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Abstract. One of the main achievements of the High-Order Sliding-Mode Control
(HOSMC) theory is the standardized output-feedback regulation based on the robust
high-order differentiation. The method employs universal HOSM controllers valid
for any relative degree combined with standard HOSM differentiators. In this chapter
we present recently developed new universal controllers and filtering differentiators
and demonstrate their output-feedback application in the presence of large sampling
noises.

1.1 Introduction

Sliding mode (SM) control (SMC) [27, 53, 75, 78] has been introduced to effectively
control uncertain processes. The method assumes choosing a proper system output
σ called sliding variable to keep it at zero. The constraint σ ≡ 0 is to provide for
the desired system performance and is established in finite time by a high-frequency
switching control.

The control switching is inevitable due to the uncertainty of the system. Un-
fortunately, it produces undesired system vibrations called the chattering effect
[9, 15, 34, 77].

While keeping the switching, the SM control itself can be done continuous. Its
discontinuity can be shifted to the higher total derivatives of the sliding variable. The
number r of the first discontinuous total time derivative σ(r) is called the SM order
[44, 46]. The conventional SMs [27, 77] feature the first SM order. Higher-order
SMs (HOSMs) are capable of successful chattering mitigation [10, 11, 16, 44], but
are not able to completely remove it [15, 49]. Moreover, in fact the chattering can be
considered as an inherent feature of sampling-based systems [49].

The output regulation is the most straightforward application of SMC due to the
simplicity of choosing the tracking error as the sliding variable. A great number of
papers employs this technique, here we only cite a few: [11, 19, 23, 24, 25, 26, 30,
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33, 36, 39, 43, 46, 56, 63, 65, 67, 68, 74, 76]. SM-based differentiators [46, 45] are
included in the feedback to produce finite-time (FT) exact derivatives of the sliding
variable [2, 4, 7, 8, 22, 20, 29, 32, 42, 53, 66, 73].

Most above results are based on the application of the general homogeneity
approach [6, 14, 41] to the SMC theory [12, 13, 35, 47, 54, 57, 65, 72, 69].

Till recently the invention of new SM controllers has been considered a difficult
task [24, 46, 48], but recently numerous new controllers have been proposed together
with general construction approaches [19][18][65][70][71]. Recent control template
approaches [51, 38] belong to this category, and present very easy control design.

Standard SM-based differentiators [46] have been recently used to construct new
filtering differentiators [59, 61]. These new differentiators combine their exactness
and asymptotically optimal accuracy in the presence of noises [60] with the new
strong noise filtering capabilities. In particular, they are capable of suppressing
unbounded noises, provided some high-order local multiple integral of the noise is
uniformly small. New hybrid differentiators [58, 7] feature the bilimit homogeneity
[1]. They can be considered as hybrids of the linear filters [5] (high-gain observers)
with the SM-based differentiators [46]. Such differentiators do not employ high gains,
allow variable gains and feature fast FT convergence. Recently we have proposed
equipping hybrid differentiators with the filtering capabilities [37].

In this chapter we demonstrate the implementation of new SM control templates
[51, 38] in the output-feedback HOSM control and its new filtering capabilities in
the presence of very large noises due to the filtering [59] and hybrid filtering [37]
differentiators.

Notation. Let b·em = | · |m sign(·) for any m ≥ 0. Note that ∂
∂x |x|

m+1 = (m +

1)bxem and ∂
∂xbxe

m+1
= (m + 1)|x|m. A function of a set is the set of function

values on this set. The norm ||x|| stays for the standard Euclidean norm of x,
Bε = {x| ||x|| ≤ ε} and ||x||h is a homogeneous norm. Let a � b be a binary
operation for a ∈ A, b ∈ B, then A �B = {a � b|a ∈ A, b ∈ B}.

Depending on the context, we use the same notation #–

ξ k for both (ξ, ξ̇, ..., ξ(k))
and (ξ0, ξ1, ..., ξk). We define the finite difference operator δjA = A(tj+1)−A(tj)
for any sampled function A(tj).

1.2 Preliminaries

In this section we recall some basic homogeneity and stability notions.

1.2.1 Stability of differential inclusions

Let TRnx denote the tangent space to Rnx , and TxRnx be the tangent space at the
point x ∈ Rnx . Consider the differential inclusion (DI)
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ẋ ∈ F (x), x ∈ Rnx , F (x) ⊂ TxRnx . (1.1)

Recall that a solution of (1.1) is any locally absolutely continuous function x(t),
satisfying DI (1.1) for almost all t.

A differential inclusion (DI) (1.1) is further called Filippov differential inclusion
(DI), if the vector set F (x) is non-empty, compact and convex for any x, and F is
an upper-semicontinuous set function [31, 47]. The latter means that the maximal
distance from the vectors of F (x) to the vector set F (y) vanishes as x→ y.

Solutions of the Filippov DI possess most of the well-known standard properties,
like the local-solution existence for the Couchy problem, the solution extendability
till the boundary of a compact and the continuous dependence on the graph of the
DI [31]. Obviously, there is no solution uniqueness.

A differential equation (DE) ẋ = f(x), x ∈ Rnx , with a locally essentially
bounded Lebesgue-measurable right-hand side is said to be understood in the Fil-
ippov sense, if its solutions are defined as the solutions of the special Filippov DI
ẋ ∈ KF [f ](x) with

KF [f ](x) =
⋂

µLN=0

⋂
δ>0

co f((x+Bδ)\N). (1.2)

Here co denotes the convex closure operation, whereas µL is the Lebesgue measure.
Formula (1.2) introduces the famous Filippov procedure [31]. In the non-autonomous
case we introduce the fictitious coordinate t, ṫ = 1.

Whereas there are other definitions of solutions of the DE with discontinuous
right-hand side, Filippov solutions satisfy all of them, i.e. constitute the minimal set
of reasonably-defined solutions.

A point x0 ∈ Rnx is called the equilibrium of the Filippov DI (1.1), if x(t) ≡ x0
is its solution. The equilibrium x0 is called (Lyapunov) stable, if all solutions starting
in some its vicinity at t = 0 are extendable till infinity in time, and for any ε > 0
there exists such δ > 0 that each solution x(t) satisfying ||x(0)− x0|| < δ satisfies
||x(t)− x0|| < ε for any t ≥ 0.

A stable equilibrium x0 is called asymptotically stable (AS), if any solution x(t)
starting in some its vicinity satisfies limt→∞ ||x(t) − x0|| = 0. It is globally AS if
limt→∞ ||x(t)− x0|| = 0 for any x(0) ∈ Rnx .

An AS equilibrium x0 is called FT stable (FTS), if x0 is AS, and for each initial
condition x(0) from a vicinity of x0 there exists a numberT ≥ 0, such that x(t) = x0
for any t ≥ T . It is called globally FTS, if such T exists for any initial condition
x(0) ∈ Rnx . The equilibrium x0 is called fixed-time (FxT) stable (FxTS) [70], if it
is globally FTS and the upper transient-time bound T can be chosen uniformly for
all initial conditions.

A ball x0 + Bε is called FxT attractive, if all trajectories converge to it in FxT,
i.e. all solutions are extendable till infinity in time, and there exists such T > 0 that
for any solution x the relation x(t) ∈ x0 +Bε holds for any t ≥ T .
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Example 1 The origin 0 is a FxTS equilibrium of the scalar dynamic system ẋ =
−x1/3 − x3. Any ball Bε = {x ∈ R| |x| ≤ ε} is FxT attractive for the Filippov DI
ẋ ∈ −[1, 2]x3. �

Globally (locally) AS Filippov DIs always have proper global (local)C∞-smooth
Lyapunov functions [17].

1.2.2 Weighted Homogeneity

Introduce theweights (degrees)m1,m2, . . . ,mnx > 0of the coordinatesx1, x2, . . . , xnx

in Rnx , and denote deg xi = mi. The simple linear transformation

dκ(x) = (κm1x1, κ
m2x2, ..., κ

mnxxnx), κ ≥ 0 (1.3)

is called the dilation [6].
The function f : Rnx → Rm is said to have the homogeneity degree (weight)

q ∈ R, deg f = q, provided the identity f(x) = κ−qf(dκx) holds for any x and
κ > 0.

We distinguish a vector function f : Rnx → Rnx , f : x 7→ f(x) ∈ Rnx , and
a vector field f : Rnx → TRnx , f : x 7→ f(x) ∈ TxRnx [75]. In its turn the
vector field f(x) ∈ TxRnx is considered as a particular case of the vector-set field
F (x) ⊂ TxRnx for the vector set only containing one vector, F (x) = {f(x)}.

Correspondigly, a vector-set function F (x) ⊂ Rm is called homogeneous of the
homogeneity degree (HD) q ∈ R, if the identity F (x) = d−qκ F (dκx) holds for any
x and κ > 0 [47].

A vector-set field F (x) ⊂ TxRnx (DI (1.1)) is called homogeneous of the homo-
geneity degree (HD) q ∈ R, if the identity F (x) = κ−qd−1κ F (dκx) holds for any x
and κ > 0 [47].

It follows from the latter definition that DI (1.1) is invariant with respect to the
combined time-coordinate transformation

(t, x) 7→ (κ−qt, dκx), κ > 0. (1.4)

One can interprete−q as the weight of the time t, deg t = −q. In the case of a vector
field (DE) the definition is reduced to the classical definition deg ẋi = deg xi−deg t
[6].

Any number can be considered as deg 0, deg a = 0 for any constant a 6= 0. The
following simple rules of the homogeneous arithmetic are easily checked: degAa =
adegA, deg(AB) = degA+degB, deg ∂

∂αA = degA−degα, deg Ȧ = degA−
deg t.

