin(104t)). Note that this noise is practically random.

Fig. 3. The chattering of the ADFD (15), (19), nd = 3, nf = 2, τ = 0.05,
q = 0, kτ = 400, on the right in comparison to DFD (12) on the left for
the input (29) and L0 = 1, L0 = 1000 in the absence of noise, η = 0. The
graph of z3 for ADFD, L0 = 1000, is cut from above and below.

The following experiments are not practice oriented. They
are to demonstrate the differentiation problematics and the
correctness of the presented theoretical results.
3. Digital noise effect. The following experiment studies the
influence of computer round-up errors as the small-noise case
of Theorem 1. The double precision accuracy, usually provided
by the modern software, corresponds to 15 meaningful decimal
digits. Thus, any number a ∈ R in its computer representation
is indistinguishable from (1± 5 · 10−16)a.

That seemingly small noise turns out to be significant for
the high-order differentiation whenever exactness is pursued.
Errors of algebraic finite-differences-based estimations tend

Fig. 4. Effect of the round-up computer noise on high-order differentiation.
5th-order derivative estimation of the input f0(t) = cos t− ln(1+t) by DFD
(12) nd = 5, nf = 3, L0 = 1000 (below), and ADFD (15), (19) for q = 0,
kτ = 1.5 · 109 (above) in the absence of sampling noise.

Fig. 5. Asymptotic convergence of ADFD (15), (19), nd = 3, nf = 9,
L0 = 1, q = 1, kτ = 7 ·1015, τ = 5 for the input f0(t) = cos(3 ln(1+ t))
in the absence of noise (above), and its performance for very large noise and
L = 1000 (below). The noise is seen to be absorbed by ~w1,9.

to infinity as τ → 0, whereas HGO’s errors tend to infinity
as the high gain grows [5]. Homogeneous differentiators (6),
(7) cease improving their accuracy for small-enough sampling
periods [5].

Differentiation exactness on inputs f0 ∈ Lipnd L0 invokes
Kolmogorov asymptotics (5) as τ approaches 0. Asymptotics
(5) dictate significant chattering for any fixed ε0, |η| ≤ ε0,
and large L0. That outputs’ chattering is actually due to the
nearly-exact differentiation of some noisy signals f = f0+η ∈
Lipnd L0 (Fig. 4, τ = 10−5).

The proposed discretization (19) introduces the local HGO
(23), (24) nonlinear for q 6= 0. It is easily seen from (26)
that such HGO amplifies the noise as τ → 0, since the



corresponding high gain grows. As the result the invariancy
of the adaptation layer |w1| ≤ kτL0τ

n+1 is lost, and the
ADFD is to feature the typical performance and accuracy of
both discrete and continuous-time differentiators (12) and (15)
respectively (Theorem 1, Fig. 4, τ = 10−5).

Indeed, consider the input (29), DFD (15), nd = 5, nf = 3,
L0 = 1000, and the ADFD (15), (19) for q = 0, kτ = 1.5·109.
The accuracies provided by the ADFD and DFD for τ = 10−5

completely coincide and are |~σ5| ≤ (2 · 10−14, 7 · 10−11, 7 ·
10−8, 4 · 10−5, 10−2, 1.6) (Fig. 4, τ = 10−5).

On the other hand no discrete differentiation scheme is
exact on Lipnd L0 for a fixed τ > 0. This removes the
”Kolmogorov-accuracy trap” and allows chattering attenuation
for all signals f0 ∈ Lipnd Lf , Lf << L0, and ε0 > 0 small
enough, considerably improving the Kolmogorov accuracy (5)
in spite of L0 = 1000. Indeed, the accuracies corresponding
to τ = 10−3 are |~σ5| ≤ (7 · 10−10, 2 · 10−7, 2 · 10−5, 8 ·
10−4, 10−2, 0.2) and |~σ5| ≤ (3 · 10−7, 3 · 10−5, 2 · 10−3, 5 ·
10−2, 0.6, 4.3) for the ADFD and DFD respectively (Fig. 4).

4. Asymptotic convergence of ADFD. Let the ADFD with
nd = 3, nf = 9, q = 1, kτ = 7 · 1015, τ = 5 handle the input

f(t) = f0(t) + η(t) = cos(3 ln(t+ 1)) + η(t),

η(t) = 107 cos(105t) + ηG(t) + ηU (t),
(30)

where η1 is a large high-frequency harmonic signal, ηG ∈
N(0, 1) is the Gaussian signal of the standard deviation 1,
and ηU is uniformly distributed in [−1, 1]. The frequency 105

of the harmonic component is extremely high for the chosen
sampling step τ = 5, which also practically makes it random.

