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Abstract— A new chattering-mitigation method is proposed
for discontinuous dynamics discretization. Its application to
feedback and output-feedback homogeneous sliding-modes sig-
nificantly diminishes the control chattering in the absence of
noises, while preserving the system accuracy in their presence.
Numeric experiments illustrate the approach efficacy.

I. INTRODUCTION

Sliding-mode (SM) control (SMC) [27], [30], [31] is
known for its ability of effectively suppress uncertainties
despite sampling noises and singular perturbations. The
approach is based on enforcing a proper constraint σ = 0 on
the system for some available output σ. The constraint is kept
by discontinuous control preventing leaving the constraint
under uncertainty conditions.

Unfortunately SMC often causes dangerous system vibra-
tions (the chattering effect) due to the high-frequency control
switching, discrete noisy sampling, and unaccounted for sys-
tem dynamics [4], [6], [19]. The methods counteracting the
chattering phenomena can be divided into three categories:
SM regularization, dynamic extension (in particular, high-
order SMC (HOSMC)) and SMC discretization.

SM regularization replaces the discontinuities with some
continuous (often called ”sigmoid”) approximations [30]
usually reducible to local singular perturbations. They com-
promise the SMC insensitivity to matched disturbances, and
still feature chattering. The dynamic extension introduces
additional integrators in the feedback hiding the disconti-
nuities in the higher derivatives of the system states [16],
[28], [29]. In particular, HOSMC [3], [17], [19] is capable of
establishing and keeping constraints of any relative degrees
[14]. Unfortunately it requires real-time estimation of addi-
tional derivatives of σ, making the system more susceptible
to noises. Also the recent integral action method [25] suffers
of similar informational issues.

By the discretization we generally understand any method
involving replacing a continuous time-state dynamic system
with a system having discrete components, provided the so-
lutions of the discretized system converge to the solutions of
the original system, as the maximal discretization step tends
to zero. That definition is intentionally vague and covers
sampled feedback systems and/or computer simulation of
infinite- and finite-dimensional systems. The dependence on
the sampling/discretization step is the main factor distin-
guishing this method from two other.
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The main discretization method for discontinuous sys-
tems has always been the classical possibly-modified Euler
method, usually causing chattering. Implicit discretization
methods [1], [7] developed to address this problem usually
require additional knowledge on the system and are often
computationally complicated for higher relative degrees.

Note that no feedback control can remove chattering due
to the sampling noises [19]. Also ”chattering uncertainties”
generate the corresponding system chattering. In this paper
we propose a new simple approach to the discretization of
Filippov discontinuities [10]. Similarly to other methods it
depends on the system structure and the chosen control, but
this dependence is much weaker.

In our recent papers [11], [13] we developed low chatter-
ing discretizations of SM-based differentiators. In this paper
we demonstrate a low-chattering discretization scheme for
an arbitrary-order quasi-continuous homogeneous controller
stabilizing disturbed integrator chains in finite time (FT).
The new scheme is also applicable in the output-feedback
format, in which case discrete differentiators [13] are used.
Simulation shows the simplicity and the effectiveness of the
method.

Notation. A binary operation � of two sets is defined as
A � B = {a � b| a ∈ A, b ∈ B}. A function of a set is the
set of function values on this set. The norm ||x|| stays for
the standard Euclidian norm of x, Bε = {x | ||x|| ≤ ε};
~γk = (γ0, ..., γk) for any sequence γi; R+ = [0,∞); baeb =
|a|b sign a, bae0 = sign a; sat s = max[−1,min(1, s)].

II. DISCRETIZATION OF DISCONTINUOUS DYNAMICS

Recall that solutions of any differential inclusion (DI)

ẋ ∈ F (x), x ∈ Rn, F (x) ⊂ TxRn, (1)

are defined as locally absolutely continuous functions x(t),
satisfying the DI for almost all t. Here TxRn denotes the
tangent space at the point x ∈ Rn.