Any continuous positive-definite function of the HD 1 is called a homogeneous
norm. We denote such norms by ||x||h. They are not real norms, but any two
homogeneous norms || · ||h and || · ||h∗ are still equivalent in the sense that the
inequalities γ∗||x||h∗ ≤ ||x||h ≤ γ∗||x||h∗ hold for some γ∗, γ∗ > 0 and any x.
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The following are two traditional homogeneous norms:

||x||h∞ = max
1≤i≤nx

{|xi|
1

mi }, ||x||h$ = (
∑
i

|x|
$
mi )

1
$
.

Note that the second homogeneous norm is continuously differentiable for x 6= 0,
provided $ > maxi{mi}.

The weights and homogeneity degrees are defined up to proportionality. In other
words, deg xi = mi,−deg t = q can always be replaced with γmi, γq for any
γ > 0. Also the HDs of all functions/fields/inclusions are multiplied by γ in that
case. Obviously, such weight transformation does not preserve homogeneous norms.

A function is called quasi-continuous (QC) [48], if it is continuous everywhere
except the origin. In particular, any continuous function is QC.

A homogeneous DI (1.1) is called AS (FTS, FxTS) if the origin 0 is its global AS
(FTS, FxTS) equilibrium.

A set D0 is called homogeneously retractable if dκD0 ⊂ D0 for any κ ∈ [0, 1].
A Filippov DI (1.1) is called contractive [47], if there exist positive numbers

T, ε > 0, a retractable compact D0 and a compact D1, 0 ∈ D1, D1 + Bε ⊂ D0,
such that for any solution x(t) the relation x(0) ∈ D0 implies x(T ) ∈ D1.

A Filippov DI ẋ ∈ F̃ (x) is called a small homogeneous perturbation of the
Filippov homogeneous DI ẋ ∈ F (x) with the same dilation and the HD, if for some
(small) ε ≥ 0 the relation F̃ (x) ⊂ F (x) +Bε holds whenever x ∈ B1.

The following Theorem [54, 57, 38] summarizes stability features of DIs for
arbitrary homogeneous degrees.

Theorem 1 Let the Filippov DI (1.1) be homogeneous of the HD q. Then the asymp-
totic stability and the contractivity features are equivalent and robust with respect
to small homogeneous perturbations.
• If q < 0 the asymptotic stability implies the FT stability, and the maximal (mini-

mal) stabilization time is a well-defined upper (lower) semi-continuous function
of the initial conditions [57]. Moreover, the FT stability of DI (1.1) implies that
q < 0.

• If q = 0 the asymptotic stability is exponential.
• If q > 0 the asymptotic stability implies the FxT attractivity of any ballBε, ε > 0.

The convergence to 0 is slower than exponential.

Example 2 Consider any smooth DE ẋ = f(x), f(0) = 0, f ′(0) = A, x ∈ Rnx .
Then ẋ = f(x) ∈ {Ax + ε||x||B1} holds for any ε > 0 in a sufficiently small
vicinity of the origin.

One can consider the linear time-invariant system ẋ = Ax, x ∈ Rnx , A ∈
Rnx×nx , as a homogeneous Filippov DI ẋ ∈ {Ax} of the HD 0 with deg xi = 1,
i = 1, ..., nx. Now, due to Theorem 1, the asymptotic stability of ẋ = Ax implies the
asymptotic stability of its small homogeneous perturbation ẋ ∈ {Ax + ε||x||B1},
which, in its turn, implies the local asymptotic stability of ẋ = f(x). �

The following theorem [6, 12] asserts that any AS homogeneous DI admits a
smooth homogeneous Lyapunov function.
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Theorem 2 Let (1.1) be an AS Filippov homogeneous DI of the HD q. Then for any
natural l, k, k > max(−q, lmaxdeg xi), there exists a pair of continuous functions
V,W : Rnx → R, V,W ∈ C∞(Rnx \ {0}) such that

1. V is positive definite and homogeneous, deg V = k, V ∈ Cl(Rnx);
2. W is positive definite and homogeneous of degree k + q;
3. maxv∈F (x) OV (x) · v ≤ −W (x) for all x ∈ Rnx .

1.2.2.1 Accuracy of perturbed homogeneous DIs

Consider the retarded “noisy” perturbation of the AS Filippov homogeneous DI (1.1)
of the negative homogeneity degree q < 0 [47]

ẋ ∈ F (x(t− [0, τ ]) +Bhε), x ∈ Rnx , (1.5)

where τ, ε ≥ 0, Bhε = {x ∈ Rnx | ||x||h ≤ ε}.
In principle DI (1.5) requires some functional initial conditions for t ∈ [−τ, 0].

The following result [46] requires some homogeneity assumptions on these condi-
tions [28, 57] which are always satisfied provided the solutions do not depend on
the solution prehistory for t < 0. That assumption usually holds in the case when
the system is a combination of a smooth dynamic system with a digital dynamic
controller based on discrete output sampling starting at t = 0.

So assume that the solutions of (1.5) do not depend on the values x(t) for t < 0.
Fix any homogeneous norm || · ||h. Then the accuracy

x ∈ γBhρ, ρ = max[ε, τ−1/q], (1.6)

is established in FT for some γ > 0 independent of ε, τ and initial conditions.
If q = 0 that accuracy is established for ρ = ε and any sufficiently small τ [28].

If q > 0 one also takes ρ = ε, but the initial value x(0) and ε are to be uniformly
bounded, whereas τ is to be sufficiently small for each fixed R, x(0) ∈ BR (it is
the most "fragile" case [28], since the system can escape to infinity faster than any
exponent [50]). A similar result also holds for the implicit Euler integration with the
step τ [28].

1.3 Homogeneity approach to output regulation under
uncertainty

Consider a dynamic system of the general form

ẋ = a(t, x) + b(t, x)u, σ = σ(t, x), (1.7)
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where x ∈ Rnx , u ∈ R , σ : Rnx+1 → R are the system control and the system
output respectively. Smooth vector fields a : Rnx+1 → TRnx , b : Rnx+1 → TRnx
and the very dimension nx are nowhere used and can be uncertain. Solutions of (1.7)
are assumed forward complete, i.e. infinitely extendible in time, provided the control
u(t) is Lebesgue-measurable and bounded along the trajectory.

The system output function σ is sampled in real time and plays the role of the
tracking deviation. The control task is to keep σ as small as possible.

The system (1.7) is assumed to possess a known relative degree r. It means [40]
that the control for the first time explicitly appears in the rth total time derivative of
σ, i.e.

σ(r) = h(t, x) + g(t, x)u, ∀t, x : g(t, x) 6= 0, (1.8)

where both g, h : Rnx+1 → TR are unknown smooth scalar vector fields, and g does
never vanish. Moreover, the functions #–σ r−1 = (σ, ..., σ(r−1))T and t can always be
extended to local coordinates in Rnx+1 [40].

According to the traditional SMC approach [46, 75] uncertain system dynamics
(1.8) are extended to a quite certain controlled autonomous DI. For that end assume
that

h(t, x) ∈ H( #–σ r−1), g(t, x) ∈ G( #–σ r−1) (1.9)

for some convex compact upper-semicontinuous scalar (vector) set functionsH,G :
Rr → TR. In the fixed coordinates #–σ r−1 these vector-set functions are naturally
treated as numeric ones.

Apply some locally-essentially-bounded Lebesgue-measurable feedback control
u( #–σ r−1). The resulting Filippov DI gets the form

σ(r) ∈ H( #–σ r−1) +G( #–σ r−1)KF [u](
#–σ r−1). (1.10)

It is to become AS for a proper choice of control. Note that this approach requires
the real-time estimation or availability of #–σ r−1.

The main idea is to make DI (1.10) homogeneous. Assign deg σ = 1, and let
the system HD be q ∈ R, i.e. deg t = −q. Then deg σ(i) = 1 + iq holds for
i = 0, 1, ..., r − 1.

The required conditions deg σ(i) > 0 are ensured by the inequality deg σ(r) =
1+ rq ≥ 0 which is in any case necessary for the feasibility of the system (Theorem
1 [57]). Thus, q ≥ −1/r is required. Also fix some homogeneous norm || · ||h.

Assume that the set-functions H,G are homogeneous, degH = 1 + rq. Let
also the control u be homogeneous, so that deg u = degKF [u]. Without losing the
generality assume that degG = 0, i.e. deg u = 1 + rq. This implies the inclusions

h(t, x) ∈ H( #–σ r−1) ⊆ [−C,C]|| #–σ r−1||1+rqh ,
g(t, x) ∈ G( #–σ r−1) ⊆ [Km,KM ]

(1.11)

for some constants C ≥ 0,Km > 0,KM ≥ Km, and the DI [51]

σ(r) ∈ [−C,C]|| #–σ r−1||1+rqh + [Km,KM ]u,
C ≥ 0, 0 < Km ≤ KM .

(1.12)
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Recall that the Filippov procedureKF [·] is to be applied to u in order to produce a
Filippov DI. The control u is assumed to be a Borel-measurable function of #–σ r−1 or
of its dynamic estimation. Themeasurability in the sense of Borel is needed to ensure
the Lebesgue measurability of the resulting control in the presence of Lebesgue-
measurable noises. Note that all elementary functions are Borel-measurable.

The important case q = −1/r corresponds to the standard high-order SMC
(HOSMC) approach [46, 47]. In that case deg σ(r) = 0, and (1.12) gets the well-
known form

σ(r) ∈ [−C,C] + [Km,KM ]u, deg u = 0. (1.13)

The corresponding assumptions |h| ≤ C and g ∈ [Km,KM ] are always at least
locally true for some C,Km,KM .