Obviously f (4)
0 tends to zero. Hence Theorem 2 implies the

asymptotic convergence of zi(tj) to f
(i)
0 (t) for i = 0, 1, 2, 3,

t ∈ [tj , tj+1], in the absence of noises (Fig. 5). The con-
vergence is very slow due to the low ”high-gain” value
ε−1
w of the local filter (23), (24) (see (20)). The accuracy
|~σ3| ≤ (1 · 10−3, 4 · 10−8, 8 · 10−13, 7 · 10−18) holds for t
over the interval [2 · 106, 3 · 106] for L0 = 1, η = 0.

In the presence of noise (30) the accuracy changes to |~σ3| ≤
(4 · 10−2, 7 · 10−7, 7 · 10−12, 3 · 10−17) for L0 = 1000 (Fig.
5). The filter is almost insensitive to that noise and very large
L0. It is seen from the graphs of w1, w8, w9 in Fig. 5 that the
noise is absorbed by the filtering variables w.

VII. CONCLUSIONS

A homogeneity-based chattering-alleviation discretization
technique is proposed which independently of the chosen
discontinuity discretization prevents the degradation of the

homogeneous-system accuracy. The method is applied to the
chattering attenuation of SM-based filtering differentiators.

The proposed new low-chattering discrete scheme (15),
(19) for ndth-order homogeneous SM-based differentiators is
simple, significantly diminishes the output chattering even for
low sampling rates and improves the accuracy for input signals
f0 having lower (nd+1)th derivative bound Lf = sup |fnd+1

0 |.
Increasing the differentiator parameter L0 ≥ Lf does not
affect the steady-state dynamics and accuracy in the absence of
noises. Both the optimal accuracy asymptotics and the filtering
capabilities of the standard continuous-time/discrete SM-based
differentiation schemes stay intact.

APPENDIX

Proof of Theorem 3. The proof comprises two steps. First, a
special continuous-time homogeneous approximation is built
which includes replacing the layer ||x1|| ≤ wτ = kττ

−m1/q =

kττ
m1/|q| with a homogeneous set. Second, the discrete error

dynamics are considered as a perturbation of this extension.

Step 1. Let S ⊂ Rn+1 be some set. Introduce the functions

θS(ω, σ) =

{
{signx1} for x /∈ S,
[−1, 1] for x ∈ S or x1 = 0,

F ξ(x, θ) =

{
∩δ>0 coFξ(x+Bδ, θ) for x1 6= 0,

F (x) for x1 = 0.

(31)

Note that ẋ ∈ F ξ(x, θS) is a homogeneous Filippov DI
for any homogeneous set S. In particular, (1) is rewritten as
ẋ ∈ F (x) = ∩δ>0 coF (x+Bδ) = F ξ(x, θ∅).

Denote Bh,δ = {||x||h∞ ≤ δ} and

Sγ = {x ∈ Rnx | |x1| ≤ γ||~x2,nx ||h∞},
Šγ = Sγ ∪Bh,γ1/m1 ,

Ŝγ = {x ∈ Rnx | |x1| ≤ γ},

where γ ≥ 0. Then the DI ẋ ∈ F ξ(x, θSγ ) is FT stable for
sufficiently small γ ≥ 0, since it is a small homogeneous
perturbation of DI (1) [31], [35], [36].

Obviously solutions of ẋ ∈ F ξ(x, θŠγ ) in FT stabilize in
some compact level set B̂h, Bh,2γ1/m1 ⊂ B̂h, of a radially-
unbounded homogeneous Lyapunov function existing for the
AS DI ẋ ∈ F ξ(x, θSγ ) [4], [9]. Hence, solutions of

ẋ ∈ F ξ(x, θŜγ ) (32)

in FT gather in B̂h to stay there, since Ŝγ ⊂ Šγ .



Step 2. Let τ be small enough to satisfy wτ ≤ γ. Then
solutions of the discrete adaptation (28) satisfy the inclusion

δjx ∈ τj [F ξ(x(tj) +Bh,ε, θŜγ ) + Ψ(x(tj) +Bh,ε, τ
− 1
q

j )]
(33)

Thus, as ρ → 0, for any compact set of initial conditions
they uniformly approach solutions of (32) over each compact
time interval [19]. Similarly to [36] one shows that for any
sufficiently small ρ∗ > 0 and the maximal sampling-time
interval τ∗ = ρ−q∗ all solutions of (33) FT stabilize in d2B̂h.

Due to Ŝwτ ⊂ Šwτ solutions of (28) also satisfy

δjx ∈ τj [F ξ(x(tj) +Bh,ε, θŠwτ ) + Ψ(x(tj) +Bh,ε, τ
− 1
q

j )]
(34)

Discrete dynamics (34) are homogeneous for the weights
deg τ = deg τj = deg t = −q, deg ε = deg ρ = 1.