DI (1) is called homogeneous with the weights deg xi =
mi > 0, i = 1, ..., n, of the HD q ∈ R, deg t = −q, if it
is invariant with respect to the transformation xi 7→ κmixi,
t 7→ κ−qt for any κ > 0.

A. Basics of the Filippov theory

We call DI (1) Filippov DI, if the vector-set field F (x) ⊂
TxRn is non-empty, compact and convex for any x, and F is
an upper-semicontinuous set function. The latter means that
the maximal distance of the points of F (x) from the set F (y)
tends to zero, as x→ y. Filippov DIs feature most standard



properties (existence, extendability of solutions, etc.), but not
the uniqueness of solutions [10].

The graph Γ(F ) of the DI (1) over the domain G ⊂ Rn
is the set of pairs Γ(F ) = {(x, ξ) | x ∈ G, ξ ∈ F (x)}.
Although Γ(F ) ⊂ Rn × TRn for any fixed coordinates it is
isomorphically embedded in R2n.

If G is closed, and F (x) is nonempty, compact and locally
bounded for any x ∈ G, then F is upper-semicontinuous in
G if and only if Γ(F ) is closed [10]. If G is compact and
F is upper-semicontinuous, then also Γ(F ) is compact [10].

The solutions of the Filippov DI (1) defined over the
segment [a, b], a ≤ 0 ≤ b, with a fixed compact set A ⊂ Rn
of initial conditions x(0) ∈ A constitute a compact set in the
C-metric, and their points constitute a compact set in Rn.

Let φ : Rnx → TRnx be Lebesgue-measurable and
locally essentially bounded. A differential equation (DE)
ẋ = φ(x), x ∈ Rnx , is understood in the Filippov sense,
if it is replaced with the Filippov DI ẋ ∈ KF [φ](x),

KF [φ](x) =
⋂

µLN=0

⋂
δ>0

co φ((x+Bδ)\N). (2)

Here co is the convex closure operation, µL is the Lebesgue
measure, and (2) is the famous Filippov procedure [10]. In
the non-autonomous case we formally add the DE ṫ = 1.

In the most usual case, when φ is almost everywhere con-
tinuous, KF [φ](x) is just the convex closure of all possible
limit values limk→∞ φ(yk) obtained along continuity-points
sequences yk converging to x.

Approximation of solutions. A locally absolutely contin-
uous function ξ : I → G is further called a δ-graph-
approximating (δ-GA) solution of the Filippov DI (1) defined
in a closed domain G ⊂ Rn, δ ≥ 0, I ⊂ R, if for almost all
t ∈ I the distance from the pair (ξ(t), ξ̇(t)) from Γ(F ) does
not exceed δ. Here I can be any infinite or finite, closed,
open, or one-side-open time interval.

Let the time interval I be compact. Then for any ε > 0
there exists such δ > 0 that every δ-GA solution of the
Filippov DI (1) defined in a closed domain G ⊂ Rn over
I is distanced in C-metric by not more than ε from some
solution of DI (1). Let δk → 0, then any sequence of δk-
GA solutions has a subsequence uniformly converging to a
solution of (1) over I [10].

B. Discretization of Filippov dynamic systems

Let the controlled system ẋ = X(t, x, u) have the output
σ ∈ Rns . Consider a closed-loop system

ẋ = X(t, x, u), x ∈ Rnx , y ∈ Rny , u ∈ Rnu ,
ẏ = Y (t, y, σ(t, x)), u = U(t, y, σ(t, x)),

(3)

with a general-form output feedback. Suppose that the right-
hand sides be locally bounded and Lebesgue measurable.
Let the system be understood in the Filippov sense, and the
corresponding Filippov DI be d

dt (t, x, y)T ∈ Ftxy(t, x, y).
Let ~td = {tj} = t0, t1, ... be the sequence of sampling

time instants, tj < tj+1, tj → ∞, or, alternatively, tj ∈
[ta, tb]. Let supj(tj+1 − tj) ≤ τ , and let it be called

the density of ~td. Assume that admissible sampling-time
sequences exist for any density τ > 0.