In the case when (1.13) is AS, q = −1/r, it is also FT stable (Theorem 1), and
the control feedback function u( #–σ r−1) is necessarily discontinuous at #–σ = 0 for
C > 0. The motion on the set #–σ = 0 is said to be in the rth-order SM (r-SM), and
the control is called rth-order SMC (r-SMC) [46, 47].

There are many homogeneous SM controllers solving the problem in the case
q = −1/r < 0, deg u = 0, some of them appear in [11, 24, 25, 39, 67, 68, 74, 75].
The recently established powerful method [18, 19] exploits the knowledge of a
concrete homogeneous control Lyapunov function or builds it for the systemσ(r) = u
in order to generate an r-SM controller. Constructing a new control Lyapunov
function becomes the initial non-trivial design step.

The alternative approach [51] presented below removes any differentiability con-
ditions in the control construction and, correspondingly, yields significantly more
controllers for any possible r and q.

1.4 Homogeneous control templates

We call two scalar functions ω,$ : Ω → R, Ω ⊂ Rnω , sign-equivalent in Ω, if
signω(s) ≡ sign$(s) whenever s ∈ Ω and one of them is not zero.

Let the (r − 1)th-order homogeneous DE

σ(r−1) + ϕr−1(
#–σ r−2) = 0, (1.14)

be AS, and ϕr−1 be continuous, degϕr−1 = 1 + (r − 1)q. The following theorem
extends the result [51] while exactly preserving its proof.

Theorem 3 Let q ≥ −1/r. Choose any homogeneous norm || #–σ r−1||h, and let
φr(

#–σ r−1) be any homogeneous quasi-continuous (QC) scalar function. Let φr also
be sign-equivalent to σ(r−1) + ϕr−1(

#–σ r−2) for #–σ r−1 6= 0. Consider the homoge-
neous controls of the form

u = αUr(
#–σ r−1), (1.15)

where α > 0, and Ur is defined by one of the formulas
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Ur(
#–σ r−1) = −|| #–σ r−1||1+qr−deg φr

h φr(
#–σ r−1), (1.16)

Ur(
#–σ r−1) = −|| #–σ r−1||1+qrh signφr(

#–σ r−1). (1.17)

Then for any sufficiently large α > 0 these controllers asymptotically stabilize DI
(1.12). In particular the homogeneous DE

σ(r) + ϕr(
#–σ r−1) = 0, ϕr(

#–σ r−1) = −αUr( #–σ r−1), (1.18)

is AS for any sufficiently large α. The function ϕr is continuous for q > −1/r, if Ur
is taken in the form (1.16).

Control function (1.16) isQC (i.e. discontinuous only at #–σ r−1 = 0) for q = −1/r.
It is continuous for q > −1/r, provided Ur(0) = 0 is assigned. DI (1.12) (in
particular (1.18)) is FT stable for q < 0, and exponentially stable for q = 0. If q > 0
any ball Bε attracts solutions in FxT.

When applied to the general system (1.7) the controllers can be multiplied by
any locally bounded Lebesque-measurable function k(t, x) ≥ 1 without losing the
convergence of σ to zero.

The chattering of the QC r-SM controller (1.15), (1.16), obtained in the case
q = −1/r, is much lower compared with (1.15), (1.17) [48]. Also, in spite of
controller (1.15), (1.17) looking as a classical SM controller, it does not keep the
SM φr(

#–σ r−1) = 0, since φr( #–σ r−1) in general features infinite gradients.

1.4.1 Recursion in the relative degree

Actually, under the condition q ≥ −1/r, Theorem 3 establishes a recursion from the
(r − 1)th-order AS DE (1.14) to the new rth-order AS DE (1.18).

In the sequel we use that A + B and bAeγ + bBeγ are sign-equivalent for any
A,B ∈ R and γ > 0.
The initial step. Let q ≥ −1. The AS DE (1.14) of the order 1 can always be chosen
as

σ̇ + β0bσe1+q = 0, β0 > 0. (1.19)

In order to recursively construct a homogeneous stabilizer for r = 2 one will need
q ≥ −1/2.
The recursive step. Let an (r − 1)th-order AS DE (1.14) be given, q ≥ −1/r.
Choose two arbitrary homogeneous norms || · ||h, || · ||h∗, somem > 0, and any QC
function θ(s), θ : R \ {0} → R, sign-equivalent to s, e.g. θ(s) = (s + sin s)−1.
Then the following are only three of the simplest choices for φr( #–σ r−1):

1. φr(
#–σ r−1) =

⌊
σ(r−1) + ϕr−1

⌉m
, degϕr = m > 0,

2. φr(
#–σ r−1) =

⌊
σ(r−1)⌉m + bϕr−1em, degϕr = m > 0,

3. φr(
#–σ r−1) = θ

(
bσ(r−1)+ϕr−1em
|| #–σ r−1||m(1+(r−1)q)

h

)
, degϕr = 0.

(1.20)
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Alternatively one, for example, can take the function

φr(
#–σ r−1) =

|σ(r−1) + ϕr−1|m1

∣∣∣⌊σ(r−1)
⌉m2

+ bϕr−1em2

∣∣∣ θ(bσ(r−1)em3+bϕr−1em3

|| #–σ r−1||
m3(1+(r−1)q)

h

)
with deg φr = m1 +m2, m2,m3 > 0, m1 +m2 ≥ 0, etc. There are, obviously,
infinitely many such constructions for each r ≥ 2.

Now, according to Theorem 3, from (1.16), (1.17) obtain the new homogeneous
controls (1.15) of the order r,

ur = −α|| #–σ r−1||1+qr−deg φr

h∗ φr(
#–σ r−1),

ur = −α|| #–σ r−1||1+qrh∗ signφr(
#–σ r−1),

(1.21)

and the rth-order AS DE (1.18)

σ(r) + βr−1|| #–σ r−1||1+qr−deg φr

h∗ φr(
#–σ r−1) = 0. (1.22)

The new equation contains uncertain parameters of the auxiliary function φr, as
well as the uncertain parameter βr−1. It is natural to call (1.21) a controller template.
If q ≥ −1/(r + 1) one can now perform one more recursive step, etc.

In general one needs r − 1 recursive steps to develop a controller of the order r,
provided q ≥ −1/r. But the first step (1.19) is trivial, since any β0 > 0 is admissible.
It is reasonable to immediately assign proper values to additional design parameters
which appear at each recursion step. Usually it is done by simulation of (1.22).

1.4.1.1 HOSMC template development

The most practical special case is definitely the case of SM control. Let the relative
degree be r ≥ 1. Then the corresponding system HD is −1/r and deg σ(r) =
deg u = 0. In that case it is usually convenient to proportionally change all the
weights, getting q = −1, deg σ(i) = r− i for i = 0, 1, ..., r, deg t = 1 (the r-sliding
homogeneity [47]).

A number of r-SM controllers are readily available, and their parameters are
known in advance at least till r = 5 [24, 75]. Note that the parameter α from (1.15)
defines the control magnitude and is only assigned at the last practical control-design
stage.

The presented control template development is so simple that one can develop a
new r-SM controller for each practical application (Section 1.9.1). In that case the
first recursion step almost always employs σ̇ + β0bσe

r−1
r = 0, though one can, for

example, take "exotic" σ̇ + β0(2 + signσ)bσe
r−1
r = 0 instead. Fix some β0 > 0.
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At the next step one has already infinitely-many variants. Any equation of the
form σ̈ + β1φ(σ, σ̇) = 0 is admissible, provided deg φ = deg σ̈, φ is QC and

sign-equivalent to σ̇ + β0bσe
r−1
r .

For example,

σ̈ + β1 tan

(
σ̇+β0bσe

r−1
r

|σ̇|+β0|σ|
r−1
r

)∣∣∣∣bσ̇e 12 + β
1
2
0 bσe

r−1
2r

∣∣∣∣
2r−4
r−1

= 0

can be taken. The equation is AS for any sufficiently large β1 > 0 to be assigned
by simulation. The recursion process proceeds then to an AS equation for ...σ , etc. A
complete design for r = 3, 4 is demonstrated in the simulation Section 1.9.1.

1.5 Filtering SM-based differentiation

The practical realization of the r-SMcontrollers developed in Section 1.4.1.1 requires
the real-time estimation of the derivatives #–σ r−1. Some popular observation methods
applied in that context are based on high-gain observers [5] and SMs [75]. In the
following we present some modern methods of SM-based observation featuring fast
robust exact derivatives’ estimation while keeping high accuracy in the presence of
large and even unbounded noises, provided they are small in average.

1.5.1 Homogeneous differentiation

1.5.1.1 Standard differentiator

The control approach to the nth-order differentiation of a noisy sampled function
f0(t) suggests constructing an observer for the disturbed integrator chain y(n+1) =

ξ(t) with the output y and the unknown disturbance/input ξ = f
(n+1)
0 (t). Its outputs

zi, i = 0, ..., n, are to approximate the y(i)(t) in spite of y = f0(t) being sampled
with some noise and ξ(t) being unknown. The problem is very old and is known to
be ill posed, if no restrictions are imposed on ξ.

Let the input f(t) take the form f(t) = f0(t) + η(t) ∈ R, where η(t) is a
Lebesgue-measurable bounded noise, |η(t)| < ε0, and f0(t) is an n-times differ-
entiable unknown function to be restored together with its n derivatives in spite of
the unknown measurement noise intensity ε0. The last derivative f (n)0 is assumed
to have a known Lipschitz constant L > 0, which means that f (n+1)

0 (t) ∈ [−L,L]
holds for almost all t. It is further denoted as f0 ∈ Lipn L.