It follows now from the homogeneity of the discrete dy-
namics (34) that its solutions stabilize in d2κB̂h for the new
maximal sampling interval τ = κ−qτ∗, ρ = κρ∗, κ > 0.

Now the accuracy of the homogeneous dynamics (34)
follows from results [38] presented in Section II . �

Proof of Theorem 1. Let |f (nd+1)
0 | ≤ Lf ≤ L0, then

δjf
(i)
0 ∈ 1

1!f
(i+1)
0 (tj)τj + 1

2!f
(i+2)
0 (tj)τ

2
j + ...

+ 1
(nd−i)!f

(nd)
0 (tj)τ

nd−i
j + [−1,1]

(nd−i+1)!Lfτ
nd−i+1
j ,

0 ≤ Lf ≤ L0. (35)

Let ωl = wl/L0, l = 1, ..., nf , σi = (zi − f
(i)
0 )/L0,

i = 0, ..., nd, ωnf+1 = σ0 + η/L0. Subtracting (35) from
the equation for zi in (15), i = 0, ..., nd, taking Lf = L0 and
dividing by L0 obtain

δjω ∈ Ωnd,nf (ω, ωnf+1, L(tj)/L0, ~λ)|tjτj ,
δjσ ∈ Dnd,nf (ω1, σ, L(tj)/L0, ~λ)|tjτj+

Tnd(σ(tj), τj) + h(tj , τj)[−1, 1],

h(tj , τj) = (0, ..., 0,
τ
nd+1

j

(nd+1)! , ...,
τ2
j

2! ,
τj
1 )T .

(36)

Theorem 3 finishes the proof of the part A for the case
|η| ≤ ε0, ρ = max[(ε0/L)1/(nd+1), τ ]. The filterable noises
are handled in exactly the same way as in [38].

Recall that deg t = 1, deg σi = nd+1−i, degωj = n+2−j,
i = 0, ..., nd, j = 1, ..., nf . According to Theorem 3 solutions
of the error system (36), (19) in FT establish the inequalities
|ωj | ≤ µw,jρn+2−j , |σi| ≤ µiρnd+1−i.

Choose any R > 0. Let ||(ω, σ)||h,∞ ≤ R hold after some
transient for sufficiently small ρ > 0. Consider the continuous-

time scalar dynamics of ω1 in the case nf > 0,

ω̇1 ∈ −λ̃nbω1 + [−ρ, ρ]e
n
n+1 + [−Rn, Rn].

Obviously there exists such γ > 0 that in the absence of noise
ω1 stabilizes in the layer |ω1| ≤ γ/2. Then ω1 stabilizes in
the layer |ω1| ≤ γ for some small enough τ = τ0, ετ > 0

and discrete dynamics (36). The case nf = 0 is similarly
considered. Fix the corresponding value kτ = γτ

−(n+1)
0 .

The remark that if the set |ω1| ≤ kττ
n+1 is FT attracting

for τ = τ0 and small enough ετ , then the homogeneity of the
discrete system (36) renders it true for any τ > 0, finishes
the proof. �

Proof of Lemma 1. Without loss of generality consider the
case nf = 0 featuring the same error dynamics (9).

Prove the lemma by induction. It is trivial for n = 0 and
any λ̃0 = λ0 > 1. Denote the coefficients of AS filter having
HD qn = −1/(n + 1) by λ̃n,k, k = 0, ..., n. Let the filters
with these coefficients be AS for both HDs qn, 0.

Note that (1 − qn)−1 = 1 + qn+1, and it is proved in [25]
that the error dynamics of the (n + 1)th-order differentiator
with HD qn can be rewritten in the form

σ̇0 = −λn+1bσ0e
1

1−qn + σ1, qn = − 1
n+1 ,

σ̇1 = −λ̃n,nbσ1 − σ̇0e1+qn + σ2,

...

σ̇n−1 = −λ̃n,1bσ1 − σ̇0e1+nqn + σn,

σ̇n ∈ −λ̃n,0bσ1 − σ̇0e1+(n+1)qn + [−LfL0
,
Lf
L0

],

(37)

which is AS for any sufficiently large λn+1 = λ̃n+1,n+1.
Recall that f0 = 0, Lf = 0. Show that additionally increasing
λn+1 ensures the AS of the linear filter with the same
coefficients.

According to the induction assumption the characteristic
polynomial of the nth-order linear filter pn+1(s) = sn+1 +

λ̃n,ns
n+ ...+ λ̃n,0 is Hurwitz. Show that also pn+2 is Hurwitz

for sufficiently large λn+1.

It is obvious for n = 0, since coefficients of p2 are positive.