By a discretization of the closed-loop system (3) we
understand any algorithm producing δ(~td)-GA solutions of
the corresponding Filippov DI, provided for any compact
set of initial conditions δ(~td) uniformly tends to zero as the
sampling density vanishes.

It follows from the above Filippov results that the dis-
cretized solutions uniformly converge to the Filippov solu-
tions over any compact region of (t, x, y).

There are two natural types of discretization: the dis-
cretization of the whole system corresponding to the com-
puter simulation, and the feedback discretization leaving the
continuous-time system dynamics intact. The latter models
practical applications and results in hybrid systems.

Naturally one can include Lebesgue-measurable noises in
the system. In order to keep the Lebesgue measurability of
the right-hand side of (3), it may require some parts of the
system being Borel-measurable.

In the following we demonstrate that a proper simple
feedback discretization can significantly diminish the system
chattering in the absence of noises, or when the noises are
small (usually very small). Note once more that removing the
chattering in the presence of sampling noises is in general
impossible.

III. HOMOGENEOUS SM CONTROL

The discretization approach proposed in Section II is most
easily implemented locally in the time and the state. System
homogeneity facilitates its global application. Even in that
case effective discretization seemingly has to depend on the
concrete system or controller. In the following we consider
low chattering discretization of a family of homogeneous
single-input single-output SM controllers [8].

Consider a dynamic system of the form

ẋ = a(t, x) + b(t, x)u, σ = σ(t, x), (4)

where x ∈ Rn, a : Rn+1 → Rn, b : Rn+1 → Rn and
σ : Rn+1 → R are uncertain smooth functions, u ∈ R
is the control. The output function σ can be considered
as a tracking deviation. For simplicity we assume that any
solution of (4) is forward complete, i.e. indefinitely extended
in time, provided the control remains bounded along the
solution trajectory.

The system is assumed to have the known relative degree
r [14]. Respectively,

σ(r) = h(t, x) + g(t, x)u, (5)

holds, where g 6= 0 [14]. The functions h(t, x) and g(t, x)
are unknown, smooth, bounded and satisfy the inequalities

|h(t, x)| ≤ C, 0 < Km ≤ g(t, x) ≤ KM . (6)

Obviously (5), (6) imply

σ(r) ∈ [−C,C] + [Km,KM ]u. (7)



Denote ~σk = (σ, σ̇, . . . , σ(k)) ∈ Rk+1. Consider the
discontinuous feedback SM control (”simple” SMC [8])

u = αu∗r(~σr−1),

u∗r(~σr−1) = −bσ
(r−1)e

1
1 +βr−2bσ(r−2)e

1
2 +...+β0bσe

1
r

|σ(r−1)|
1
1 +βr−2|σ(r−2)|

1
2 +...+β0|σ|

1
r
.

(8)
It is known to establish and keep σ ≡ 0, provided parameters
β0, ..., βr−2 > 0 are properly chosen. Here α > 0 is the
control magnitude parameter. The value of u∗r(0) does not
matter, since it does not influence the Filippov procedure (2).
Note that u∗0 = − signσ for r = 1.

Thus any solution of (4), (8), (6) satisfies the Filippov DI

σ(r) ∈ [−C,C] + α[Km,KM ]KF [u∗r](~σr−1). (9)

The application of this control requires the real-time es-
timation of r − 1 derivatives of σ. Similarly, further any
continuous-time feedback control in DIs is assumed to be
replaced by its Filippov extension (2).

DI (9) is homogeneous with the weights deg σ(i) = r − i
and the homogeneity degree (HD) −deg t = −1 [18].
Obviously deg σ(r) = deg u∗r = 0. Let the sampling noise
magnitude and the sampling step not exceed ε0 ≥ 0 and
τ > 0 respectively. Then due to the homogeneity the steady-
state accuracy

|σ(i)| ≤ µiρr−i, (10)

is established in FT for ρ = max[τ, ε
1/r
0 ] and some constants

µi > 0 [18]. The formula remains correct also for the
continuous-time exact sampling τ = ε0 = 0.