The general differentiator [5, 46] is usually of the form
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żi = ϕi(z0 − f(t)) + zi+1, i = 0, ..., n− 1,
żn = ϕn(z0 − f(t)),

(1.23)

where ϕi is a scalar function, zi ∈ R. The system is understood in the Filippov sense
[31] to allow discontinuities of ϕi. The equivalent recursive form of (1.23) is

ż0 = ϕi(z0 − f(t)) + z1,
żi = ϕi(zi − żi−1) + zi+1, i = 1, ..., n− 1,
żn = ϕn(z0 − f(t)).

(1.24)

Assuming the noise is absent (i.e. ε0 = 0), subtracting f (i+1)
0 from both sides of

(1.23), and denoting σi = zi − f (i)0 , derive

σ̇i = ϕi(σ0) + σi+1, i = 0, ..., n− 1
σ̇n ∈ ϕn(σ0) + [−L,L] , (1.25)

which is a DI in the error space #–σ n. DI (1.23) becomes homogeneous and FT stable
for properly chosen functions ϕi.

The "standard"nth-order homogeneous SM-based differentiator [46] has the form

ż0 = −λ̃nL
1

n+1 bz0 − fe
n

n+1 + z1,

ż1 = −λ̃n−1L
2

n+1 bz0 − fe
n−1
n+1 + z2,

...

żn−1 = −λ̃1L
n

n+1 bz0 − fe
1

n+1 + zn,

żn = −λ̃0L sign(z0 − f),

(1.26)

where the parameters λ̃i > 0 of the differentiator (1.28) are to be chosen in advance
for each n, i = 0, 1, 2, ..., n.

A proper choice of the parameters λ̃i renders the error dynamics FTS. Corre-
spondingly, in the absence of noises the equalities zi = f

(i)
0 are established in

FT.
For the future usage introduce the number nd currently equal to the differentiation

order n. Then in the presence of a sampling noise with the maximal magnitude ε0
the accuracy ∣∣∣zi − f (i)0

∣∣∣ ≤ γiL ( ε0L ) (nd−i+1)

(nd+1) (1.27)

is obtained in FT for some γi ≥ 1 only depending on the coefficients
#–

λ̃n.
Whereasγi depend on the parameters λ̃i of (1.26), the asymptotics structure (1.27)

(i.e. the powers) is fixed and cannot be improved by any differentiation algorithm
exact on functions f0 ∈ Lipn(L) [45].Moreover, it can be shown that γi ≥ 2i/(nd+1)

[60]. Therefore, an ndth-order differentiator of any nature is called asymptotically
optimal, if it provides for the steady-state accuracy (1.27) for all signals and noises
satisfying the above assumptions [60].
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It is not simple to properly choose the differentiator parameters for each n. The
task is facilitated by employing its recursive form [46]

ż0 = −λnL
1

n+1 bz0 − f(t)e
n

n+1 + z1,

ż1 = −λn−1L
1
n bz1 − ż0e

n−1
n + z2,

...

żn−1 = −λ1L
1
2 bzn−1 − żn−2e

1
2 + zn,

żn = −λ0L sign(zn − żn−1),

(1.28)

for some positive λi > 0, i = 0, 1, ..., n. Excluding żi reduce (1.28) to the general
structure (1.23) and the standard form (1.26). It is easily verified that λ̃0 = λ0, λ̃n =

λn, and λ̃i = λiλ̃
i

i+1

i+1 , i = n− 1, n− 2, ..., 1.
In the case f(t) ≡ 0 systems (1.26) and (1.28) become homogeneous of the HD

−1 with deg t = 1, deg zi = deg σi = n− i+ 1, i = 0, ..., n.
An infinite sequence of parameters #–

λ = {λ0, λ1, ...} can be built [46], providing
coefficients λ̃i of (1.26) for all natural n. For this end one simply starts with any
λ0 > 1 and recursively adds a sufficiently large value λn > 0 for each n = 1, 2, ....

The parameters are surprisingly easily found by simulation. In particular, #–

λ =
{1.1, 1.5, 2, 3, 5, 7, 10, 12, 14, 16, 20, 26, 32, ...} are well checked for n ≤ 12. Note
that a shorter sequence up to n = 7 has been published in [58, 60], while a sequence
till n = 5 was the first one to appear in [46]. The corresponding parameters λ̃i are
listed in Table 1.26. Alternative parameters are provided in Section 1.5.2 by another
sequence #–

λ (1.37). It is always assumed in the following that the parameters λi are
properly chosen, so that (1.26) is finite time stable.

Table 1.1 Parameters λ̃0, λ̃1, ..., λ̃n of differentiator (1.26) for n = 0, 1, ..., 12
0 1.1
1 1.1 1.5
2 1.1 2.12 2
3 1.1 3.06 4.16 3
4 1.1 4.57 9.30 10.03 5
5 1.1 6.75 20.26 32.24 23.72 7
6 1.1 9.91 43.65 101.96 110.08 47.69 10
7 1.1 14.13 88.78 295.74 455.40 281.37 84.14 12
8 1.1 19.66 171.73 795.63 1703.9 1464.2 608.99 120.79 14
9 1.1 26.93 322.31 2045.8 6002.3 7066.2 4026.3 1094.1 173.72 17
10 1.1 36.34 586.78 5025.4 19895 31601 24296 8908 1908.5 251.99 20
11 1.1 48.86 1061.1 12220 65053 138954 143658 70830 20406 3623.1 386.7 26
12 1.1 65.22 1890.6 29064 206531 588869 812652 534837 205679 48747 6944.8 623.30 32

1.5.1.2 Filtering differentiators

The following filter/observer is build on the basis of the standard differentiator (1.26)
and, remaing exact, is capable of filtering out unbounded sampling noises.

Introduce the number nf ≥ 0 which is further called the filtering order. Corre-
spondingly, nd is further called the differentiation order. Let nd, nf ≥ 0, where nf
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is called the filtering order. The filtering differentiator is defined by the new form

ẇ1 = −λ̃nd+nf
L

1
nd+nf+1 bw1e

nd+nf
nd+nf+1 + w2,

...

ẇnf−1 = −λ̃nd+2L
nf−1

nd+nf+1 bw1e
nd+2

nd+nf+1 + wnf
,

ẇnf
= −λ̃nd+1L

nf
nd+nf+1 bw1e

nd+1

nd+nf+1 + wnf+1,
wnf+1 = z0 − f(t),

(1.29)

ż0 = −λ̃nd
L

nf+1

nd+nf+1 bw1e
nd

nd+nf+1 + z1,
...

żnd−1 = −λ̃1L
nd+nf

nd+nf+1 bw1e
1

nd+nf+1 + znd
,

żnd
= −λ̃0L sign(w1), |f (nd+1)

0 | ≤ L.

(1.30)

Parameters λ̃i, i = 0, 1, ..., n, n = nd + nf , of (1.26) and (1.29), (1.30) coincide
and can be taken from Table 1.1.

For nf = 0 the fictitious variable wnf+1 turns into w1, DEs of (1.29) disappear
and (1.30) turns into the standard differentiator (1.26). The assumptions on the input
signal are the same. It was recently shown [59] that the steady state accuracies

|w1| ≤ γw1
Lρnf+nd+1,∣∣∣zi − f (i)0 (t)
∣∣∣ ≤ γiLρnd+1−i, i = 0, ..., nd

(1.31)

|wj | ≤ γwj
Lρnd+nf+2−j , j = 2, ..., nf , (1.32)

are in FT established for
ρ = (ε0/L)

1
(nd+1) , (1.33)

and some γw1 , γwj , γi > 0 only depending on the choice of λ0, ..., λnd+nf
. It

means that (1.29), (1.30) describe an alternative asymptotically optimal ndth-order
differentiator.

This differentiator has new significant filtering properties to be presented in
Section 1.7. The accuracy estimation (1.32) is singled out, since it does not hold for
the corresponding ρ in the presence of large noises considered there.

1.5.2 Hybrid (bi-homogeneous) filtering differentiators

As we have seen above the usual requirement of HOSM-based ndth-order differ-
entiation is that the ndth derivative f (nd)

0 has a known Lipschitz constant L > 0.
Presented homogeneous differentiators solve the problem both robustly and exactly.
Unfortunately, a well-known drawback of these differentiators is the low convergence
rate for large initial errors.
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After the differentiator coefficients are fixed, the Lipschitz constant L actually
remains the only adjustable parameter of the standard HOSM-based differentiator
[46]. Thus, it is natural to try tuning that parameter in order to accelerate the
convergence, while keeping the same steady state accuracy (1.31), (1.33).

Unfortunately, filtering and standard differentiators with variable parameter L
in general converge only locally [55, 58] (global convergence is preserved for
monotonously growing differentiable L(t) [64]).

These issues are settled by the so-called hybrid differentiator [58] of the general
structure (1.24). New quasi-linear terms are for this end added to the recursive form
(1.28) of the differentiator producing a hybrid differentiator combining the features
of the homogeneous differentiator (1.28) and a linear filter similar to the high-gain
observer (HGO) [5], but with gains which are not to be large.

The following is its further modification to the hybrid filtering differentiator [37],

ẇ1 = −λnd+nf
L

1
nd+nf+1 bw1e

nd+nf
nd+nf+1

−µnd+nf
Mw1 + w2,

...

ẇnf−1 = −λnd+2L
1

nd+3
⌊
wnf−1 − ẇnf−2

⌉nd+2

nd+3

−µnd+2M(wnf−1 − ẇnf−2) + wnf
,

ẇnf
= −λnd+1L

1
nd+2

⌊
wnf
− ẇnf−1

⌉nd+1

nd+2

−µnd+1M(wnf
− ẇnf−1) + z0 − f(t),

(1.34)

ż0 = −λnd
L

1
nd+1

⌊
z0 − f(t)− ẇnf

⌉ nd
nd+1

−µnd
M(z0 − f(t)− ẇnf

) + z1,

ż1 = −λnd−1L
1

nd bz1 − ż0e
nd−1

nd

−µnd−1M(z1 − ż0) + z2,
...