Let n > 0 which implies 1 − qn > 0. Then
λ̃n+1,k = λ̃n,kλ

1+(n+1−k)qn
n+1 = λ̃n,kλ

1−qn+(n+2−k)qn
n+1

holds for k = 0, ..., n + 1. It is easily checked that
p̂n+2(s) = sn+2 + λ1−qn

n+1 pn+1(s) is Hurwitz for λn+1 large
enough. For example, one can use the template theorem [33]
for HD 0. Finally, multiplying the coefficients of monomials
sk from p̂n+2 with λ

(n+2−k)qn
n+1 only proportionally changes

the roots of the polynomial. �



Proof of Theorem 2. Subtract the Taylor expansion (35)
from the both sides of the equation for zi of (22), and perform
the time-coordinate transformation τ̂j = ε−1

w τj , τ̂ = ε−1
w τ =

L−q0 k
−q− 1

n+1
τ τ−(n+1)q, ω̂i = εi−1

w wi, i = 1, ..., nf , t̂ =

ε−1
w t, σ̂i = ε

nf+i
w (zi − f (i)

0 ), i = 0, ..., nd, n = nd + nf .

Note that εnf+i
w σi+kτ

k = σ̂i+k τ̂
k. Thus, due to Theorem 1

from some moment errors satisfy the inclusion

δjω̂1 = [−λ̃nbω̂1e1+q
+ ω̂2]|t̂j τ̂j ,

...

δjω̂nf = [−λ̃nd+1bω̂1e1+nfq + ω̂nf+1]|t̂j τ̂j ,
ω̂nf+1 ∈ σ̂0 + ε̂0[−1, 1],

(38)

δj σ̂0 ∈ [−λ̃ndbω̂1e1+(nf+1)q
+ σ̂1]|t̂j τ̂j+

[
τ̂2
j

2! σ̂2 + ...+
τ̂
nd
j

nd! σ̂nd ]|t̂j + εn+1
w Lf

τ̂
nd+1

j

(nd+1)! [−1, 1],

...

δj σ̂nd−1 ∈ [−λ̃1bω̂1e1+nq
+ σ̂nd ]|t̂j τ̂j+

εn+1
w Lf

τ̂2
j

2! [−1, 1],

δj σ̂nd ∈ [−λ̃0bω̂1e1+(n+1)q
+ εn+1

w Lf [−1, 1]]|t̂j τ̂j ,

(39)

where ε̂0 = ε
nf
w ε0.

Discrete solutions of the DI (38), (39) can be presented as
the node points of the peace-wise linear (Euler) solutions of
the retarded disturbed homogeneous DI

˙̂ω1 ∈ [−λ̃nbω̂1e1+q
+ ω̂2]|t̂−τ̂ [0,1],

...
˙̂ωnf ∈ [−λ̃nd+1bω̂1e1+nfq + ω̂nf+1]|t̂−τ̂ [0,1],

ω̂nf+1(t̂− τ̂ [0, 1]) ∈ σ̂0(t̂− τ̂ [0, 1]) + ε̂0[−1, 1],

(40)

˙̂σ0 ∈ [−λ̃ndbω̂1e1+(nf+1)q
+ σ̂1]|t̂−τ̂ [0,1]+

[
τ̂1
j

2! σ̂2 + ...+
τ̂
nd−1

j

nd! σ̂nd ]|t̂−τ̂ [0,1]+

εn+1
w Lf

τ̂nd
(nd+1)! [−1, 1],

...
˙̂σnd−1 ∈ [−λ̃1bω̂1e1+nq

+ σ̂nd ]|t̂−τ̂ [0,1]+

εn+1
w Lf

τ̂
2! [−1, 1],

˙̂σnd ∈ −λ̃0bω̂1e1+(n+1)q|t̂−τ̂ [0,1] + εn+1
w Lf [−1, 1],

(41)

Define the weights deg ω̂i = 1 + (i − 1)q, i = 1, .., nf ,
deg σ̂i = 1+(nf+i)q, i = 0, .., nd, deg t = deg τ = deg τj =

−q. Introduce the disturbance parameter ρ as in (25) [35], [36].
Then deg ρ = 1 and the steady state accuracy (25),

|wi| ≤ µwiε−(i−1)
w ρ1+(i−1)q, i = 1, 2, ..., nf ,

|zi − f (i)
0 | ≤ µiε

−(nf+i)
w ρ1+(nf+i)q, i = 0, 1, ..., nd,

is established for sufficiently small τ̂ and ε̂0 [35], [36]. The
errors asymptotically converge to zero for q ≥ 0, Lf = 0.

In the case q = 0 get τ̂ = k
−1/(n+1)
τ , εw = k

−1/(n+1)
τ τ ,

ε̂0 = k
−nf/(n+1)
τ τnf ε0, and formula (26). �
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