A. SM-based differentiation and filtering

Let Lipnd L be the set of all scalar functions defined
on R+ = [0,∞), whose ndth derivative has the Lipschitz
constant L > 0. Assume that the input signal f(t), t ≥ 0
has the form f(t) = f0(t) + η(t), where f0 ∈ Lipnd L is
unknown and η(t) is a Lebesgue-measurable noise, |η| ≤ ε0.
The numbers L, nd are assumed known, and the function
f(t) is available (sampled) in real time.

An ndth-order differentiator is any algorithm producing
functions z0, ..., znd : R+ → R to be the real-time estima-
tions of f0(t), ḟ0(t), ..., f

(nd)
0 (t) respectively.

A differentiator exact on f ∈ Lipnd L is called asymptot-
ically optimal [23], if for some µi > 0, any f0 ∈ Lipnd(L)
and any bounded noise η, ess sup |η(t)| ≤ ε0, it in FT
establishes the estimation accuracy

|zi(t)−f (i)
0 (t)| ≤ µiL

i
nd+1 ε

nd+1−i
nd+1

0 , i = 0, 1, ..., nd. (11)

That accuracy asymptotics is proved to be the best possi-

ble, moreover µi ≥ 2
i

nd+1 always holds [23]. Arbitrary-
order asymptotically-optimal differentiators have been first
proposed in [17] and are based on SMs.

The asymptotically-optimal filtering differentiator [24],
[22] of the differentiation order nd ≥ 0 and the filtering

order nf ≥ 0,

ẇ1 = −λ̃nd+nfL
1

nd+nf+1 bw1e
nd+nf
nd+nf+1 + w2,

...

ẇnf−1 = −λ̃nd+2L
nf−1

nd+nf+1 bw1e
nd+2

nd+nf+1 + wnf ,

ẇnf = −λ̃nd+1L
nf

nd+nf+1 bw1e
nd+1

nd+nf+1 + wnf+1,
wnf+1 = z0 − f(t),

(12)

ż0 = −λ̃ndL
nf+1

nd+nf+1 bw1e
nd

nd+nf+1 + z1,
...

żnd−1 = −λ̃1L
nd+nf
nd+nf+1 bw1e

1
nd+nf+1 + znd ,

żnd = −λ̃0L sign(w1), |f (nd+1)
0 | ≤ L,

(13)

also filters out unbounded noises featuring a small local
iterated integral of the order nf or less.

If nf = 0 DEs (12) disappear and w1 = z0 − f(t) is
substituted in (13) producing the standard differentiator [17].
For example, nd = nf = 0 yields the 0-order differentiator
ż0 = −λ̃0L sign(z0 − f(t)), |ḟ0| ≤ L.

Introduce the short notation for (12), (13)

ẇ = Ωnd,nf (w, z0 − f, L), ż = Dnd,nf (w1, z, L), (14)

for some proper λ̃ = (λ̃0, ..., λ̃nd+nf ) (see Appendix).
Let ess sup η(t) = ε0. It is proved in [17], [21] that in

the presence of discrete measurements with the maximal
sampling time interval τ > 0 differentiator (14) in FT
provides the steady-state accuracy

|zi(t)− f (i)
0 (t)| ≤ µiLρnd+1−i, i = 0, 1, ..., nd,

|w1(t)| ≤ µw1Lρ
nd+nf+1 (15)

for ρ = max[(ε0/L)1/(nd+1), τ ], and some µw1 > 0, µi > 0
only depending on the choice of λ̃. Moreover, inequalities
|wk(t)| ≤ µwkLρ

nd+nf+2−k hold for all k = 1, .., nf and
some µwk > 0.