żnd
= −λ0L bznd

− żnd−1e
0

−µ0M(znd
− żnd−1)

(1.35)

where #–

λnd+nf
and #–µnd+nf

are some properly chosen positive numbers.
This differentiator converges in FT and exactly, provided |f (nd+1)

0 (t)| ≤ L(t) and
|L̇/L| ≤ M hold. The convergence rate is exponential to any vicinity of the error
space origin, and is easily regulated byM [58]. The accuracy is covered by Theorem
4 [37] in the sequel.

The hybrid filtering differentiator (1.40), (1.38) turns into the "standard" hybrid
differentiator [58] for nf = 0, into the filtering differentiator (1.29), (1.30) for
M = 0, into the "standard" differentiator (1.23) for nf = 0, M = 0, and into the
linear HGO [5] for nf = 0, L = 0,M >> 1. The coefficients of the resulting HGO
are µnd

, µnd
µnd−1, . . . , µnd

µnd−1 · · · µ0 from the top-down and correspond to the
characteristic polynomial

snd+1 + µnd
snd + µnd

µnd−1s
nd−1 + . . .+ µnd

µnd−1 · · · µ0. (1.36)
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Also here one can construct infinite double sequence of parameters valid for any
nd + nf [37]. In particular, the sequence

{(λ0, µ0), (λ1, µ1), ...} = (1.1, 2), (1.5, 3), (2, 4), (3, 7), (5, 9), (7, 13), (10, 19),

(12, 23), (15, 42), (21, 43), (25, 79), (39, 98), (78, 116), . . . (1.37)

has been experimentally validated for n ≤ 12 and can be extended up to nd + nf =
n = ∞. Set (1.37) extends the parametric set valid till n = 7 which has been
published in [7, 58].

It has been proved ([58]) that the sequence λi is also valid for use in the standard
and filtering differentiators, but the authors prefer parameters from Tab. 1.1 in
that case. Note that parameters µi produce Hurwitz polynomials (1.36) for each
nd = 0, 1, ... [58].

Introduce the functions

ϕi,n(s, L) = λn−iL
1

n−i+1 |s|
n−i

n−i+1 sign s+ µn−iMs, i = 0, ..., n. (1.38)

Then the proposed hybrid filtering differentiator gets the form

ẇ1 = vw1 = −ϕ0,nd+nf
(w1, L) + w2,

ẇ2 = vw2 = −ϕ1,nd+nf
(w2 − vw1, L) + w3,

...
ẇnf

= vwnf
= −ϕnf ,nd+nf

(wnf
− vwnf−1, L) + z0 − f(t).

(1.39)

ż0 = v0 = −ϕnf+1,nd+nf
(z0 − vwnf

− f(t), L) + z1,
ż1 = v1 = −ϕnf+2,nd+nf

(z1 − v0, L) + z2,
...
żn = vnd

= −ϕnd+nf ,nd+nf
(zn − vnd−1, L).

(1.40)

The recursive form (1.39), (1.40) is identically rewritten in the standard dynamic-
system form

ẇ1 = −ϕ0,nd+nf
(w1, L) + w2,

ẇ2 = −ϕ1,nd+nf
(ϕ0,nd+nf

(w1, L), L) + w3,
...
ẇnf

= −ϕnf ,nd+nf
(ϕnf−1,nd+nf

(...(w1, L)..., L), L) + z0 − f(t),

(1.41)

ż0 = −ϕnf+1,nd+nf
(ϕnf ,nd+nf

(...(w1, L)..., L), L) + z1,
...
żn = −ϕnd+nf ,nd+nf

(ϕnd+nf−1,nd+nf
(...(w1, L)..., L), L),

(1.42)

but only the recursive form is usable in practice.
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1.6 Discretization of differentiators and controllers

In practice any observer is a discrete computer-based system processing a discretely
sampled noisy output of a continuous-time system. Thus, the differential equations
are to be replaced with their numeric real-time integration. One also cannot apply
standard numeric integration methods, since the considered observer is a discontin-
uous dynamic system.

The simplistic Euler integration works, but significantly destroys the theoretical
accuracy [7], [62]. The right discretization is to produce homogeneous discrete error
dynamics analogous to that of the continuous-time sampling case.

The same problems naturally appear in the implementation of output-feedback
systems. In such a case also the controller is computer based.

1.6.1 Discretization of differentiators

Let tj be the sampling instants, 0 < tj+1 − tj = τj ≤ τ , j = 0, 1, ..., limj→∞ tj =
∞. Though the sampling steps are assumed bounded, their upper bound τ does not
need to be available.

Notation. Denote δjA = A(tj+1)−A(tj) for any function A.
The proposed discrete differentiator

δjw1 = ϕ0,nd+nf
(w1(tj), L)τj + w2(tj)τj ,

δjw2 = ϕ1,nd+nf
(w2(tj)− vw1(tj), L)τj + w3(tj)τj ,

. . . ,
δjwnf

= ϕnf ,nd+nf
(wnf

(tj)− vwnf−1(tj), L)τj + (z0(tj)− f(tj))τj ,

(1.43)

δjz0 = ϕnf+1,nd+nf
(z0(tj)− f(tj)− vwnf

(tj), L)τj +
nd∑
i=1

zi
i! τ

i
j ,

δjz1 = ϕnf+2,nd+nf
(z1(tj)− v0(tj), L)τj +

nd∑
i=2

zi
(i−1)!τ

i−1
j ,

. . . ,
δjznd−1 = ϕnf+2,nd+nf

(znd−1(tj)− vnd−2(tj), L)τj + znd
(tj)τj ,

δjznd
= ϕnf+2,nd+nf

(znd
(tj)− vnd−1(tj), L)τj .

(1.44)

has additional Taylor-like terms. Functions vi, vwj , ϕi,n are defined in (1.39), (1.40)
and (1.38).

Denote the (nf , nd)th order filtering hybrid differentiator (1.38), (1.41), (1.42)
by (ẇ, ż)T = Dnf ,nd

(w, z0−f, z, L), where the difference z0−f(t) is singled out.
Then the above discrete differentiator (1.43), (1.44) gets the form

δj(w, z)
T = Dnf ,nd

(w(tj), z0(tj)−f(tj), z(tj), L)τj+Tnf ,nd
(z(tj), τj), (1.45)
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

T0
. . .

Tnf−1
Tnf

. . .
Tnf+i

. . .
Tnf+nd−2
Tnf+nd−1
Tnf+nd


=



0
. . .
0

1
2!z2(tj)τ

2
j + . . .+ 1

nd!
znd

(tj)τ
nd
j

. . .
nd∑

s=i+2

1
(s−i)!zs(tj)τ

s−i
j

. . .
1
2!znd

(tj)τ
2
j

0
0


(1.46)

HereTnf ,nd
∈ Rnf+nd+1. In particularTnf ,0(w, z, τ) = 0 ∈ Rnf+1, Tnf ,1(w, z, τ) =

0 ∈ Rnf+2.
The following theorem easily follows from the similar result on hybrid differ-

entiators [7, 58]. The limit case τ = 0 is formally covered in that theorem as the
replacement of (1.45) with the continuous-time hybrid filtering differentiator (1.34),
(1.35) processing the signal f0 corrupted by the Lebesgue-measurable noise η(t).

Theorem 4 Under the assumption that |f (nd+1)
0 (t)| ≤ L(t), let the absolutely

continuous function L(t) satisfy |L̇/L| ≤ M , and the sampling noise satisfy
|η(t)/L| ≤ ε̂. Then differentiator (1.45) in FT provides for the accuracy (1.31),
(1.32) with ρ = max[ε̂1/(nd+1), τ ].

• In the case M = 0 (filtering differentiator (1.29), (1.30)) the accuracy (1.31),
(1.32) holds for any ε̂, τ ≥ 0.

• In the caseM > 0 the accuracy holds for sufficiently small ε̂, τ ≥ 0. In the case
ε̂ = 0, τ = 0 the convergence is in FT and exact, and is exponential to any ball
of differentiation errors.

The following is some explanation. Recall that the hybrid filtering differentiator
(1.34), (1.35) turns into the filtering differentiator (1.29), (1.30) for M = 0 and
L = const. It is also homogeneous in bilimit. Correspondingly in a small vicinity
of the manifold z0 − f0 = ... = znd

− f (nd)
0 = 0, w = 0 the error dynamics of the

hybrid filtering differentiator (1.34), (1.35) corresponding toM > 0 and the filtering
differentiator (1.29), (1.30) corresponding toM = 0 (asymptotically) coincide. The
same happens to the discretization (1.45). This leads to the same accuracy of the
both differentiators, provided ρ is small.

If ρ is large enough, the linear dynamics prevail, and the hybrid filtering differ-
entiator effectively turns into a linear low-pass filter, whose frequency response and
accuracy are determined byM . It causes the corresponding change in the accuracy
asymptotics for larger ε̂. Moreover, large τ can cause the instability of the limit linear
error dynamics at infinity, correspondingly leading to the filter divergence [7, 58].

It is shown in [7] that the accuracy is not improved when additional integration
steps are introduced between the actual sampling instants, or the integration makes
use of the corresponding matrix exponent over each sampling interval.
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1.6.2 Output feedback discretization

Consider system (1.7) of the relative degree r. Let it be closed by the feedback
r-SMC (1.15) developed in Section 1.4 and exploiting the output differentiation,

ẋ = a(t, x) + b(t, x)u(tj), σ̂(tj) = σ(tj , x(tj)) + η(tj),
u = αUr(z(tj)), L ≥ C +KMα sup |Ur|, L > 0, t ∈ [tj , tj+1),
δj(w, z)

T = Dnf ,r−1(w(tj), z0(tj)− σ̂(tj), z(tj), L)τj .
(1.47)

Here σ̂ = σ + η represents the sampled value of σ corrupted by the noise η.