Formulas (15) are also formally applicable for contin-
uous sampling which corresponds to τ = 0 and ρ =
(ε0/L)1/(n+1). Thus, the filtering differentiator is asymptot-
ically optimal. The differentiator also features strong noise-
filtering capabilities [22], [13]. In particular, it directly
extracts the equivalent control and its derivatives from the
chattering SMC [24].
Notation. Denote by δjφ = φ(tj+1) − φ(tj) the increment
of any sampled vector signal φ(tj).
The discrete version of differentiator (14) has the form

δjw = Ωnd,nf (w(tj), z0(tj)− f(tj), L)τj ,
δjz = Dnd,nf (w1(tj), z(tj), L)τj + Tnd(z(tj), τj),

(16)

where the Taylor-like term Tnd ∈ Rnd+1 is defined as

Tnd,0 = 1
2!z2(tj)τ

2
j + ...+ 1

nd!znd(tj)τ
nd
j ,

Tnd,1 = 1
2!z3(tj)τ

2
j + ...+ 1

(nd−1)!znd(tj)τ
nd−1
j ,

...
Tnd,nd−2 = 1

2!znd(tj)τ
2
j ,

Tnd,nd−1 = 0, Tnd,nd = 0.

(17)

Terms Tnd provide for the homogeneity of the discrete error
dynamics [2].



B. Output feedback stabilization

First let only σ be available by its noisy measurements
σ(t, x(t)) + η(t). The corresponding FT stabilization is
achieved for sufficiently large α > 0 for the system

σ(r) ∈ [−C,C] + α[Km,KM ]KF [u∗r](z(t)),
ẇ = Ωnd,nf (w, z0 − σ − η(t), L),
ż = Dr−1,nf (w1, z, L),
L ≥ C +KMα.

(18)

The stabilization is exact for η = 0. Note that in the case
η(t) = 0 system (18) is homogeneous with the HD −1 and
the weights deg zi = deg σ(i) = r − i, i = 0, 1, ..., nd,
degwk = r + nf − k, k = 1, 2, ..., nf . Its accuracy in the
presence of noises is well-known [12], [15] and is described
by (10) for ρ = max[(ε0)1/(nd+1), τ ].

Let now σ be available by its discrete noisy samples
σ(tj) + η(tj) for some sampling instants t0, t1, .., τj =
tj+1 − tj ≤ τ , and the bounded noise |η| ≤ ε0.

Denote (16), (17) by δj(w, z)
T = ∆nd,nf (w, z, z0 −

f, L, τj)(tj). Then the output-feedback closed-loop system
gets the form

σ(r) = h(t, x) + αg(t, x)u∗r(z(tj)), t ∈ [tj , tj+1),
δj(w, z)

T = ∆r−1,nf (w, z, z0 − σ − η, L, τj)(tj),
L ≥ C +KMα, |u∗r| ≤ 1, 0 < τj = tj+1 − tj ≤ τ.

(19)
Then the above accuracy is established in FT for any initial
conditions. Unbounded noises are considered in [22].

IV. LOW-CHATTERING DISCRETIZATION

One cannot define the chattering of a separate signal [19].
Indeed, only the time scaling distinguishes between sin(106t)
and sin(10−6t). In this paper we intentionally restrict our-
selves to the intuitive understanding of the phenomenon.

In the SM control u in average approximates the equivalent
control ueq = −h/g|σ≡0 [31], [24], thus one needs ueq itself
not to chatter. In other words the ideal Filippov solution of
(9) should not chatter. For the same reason, since measure-
ment noises can mimic the chattering of ueq , in general,
one cannot remove the control chattering in the presence of
noises [19]. We also do not consider the chattering due to
parasitic dynamics [5].

Thus our goal is to diminish the high-frequency
significant-magnitude vibrations of the SMC (19) in the case
of exact discrete measurements for small enough sampling
step τ and relatively slowly changing h, g.

All available problem solutions are obtained under the
same assumptions and prove the system practical stability
in the absence of noises. The widespread discontinuity reg-
ularization [30] is highly sensitive to noises [19]. Artificial
increase of the relative degree [3], [9] raises the sensitivity to
noises due to the required higher-order differentiation. Also
continuous SM controllers with integral action [25] have
differentiation issues and some chattering due to the non-
Lipschitzian control. The implicit discretization schemes [1],
[7] are computationally difficult and require the knowledge of
the control coefficient g. Their performance in the presence
of noises is not theoretically established.