Theorem 5 Let the sampling noise satisfy |η(t)| ≤ ε0, the sampling interval be
bounded, 0 < tj+1 − tj ≥ τ , nf ≥ 0. Then the discrete output feedback control
from (1.47) in FT provides for the accuracy |σi| ≤ γiρ

r−i, i = 0, 1, ..., r − 1, for
ρ = max[(ε0/L)

1/(nd+1), τ ] and some γ0, ..., γr−1 > 0.

Addition of the termsTnf ,nd
(z(tj), τj) in (1.47) is optional, but not required. Also

this theorem formally covers the limit case τ = 0 corresponding to the continuous
sampling of σ in the presence of the Lebesgue-measurable noise η(t), |η(t)| ≤ ε0.
The proofs of Theorems 4, 5 are based on the accuracy estimation (1.6) of the
disturbed homogeneous systems.

1.7 Filtering noises

In this section we show that the proposed differentiators and output-feedback SM
controllers filter out large sampling noises, while still preserving the exactness in the
absence of noises and the asymptotically optimal accuracy (1.27) in the presence of
bounded noises.

1.7.1 Filtering noises in continuous time

Recall a few notions from [59].
A signal ν(t), ν : [0,∞) → R, is called globally filterable [59], or a sig-

nal of the (global) filtering order k ≥ 0, if it is a locally integrable Lebesgue-
measurable function, and there exists a globally bounded Caratheodory solution
ξ(t), ξ : [0,∞) → R, of the equation ξ(k) = ν. Correspondingly ξ(k−1)(t) is a
locally absolutely-continuous function, if k > 0. Naturally ν(t) is said to have the
filtering order k = 0, if ν is essentially bounded. Any number exceeding sup |ξ(t)|
is called a kth-order (global) integral magnitude of ν.

Assumption 1 The sampled input is of the form f(t) = f0(t) + η(t), where f (nd)
0 is

a Lischitzian function, |f (nd+1)
0 (t)| ≤ L for almost all t > 0 and known L > 0, i.e.

f0 ∈ Lipnd
L. �
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Assumption 2 The noise η(t) admits an expansion of the form η(t) = η0(t) +
η1(t) + ...+ ηnf

(t), where each ηk, k = 0, ..., nf , is a signal of the global filtering
order k and the kth-order integral magnitude εk ≥ 0. Correspondingly, the noise
components η1, ..., ηnf

are possibly unbounded, whereas η0 is essentially bounded,
ess supt≥0 |η0| ≤ ε0. �

Introduce parameter ρ measuring the filtered intensity of the sampling noise

ρ = max

[(
ε0
L

) 1
nd+1 ,

(
ε1
L

) 1
nd+2 , ...,

(
εnf

L

) 1
nd+nf+1

]
. (1.48)

The following two theorems appear in [37]. Recall that for M = 0 the hybrid
filtering differentiator (1.34), (1.35) turns into the filtering one (1.29), (1.30).

Theorem 6 Under Assumptions 1, 2 the practical stability of the hybrid filtering
differentiator (1.34), (1.35) is preserved for any ρ defined by (1.48). For any ρ if
M = 0, and for sufficiently small ρ if M > 0, after some FT transient the hybrid
filtering differentiator (1.34), (1.35) provides for the accuracy (1.31), i.e.

|w1| ≤ γw1Lρ
nf+nd+1,∣∣∣zi − f (i)0 (t)
∣∣∣ ≤ γiLρnd+1−i, i = 0, ..., nd

(1.49)

for some γw1 , γi > 0.

Example 3 The noise η = A cos(ωt) features any global filtering order k ≥ 0 and
the integral magnitudeA for k = 0 and 2A/ωk for k > 0. Theorem 6 implies that the
accuracy estimation (1.49), (1.48) holds for each possible expansion η = η0 + ...+
ηnf

. In particular, η = ηnf
corresponds to ρ = (A/L)1/(nd+nf+1)ω−nf/(nd+nf+1).

Note that for sufficiently large nf the resulting noise-intensity parameter ρ of the
harmonic signal approaches the number 1/ω and does not depend onA. On the other
hand, the theorem provides an upper estimation valid for any possible expansion of
η into a sum of filterable signals ηk. For sufficiently small A another estimation
ρ = (A/L)1/(nd+1) corresponding to η = η0 provides a better estimation and leads
to the asymptotically optimal asymptotics (1.27). Indeed, for sufficiently small A
one gets f ∈ Lipnd

L and the differentiator is to exactly differentiate the noise.
The unbounded signals η = A dk

dtk
bcos(ωt)eβ , β ∈ (k−1, k), k = 1, 2, ..., feature

the filtering order k and the integral magnitude A. �

Consider now the output-feedback closed-loop system

ẋ = a(t, x) + b(t, x)u, σ̂ = σ(t, x) + η(t),
u = αUr(z), L ≥ C +KMα sup |Ur|, L > 0,
(ẇ, ż)T = Dnf ,r−1(w, z0 − σ̂, L).

(1.50)

The following theorem follows [37].
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Theorem 7 Under Assumption 2 after some FT transient closed system (1.50) con-
verges into the region |σi| ≤ γiρ

r−i, i = 0, 1, ..., r − 1, for some constant γi > 0.
The result holds for any ρ provided by (1.48) ifM = 0, and for sufficiently small ρ
ifM > 0. System preserves its practical stability for any ρ.

The next notion extends the corresponding definition from [59] and is employed
to demonstrate that the conditions on the noise are actually of the local nature.

A locally integrable Lebesgue-measurable function ν(t), ν : [0,∞) → R, is
called locally T -filterable signal of the filtering order k > 0 and the integral mag-
nitudes a0, a1, ..., ak−1 ≥ 0, if there exists an infinite sequence t0, t1, ..., t0 ≥ 0,
tj+1−tj ≥ T > 0, j = 0, 1, ..., such that for each j there exists a Caratheodory solu-
tion ξ(t), t ∈ [tj , tj+1], of the equation ξ(k)(t) = ν(t) which satisfies |ξ(l)(t)| ≤ al
for l = 0, 1, ..., k−1. The number al is called the local (k−l)th-order integralmagni-
tude of ν. Signals of local filtering order 0 are trivially defined as uniformly essentially
bounded Lebesgue-measurable signals of the magnitude a0, ess supt≥0 |ν(t)| ≤ a0.

In particular, locally filterable noises can be concatenated producing new locally
filterable noises. The following lemma [59] shows that filtering differentiators can
be applied when the noises are only locally filterable.

Lemma 1 Any signal ν(t) of the local T -filtering order k ≥ 0 can be represented as
ν = η0 + η1 + ηk, where η0, η1, ηk are signals of the (global) filtering orders 0, 1, k
respectively. Their magnitudes continuously depend on #–a k−1 and T .

In particular, in the important case k = 1 get ν = η0 + η1, where |η0| ≤ a0/T ,
and the first-order integral magnitude of η1 is 2a0. In the general case k > 1 fix any
number ρ̂0 > 0. Then, provided ρ̂ ≤ ρ̂0 holds for ρ̂ = max[a

1/k
0 , a

1/(k−1)
1 , ..., ak−1],

the integral magnitudes of the signals η0, η1, ηk are calculated as γ0ρ̂/T , γ1ρ̂, γkρ̂k
respectively, where the constants γ0, γ1, γk > 0 only depend on k and ρ̂0.

1.7.2 Filtering noises in discrete time

Once more, let the sampling take place at the times t0, t1, . . . , t0 = 0, tj+1 − tj =
τj ≤ τ . Due to the Nyquist-Shannon sampling rate principle noises small in average
under one sequence {tj} can be large under another. Therefore, the admissible
sampling-time sequences are to exist for any τ > 0. Correspondingly, the set of such
sequences is infinite.

A discretely sampled signal ν : R+ → R is said to be of the global sampling
filtering order k ≥ 0 and the global kth order integral sampling magnitude a ≥ 0
if for each admissible sequence tj there exists a discrete vector signal ξ(tj) =
(ξ0(tj), ..., ξk(tj))

T ∈ Rk+1, j = 0, 1, ..., satisfying the relations δjξi = ξi+1(tj)τj ,
i = 0, 1, ..., k − 1, ξk(tj) = ν(tj), |ξ0(tj)| ≤ a.

Theorems similar to Theorems 6, 7 hold also here [37, 59].

Assumption 3 The noise η(tj) admits an expansion of the form η(tj) = η0(tj) +
η1(tj)+ ...+ηnf

(tj), where each ηk, k = 0, ..., nf , is a signal of the global sampling
filtering order k and the kth-order sampling integral magnitude εk ≥ 0. �
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Introduce parameter ρ measuring the discrete filtered sampling noise intensity,

ρ = max

[
τ,
(
ε0
L

) 1
nd+1 ,

(
ε1
L

) 1
nd+2 , ...,

(
εnf

L

) 1
nd+nf+1

]
. (1.51)

Theorem 8 Under Assumptions 1, 3 after some FT transient the hybrid filtering
differentiator (1.45), (1.46) provides for the accuracy (1.49) for ρ, τ small enough if
M > 0, or for any ρ if M = 0. The practical stability of the filter is preserved for
any ρ ifM = 0 and for sufficiently small τ ifM > 0.

Theorem 9 Under Assumption 3 the closed system (1.47) in FT stabilizes in the
region |σi| ≤ γiρr−i, γi > 0, i = 0, 1, ..., r− 1, for ρ defined by (1.51). It holds for
any ρ ≥ 0 ifM = 0, and for sufficiently small ρ, τ ifM > 0. The system practical
stability is preserved for any ρ ifM = 0 and for sufficiently small τ ifM > 0.