In the following we suggest a simple discretization of
the output-feedback SMC (19) featuring significantly less
chattering in the absence of noises and preserving the system
performance in the presence of noises. The case of the direct
measurements of ~σr−1 is obtained by trivially removing the
observer from the feedback.

In the following the upper bound τ of the sampling step
is assumed available.
Low chattering differentiator discretization. Let kL > 0
be the parameter of the low-chattering differentiator dis-
cretization chosen as in [13]. The following is the low-
chattering discrete filtering differentiator [11]:

δj(w, z)
T = ∆nd,nf (w, z, z0 − f, L̂, τj)(tj),

L̂(tj) = L sat
(
|w1(tj)|
Lwτ

)
, wτ = kLτ

nd+nf+1.
(20)

According to [13] it in FT provides for the accuracy of the
form |zi− σ(i)| ≤ µdiLτ r−i, i = 0, ..., r− 1, in the absence
of noises. The optional choice of parameters valid for any
n = nd+nf ≤ 12, nd, nf ≥ 0, is proposed in the Appendix,
Figs. 3,4 [13]. Recall that increasing kL preserves the validity
of the parameters [13].
Low chattering controller discretization. The main idea is
to complement the powers of coordinates σ(i) to 1 turning
controller (8) into a linear one.

Each term
⌊
σ(i)
⌉γ

is replaced with the term
sat1−γ(|σ(i)|/ζτi)

⌊
σ(i)
⌉γ

. The transformation is performed
in infinitesimally thin layers |σ(i)| ≤ ζτi along the surfaces
of discontinuity and/or non-smoothness, keeping the velocity
vectors close to the graph of the Filippov inclusion (9).
Since limτ→0 ζτi = 0 the distance of the vectors from the
graph vanishes as τ → 0, producing a discretization.

Choose some numbers k0, ..., kr−1, kh > 0, kh ∈ (0, 1], to
define the layer widths. Outputs zi of differentiator (20) are
substituted for σ(i), i = 0, 1, ..., r − 1, producing the output
feedback control

u(t) = α Ur(z(tj)), t ∈ [tj , tj+1),

Ur(z) = − sat
[
Q(z)
khQτ

]
P (z)
Q(z) ,

Q(z) = |zr−1|
1
1 + βr−2 sat( |zr−2|

ζτr−2
)

1
2 |zr−2|

1
2 + ...

+β0 sat( |z0|ζτ0
)
r−1
r |z0|

1
r ,

P (z) = zr−1 + βr−2 sat( |zr−2|
ζτr−2

)
1
2 bzr−2e

1
2 + ...

+β0 sat( |z0|ζτ0
)
r−1
r bz0e

1
r ,

ζτi = kr−ii τ r−i, i = 0, 1, ..., r − 1,

Qτ = ζ
1
1
τr−1 + βr−2ζ

1
2
τr−2 + ...+ β0ζ

1
r
τ0

(21)

In the case of the direct measurements of ~σr−1, σ(i) are
substituted back for zi in (21).

Simple calculation shows that

Qτ = qττ, qτ = kr−1 + βr−2kr−2 + ...+ β0k0.

It is easy to see that in the set |zi| ≤ (kiτ)r−i, Q(z) ≤ khqττ
the control function Ur from (21) gets the form

Ur(z) = −(khqττ)−1[zr−1 + β̂r−2τ
−1zr−2

+...+ β̂0τ
−(r−1)z0],

β̂i = βik
−(r−1−i)
i , i = 0, 1...., r − 2,

(22)



which corresponds to the local output-feedback high-gain
control with the small parameter τ . Recall that it only takes
place in its discrete form in the infinitesimally small vicinity
of ~σr−1 = z = 0.

Obviously any choice of β̂0, ..., β̂r−2 > 0 can be obtained
by a proper choice of k0, ..., kr−1. Moreover, substituting
κ0ki for ki, κ0 > 0, simultaneously divides the roots of the
polynomial sr−1 + β̂r−2s

r−2 + ...+ β̂0 by the same number.
Theorem 1: Fix any k̂r−1 > 0, kh ∈ (0, 1], and let

k̂0, ..., k̂r−2 > 0 be any sufficiently large positive numbers.
Let the polynomial sr−1 + β̂r−2s

r−2 + ...+ β̂0 be Hurwitz.
Then for any sufficiently large α, κ∗ > 0 the choice ki =
κ∗k̂i, i = 0, 1, ..., r − 1, provides for the FT stabilization
of the system (7), (20), (21) in the set |σ(i)| ≤ kr−ii τ r−i,
|zi| ≤ kr−ii τ r−i for any sufficiently small τ .

Theorem 2: Under conditions of Theorem 1 the dis-
cretized system (7), (20), (21) is exponentially stable for
C = 0, i.e. ~σr−1, z → 0 for any small enough τ .

Too small values of kh require smaller τ to suppress
chattering. The chattering is removed in the rare case when
ueq = −h(t, x)/g(t, x) ≡ 0 and the noises are absent.
Otherwise, u tracks ueq , if it is sufficiently smooth and slow.

V. PROOF SKETCHES

Consider the auxiliary set-valued control function

u ∈ α Ûr(z), Ûr(z) = −Iε1
P̂ (z)

Q̂(z)
, ε1, ε ∈ (0, 1),

J(ξ1, ξ2) , [sign(ξ1 − ξ2), sign(ξ1 + ξ2)] max(|ξ1|, |ξ2|),
J(ξ, ξ) = J(−ξ, ξ) , [−ξ, ξ], Iξ , [1− ξ, 1 + ξ],

Q̂(z) = Iε|zr−1|+ βr−2Iε max(|zr−2|
1
2 , ε||z||h)

+...+ β0Iε max(|z0|
1
r , ε||z||h),

P̂ (z) = Iεzr−1 + βr−2IεJ(bzr−2e
1
2 , ε||z||h),

+...+ β0IεJ(bz0e
1
r , ε||z||h),

||z||h = max
j=0,1,...,r−1

|zj |
1
r−j .

(23)
It is easy to see [13] that, provided (18) is FT stable for
η = 0, also the system

σ(r) ∈ [−C,C] + α[Km,KM ] co Ûr(z),
ẇ = Ωnd,nf (w, z0 − σ, L),
ż = Dr−1,nf (w1, z, L)

(24)

is FT stable for sufficiently small ε, ε1 > 0. Recall that after
a FT transient ~σr−1 ≡ z is kept. Obviously, u∗r(z) ∈ Ûr(z).

Note that Ur(z) ∈ Ûr(z) for |zi|/ζτi ≥ (1 −
ε)(r−i)/(r−i−1) , i = 0, ..., r − 2, |zr−1|/ζτr−1 ≥ 1 − ε,
and Q(z)/(khQτ ) ≥ 1− ε1. Denote by Θz the compact set
where this combined condition is violated and ~σr−1 = z.

Fix any ζτi > 0. Let Θζ = {~σr−1 = z, |zi| ≤ ζτi, i =
0, ..., r − 1}, Θz ⊂ Θζ . Let ζτ0 be sufficiently small. The
limit system (21), τ → 0, is described by system (24) with
a switching disturbance along the plane z0 = 0 in the set
Θz . Due to the proximity of the graphs, irrespectively of the
fixed values ζτi, i = 0, ..., r − 1, the system converges into
a small vicinity of 0.

In that vicinity of 0 the control gets the form

u = − α
max[khQτ ,Q(z)] [zr−1 + β̂r−2zr−2

+...+ β̂0z0],

β̂i = βi(
1
ζτi

)r−1−i, i = 0, 1...., r − 2,

(25)

The corresponding polynomial is Hurwitz, which implies that
system (7), (25) is globally AS for C = 0 and sufficiently
large α or small kh. It is shown as in [20]. Otherwise it
converges to a vicinity of zero proportional to C.