The following notion extends the similar one from [59].
A discretely sampled signal ν(tj) is said to be locally T -filterable of the local

sampling filtering order k > 0 and the integral magnitudes a0, a1, ..., ak−1 ≥ 0, if
there exists an infinite sequence t̂0, t̂1, ..., t̂0 ≥ 0, t̂l+1−t̂l ≥ T > 0, l = 0, 1, ..., such
that for any sufficiently small τ , admissible sequence {tj}, and any l ≥ 0 there exists
a discrete vector signal ξ(tj) = (ξ0(tj), ..., ξk(tj))

T ∈ Rk+1, j = j0, j0 + 1, ..., j1,
tj0 ∈ [t̂l, t̂l + τ), tj1 ∈ (t̂l+1 − τ, t̂l+1], which satisfies the relations

δjξi = ξi+1(tj)τj , i = 0, 1, ..., k − 1,
ξk(tj) = ν(tj), |ξi(tj)| ≤ ai.

(1.52)

Numbers ai are called the local (k − i)th-order sampling integral magnitudes of ν.
Signals of local sampling filtering order 0 by definition are just bounded signals of
the magnitude a0.

Similarly to the continuous-time case, one can concatenate locally filterable sig-
nals. The following lemma [59] similar to Lemma 1 justifies application of Theorems
8, 9 in the case of locally filterable sampled noises.

Lemma 2 Let all admissible sampling time sequences satisfy the condition sup τj ≤
cτ inf τj for some cτ > 0. Then any discretely sampled signal ν(tj) of the local
sampling T -filtering order k ≥ 0 can be represented as ν = η0 + η1 + ηk, where
η0, η1, ηk are signals of the (global) sampling filtering orders 0, 1, k.

In particular, if k = 1 get ν = η0 + η1, where |η0| ≤ a0/T , and the first-order
integral sampling magnitude of η1 is 2a0. If k > 1 fix any number ρ0 > 0. Then,
provided ρ = max[a

1/k
0 , a

1/(k−1)
1 , ..., ak−1] ≤ ρ0 the sampling integral magnitudes

of the signals η0, η1, ηk are calculated as γ0ρ/T , γ1ρ, γkρk respectively, where the
constants γ0, γ1, γk > 0 only depend on k and ρ0.

It is easy to prove that any bounded continuous periodic signal featuring a local
T -filtering order is transformed into a discrete signal of the same sampling filtering
order, provided sup τj ≤ cτ inf τj holds for some cτ > 0. It follows from the
convergence of the Euler approximations to the unique solutions of DEs [31]. Also
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the smaller τ the closer are the integral sampling magnitudes to those of the original
continuous-time signal.

Any bounded periodic noise of a global filtering order is trivially of the same
local filtering order. Correspondingly Lemma 2, establishes its effective suppression
by a filtering or a hybrid filtering discrete differentiator.

It is wrong to claim that sampling any globally filterable signal of the order k
produces a discrete signal of the same global sampling filtering order k. Indeed, a
multiple numeric integral of the unbounded signal from Example 3 can become very
large for some concrete sampling sequence tj and even cause computer overflow.
The issue is resolved by introducing a saturation of the sampled periodic unbounded
signal, even if a very high saturation level is taken.

1.8 Numeric differentiation

1.8.1 Numeric homogeneous differentiation

Consider the noisy input signal

f(t) = f0(t) + η(t), f0(t) = 0.5 cos(t) + 0.9 sin(0.5t+ log(t+ 1)). (1.53)

Obviously, for each k > 0 the inequality |f (k)0 (t)| ≤ 1 holds starting from some
moment. Let the noise η be composed of three components

η(t) = η1(t) + η2(t) + η3(t),
η1(t) ∈ N(0, 0.22),
η2(t) = 107 cos(108t),

η3(t) = 0.1 cos(104t)
⌊
sin(104t)

⌉− 1
2 = 2 · 10−5 ddt

⌊
sin(104t)

⌉ 1
2 ,

(1.54)

where η1 is a randomGaussian signal of the standard deviation 0.2, η2 is a large high-
frequency harmonic signal, and η3 is an unbounded signal of the filtering order 1 and
the integral magnitude 2 · 10−5 (Example 3). The noise components are presented
in Fig. 1.1.

Apply the discrete filtering differentiator (1.45) of the differentiation ordernd = 2
and the filtering order nf = 8 with the parameters (1.37), L = 1,M = 0, and the
constant sampling step τj = τ = 10−6. The simulation is performed over the time
interval [0, 25].
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Fig. 1.1 Graphs of the noise components (1.54). η1 is a Gaussian noise, η2 is a large high-frequency
harmonic noise, and η3 is an unbounded noise of the filtering order 1.

Performance of the discrete filtering differentiator in the absence of noise is
presented in Fig. 1.2. Practically exact convergence is demonstrated. The resulting
accuracy is presented by the component-wise inequality

(|w1|, |w2|, |w3|, |w4|, |w5|, |w6|, |w7|, |w8|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤
(1.6 · 10−54, 2.7 · 10−48, 2.6 · 10−42, 1.3 · 10−36, 4.0 · 10−31, 7.0 · 10−26,

6.2 · 10−21, 2.7 · 10−16, 4.9 · 10−12, 4.8 · 10−5, 1.8 · 10−4). (1.55)

Fig. 1.2 Performance of the discrete filtering differentiator (1.45) with nd = 2, nf = 8, L = 1,
M = 0, τ = 10−6 in the absence of noises, η = 0, for the input (1.53). Estimations of f0, ḟ0, f̈0
are shown.

Performance of the differentiator separately for each noise component is demon-
strated in Figs. 1.3, 1.4, 1.5. The accuracy obtained for the Gaussian noise η = η1
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is

(|w1|, |w2|, |w3|, |w4|, |w5|, |w6|, |w7|, |w8|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤
(1.2 · 10−23, 3.7 · 10−20, 6.8 · 10−17, 6.4 · 10−14, 3.4 · 10−11, 1.1 · 10−8,

1.6 · 10−6, 1.3 · 10−4, 2.6 · 10−3, 2.9 · 10−2, 1.7 · 10−1). (1.56)

Fig. 1.3 Performance of the discrete filtering differentiator with nd = 2, nf = 8, L = 1,
τ = 10−6 for the input (1.53) corrupted by the Gaussian sampling noise η = η1 ∈ N(0, 0.22).
Estimation of f0, ḟ0, f̈0 is shown.

It has been shown in a qualitative way [52] that random non-correlated sampled
noises of the same distribution feature the first filtering order, and can be practically
canceled for sufficiently small sampling constant step. In other words the integral
magnitude of the noise tends to zero as the sampling rate tends to infinity, but this
convergence is very slow. Increasing the filtering order nf does not significantly
affect the differentiator performance in that case.

Contrary to the Gaussian noises harmonic noises of high frequency are very
well filtered (Fig. 1.4). The higher the filtering order the better is the result. It is
shown in Example 3 that the influence of small and large harmonic noises of the
same frequency are almost the same for large nf . In that case the noise-intensity
parameter ρ approaches 1/ω where ω is the noise frequency, and |zi − f

(i)
0 | ≤

γiL
i

nd+1 ρ
nd+1−i
nd+1 . Thus from some moment further increasing nf does not provide

an accuracy improvement. The accuracy obtained for the harmonic noise η2 is

(|w1|, |w2|, |w3|, |w4|, |w5|, |w6|, |w7|, |w8|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤
(1.0 · 10−25, 4.9 · 10−22, 1.4 · 10−18, 2.0 · 10−15, 1.6 · 10−12, 8.6 · 10−10,

3.7 · 10−5, 19.1, 4.0 · 10−4, 7.9 · 10−3, 8.3 · 10−2). (1.57)
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Fig. 1.4 The discrete filtering differentiator with nd = 2, nf = 8, L = 1, τ = 10−6 with the
input (1.53) is almost insensitive to the noise η = η2 = 107 cos(108t) featuring both extremely
large magnitude and extremely high frequency. Estimation of f0, ḟ0, f̈0 is shown.

Fig. 1.5 Performance of the discrete filtering differentiator with nd = 2, nf = 8, L = 1,
τ = 10−6 for the input (1.53) corrupted by the unbounded noise η = η3 of the filtering order 1.
Estimation of f0, ḟ0, f̈0 is shown.

The considered unbounded noise has the filtering order 1 (Example 3, Fig. 1.5).
It means that increasing nf > 1 does not improve accuracy, which is determined
by the noise average value. Noises of the type η1 and η3 are most difficult for the
filtering differentiator. The accuracy obtained for the unbounded noise η = η3 is

(|w1|, |w2|, |w3|, |w4|, |w5|, |w6|, |w7|, |w8|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤
(7.3 · 10−24, 2.3 · 10−20, 4.4 · 10−17, 4.4 · 10−14, 2.5 · 10−11, 8.0 · 10−9,

1.3 · 10−6, 1.2 · 10−4, 2.3 · 10−3, 2.3 · 10−2, 1.6 · 10−1). (1.58)

Note that the high frequencies of η2, η3 form a special challenge for the differen-
tiator. In fact, the authors cannot rigorously explain, how the differentiator removes
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Fig. 1.6 Performance of the discrete filtering differentiator, nd = 2, nf = 8, L = 1, τ = 10−6,
for the input (1.53) and the combined noise (1.54). Estimation of f0, ḟ0, f̈0 is shown.