Now discretize the system as in (21) taking ζτi =
(kiτ)r−i, i = 0, ..., r − 1, for small enough τ .

VI. SIMULATION

Consider the kinematic model of vehicle motion [26]

ẋ = V cos(ϕ), ẏ = V sin(ϕ)

ϕ̇ = V
∆ tan θ, θ̇ = u,

(26)

where x and y are the Cartesian coordinates of the middle
point of the rear axle (Fig. 1a), ∆ is the distance between
the two axles, ϕ is the orientation angle, V is the constant
longitudinal velocity, θ is the steering angle (i.e. the actual
real-life input), and u = θ̇ is the control input.

The goal is to track some smooth trajectory y = g(x),
whereas g(x(t)), y(t) are available in real time. That is, the
task is to make s(x, y) = y− g(x) as small as possible. The
function s is measured with the sampling step τ and the noise
η. Let g(t) = 10 sin(0.05x(t)) + 5. The Euler integration is
performed with the integration step 10−4.

Control (20), (21) is applied with L = 50, nf = 2,
kL = 5, α = 1, r = 3, β1 = 2, β0 = 1, k0 = 105/3, k1 =
40001/2, k2 = 300, kh = 0.3. The control is kept at 0 till the
time t = 1 to allow the differentiator convergence. The ini-
tial conditions are (x(0), y(0), ϕ(0), θ(0)) = (0, 15, 1, 0.5),
z(0) = 0, w(0) = 0.

First take τ = 0.0001 and apply control (19) without adap-
tation. The corresponding performance is shown in Fig. 1.
The accuracy is described by the component-wise inequality
|σ| ≤ 3.8 · 10−8m, |σ̇| ≤ 1.4 · 10−4m/s, |σ̈| ≤ 0.022m/s2.

Fig. 1. a: The car model. b,c: Car trajectory and the control (steering angle
derivative) with the standard discretization for the sampling step τ = 10−3.

Now apply the proposed discretization. The performance
for τ = 0.02 and τ = 0.0001 is shown in Fig. 2. The
corresponding accuracies are |σ| ≤ 0.11m, |σ̇| ≤ 0.088m/s,
|σ̈| ≤ 0.064m/s2 and |σ| ≤ 1.4 · 10−8m, |σ̇| ≤ 1.3 ·
10−4m/s, |σ̈| ≤ 1.1 · 10−5m/s2 respectively.



Fig. 2. New discretization of car SMC for the sampling steps 10−4s
(a, c), 0.02s (b, d). The graphs are almost indistinguishable in the current
resolution.

VII. CONCLUSIONS

The proposed new discretization scheme is computation-
ally simple, significantly diminishes the SMC chattering and
improves the system accuracy in the absence of noises, while
preserving the standard accuracy in their presence.

APPENDIX

Choice of differentiator parameters. The recommended
parameters [13] of the filtering differentiators (12), (13)
(Fig. 3) and their low-chattering discretization (20) (Fig. 4)
for nd + nf = 0, 1, ..., 12 correspond to the indefinitely-
extendable sequence of the recursive-form parameters ~λ =
{λ0, λ1, ..., λnd+nf , ...} [17].

Fig. 3. Parameters λ̃0, λ̃1, ..., λ̃nd+nf of differentiator (12), (13) for nd+

nf = 0, 1, ..., 12, ~λ = {1.1, 1.5, 2, 3, 5, 7, 10, 12, 14, 17, 20, 26, 32, ...}

Fig. 4. Valid parameters kL of the discrete differentiator (20) corresponding
to Fig. 3 and ~λ12 = (1.1, 1.5, 2, 3, 5, 7, 10, 12, 14, 17, 20, 26, 32), nd +
nf = n = 0, 1, ..., 12
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