Fig. 1.7 Performance of the discrete filtering differentiator, nd = 2, nf = 8, L = 1, τ = 10−6,
for the input (1.53) and the combined noise (1.54). A zoom of the approximation graphs z0, f0,
z1, ḟ0 and z2, f̈0 is shown.

a noise of a period which is at least 16 times less than the sampling step (also see
the simulation in Sections 1.9.2.2, 1.9.3.1).
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The performance of the filtering differentiator for the input (1.53) in the presence
of the combined noise (1.54) is presented in Figs. 1.6, 1.7. The resulting accuracy
for t ∈ [20, 25] is provided by the component-wise inequality

(|w1|, |w2|, |w3|, |w4|, |w5|, |w6|, |w7|, |w8|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤
(5 ·10−23, 1.4 ·10−19, 2.2 ·10−16, 1.8 ·10−13, 8.6 ·10−11, 2.3 ·10−8, 3.9 ·10−5, 19,

0.003, 0.029, 0.167). (1.59)

Note that w8 has seemingly absorbed the main part of the noise.
Compare the accuracies (1.56), (1.57), (1.58) obtained separately for each noise

component with the accuracy (1.59) obtained for the composite noise (1.54). One
clearly sees that there is no superposition principle. The overal maximal errors are
closer to the maximal errors obtained for each noise component than to their sum.

Fig. 1.8 Performance of the discrete filtering differentiator with nd = 2, nf = 8, L = 1, τ =
10−6 for the input (1.53) and the combined noise (1.54). The initial state is z(0) = (100,−10, 10).
Estimation of f0, ḟ0, f̈0 is shown.

1.8.2 Numeric hybrid differentiation

Filtering differentiators feature slow convergence rate from significant initial er-
rors. Hybrid filtering differentiators provide practically the same accuracy for the
considered noises, but feature much faster convergence.

Consider the same noisy input but with the non-zero differentiator initial state
z0(0) = 100, z1(0) = −10, z2(0) = 10. Then the above filtering differentiator,
corresponding toM = 0, has the convergence time of about 15 time units, whereas
the filtering hybrid differentiator withM = 1 demonstrates the convergence time of
about 5 units. The larger the initial errors the larger the difference. For really large
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Fig. 1.9 Performance of the discrete filtering hybrid differentiator with nd = 2, nf = 8, L = 1,
M = 1, τ = 10−6 for the input (1.53) and the combined noise (1.54). The initial state is z(0) =
(100,−10, 10). The convergence is significantly faster compared with the filtering differentiator
(the caseM = 0). Estimation of f0, ḟ0, f̈0 is shown.

initial errors implementation of the homogeneous SM-based differentiators becomes
impossible (see the simulation in Section 1.9.3.1).

1.8.3 Comparison with the Kalman filter

Compare the performance of the standard Kalman filter (KF) and the filtering dif-
ferentiator (FD). Once more consider the input signal (1.53)

f(t) = f0(t) + η(t), f0(t) = 0.5 cos(t) + 0.9 sin(0.5t+ log(t+ 1)), (1.60)

where η is a noise. Asmentioned previously for each k from somemoment |f (k)0 | ≤ 1
holds.

The filtering differentiator is once more of the differentiation order nd = 2 and
the filtering order nf = 8, L = 1, τ = 10−6. The Kalman prediction and innovation
equations are

x̂j+1 = Φj x̂j ,
y(tj) = f(tj)−Hx̂j ,

(1.61)

where x̂j and y(tj) respectively are the estimation of (f0, ḟ0, f̈0)T and the Kalman
innovation. The state transition and the measurement models are

Φj =

1 τ τ2

2
0 1 τ
0 0 1

 , H =
[
1 0 0

]
(1.62)
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respectively. The covariance matrix of x̂j is propagated with the noise covariance
matrix

Qj =

0 0 0
0 0 0
0 0 τ

 . (1.63)

The Kalman update is applied with an appropriate scalar measurement-noise covari-
ance matrix R ∈ R to be specified further.

First consider the Gaussian noise η(t) ∈ N(0, 0.22) of the standard deviation 0.2.
Correspondingly,R = 0.22 is taken. Performance of both filters is presented in Figs.
1.10, 1.11. The resulting accuracy for t ∈ [8, 10] is provided by the component-wise
inequality

KF : (|z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤ (0.003, 0.046, 0.395),

FD : (|z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤ (0.00278, 0.02364, 0.113).
(1.64)

Fig. 1.10 Performance of numeric filtering differentiator withnd = 2,nf = 8,L = 1, τ = 10−6

for the input (1.60) corrupted by the Gaussian noise η(t) ∈ N(0, 0.22). Estimation of f0 is shown.
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Fig. 1.11 Performance of Kalman filter (KF) and the filtering differentiator (FD) with nd = 2,
nf = 8, L = 1, τ = 10−6 for the input (1.60) and the Gaussian noise η(t) ∈ N(0, 0.22).
Estimation of f0, ḟ0, f̈0 is shown.

Fig. 1.12 Performance of the FD with nd = 2, nf = 8, L = 1, τ = 10−6 for the input (1.60)
corrupted by the harmonic noise η(t) = 100 cos(108t). Estimation of f0 is shown.
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Fig. 1.13 Performance of the KF with R = 1002 and the FD with nd = 2, nf = 8, L = 1,
τ = 10−6 in the presence of the harmonic noise η(t) = 100 cos(108t). Estimation of f0, ḟ0, f̈0
is shown.

Consider a large high-frequency harmonic noise η(t) = 100 cos(108t). In this
case two different measurement covariance matrices are considered: R = 0.22 (as
previously) and R = 1002 corresponding to the noise magnitude. Performance
of both filters is presented in Figs. 1.12, 1.13. The corresponding accuracies for
t ∈ [8, 10] are as follows:

KF (R = 0.22) : (|z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤ (0.0065, 0.1135, 0.99),

KF (R = 1002) : (|z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤ (0.03, 0.1323, 0.2754),

FD : (|z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤ (3.9 · 10−5, 0.003, 0.029).
(1.65)

Note that in order to provide for the good performance of the Kalman filter one
needs to adjust the covariance parameter R using some knowledge on the sampling
noise. Contrary to this, we do not change the parameters of the filtering differentiator,
and do not need to know whether any noise is present.

1.9 Output-feedback control simulation

In this section we demonstrate the efficiency, application simplicity and robustness
of the developed SM controllers and observers. Two different academic examples
are presented. The first one is a disturbed integrator chain of the relative degree 3,
whereas the second one is a slightly modified one-link robot inspired by the classical
example [40] of the relative degree 4.



Title Suppressed Due to Excessive Length 33

1.9.1 Homogeneous SM control development

Let the relative degree be r ∈ N. Then the r-SM homogeneity weights are deg σ =
r, deg σ̇ = r − 1, ...,deg σ(k) = r − k, 0 ≤ k ≤ r. Choose a homogeneous norm
valid for k < r :

|| #–σ k||h∞ = ||(σ, ..., σ(k))||h∞ = max[|σ|
1
r , ..., |σ(k)|

1
r−k ].

Any other homogeneous norm can be chosen here. Also recall that #–σ r−1 constitute
the r-SM homogeneous coordinates.

1.9.1.1 4-SMC development

First develop a universal 4-SMC. The homogeneity weights of the sliding variables
are deg σ = 4, deg σ̇ = 3, deg σ̈ = 2, deg ...σ = 1; deg t = 1.

According to Section 1.4.1 start with the 1st-order homogeneous FTS DE

σ̇ + β0bσe3/4 = 0, β0 > 0.

Any value β0 > 0 is valid. Choose and substitute β0 = 1.
The second order DE has already infinitely many options (Section 1.4.1). Choose

σ̈ + β1|| #–σ 1||
1
2
h∞

⌊
σ̇ + bσe

3
4

⌉ 1
2
= 0, β1 > 0.

According to Theorem 3 it is FTS for sufficiently large β1 > 0. Simulation shows
that β1 = 1 fits.

The 3rd-order FTS DE is chosen in the form

...
σ + β2

σ̈ + || #–σ 1||
1
2
h∞

⌊
σ̇ + bσe

3
4

⌉ 1
2


1
2

= 0.

Simulation shows that β2 = 5 provides for the FT stability.
At the last step choose the 4-SM QC control

u( #–σ 3) = −α|| #–σ 3||
− 1

2
h∞

...σ + 5

σ̈ + || #–σ 1||
1
2
h∞

⌊
σ̇ + bσe

3
4

⌉ 1
2


1
2


1
2

, (1.66)

where the free parameter α defines the control magnitude. Obviously, deg u = 0.
When applied in the output feedback the differentiator outputs zi are to be sub-

stituted for σ(i), i = 0, 1, 2, 3.
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1.9.1.2 3-SMC development

Development of a universal 3-SM controller is even simpler. The homogeneity
weights of the sliding variables are deg σ = 3, deg σ̇ = 2, deg σ̈ = 1; deg t = 1.

Once more start with the simplest 1st-order homogeneous FTS DE

σ̇ + β0bσe2/3 = 0, β0 = 1.

The second order FTS DE is similarly chosen as

σ̈ + β1

⌊
σ̇ + bσe

2
3

⌉ 1
2
= 0, β1 > 0.

Once more the simulation shows that β1 ≥ 1 suffices. Choose β1 = 2.
Now the 3-SM controller is chosen as

u( #–σ 2) = −α|| #–σ 2||
− 1

2
h∞

σ̈ + 2

⌊
σ̇ + bσe

2
3

⌉ 1
2


1
2

. (1.67)

It is easy to see the general form of r-SM controllers incorporating controllers
(1.67) and (1.66) for r = 3 and r = 4 respectively.

1.9.1.3 Output-feedback control: choice of initial observer state

In the case when only the tracking error σ is available, an observer is to provide for
the estimations of #–σ r−1. However, observer application requires assignment of its
initial values.

One of the ways is to choose a FxT stable observer/differentiator like [3, 21].
Such differentiator is very sensitive to sampling noises and intervals, especially to
the large sampling noises we consider, and can simply diverge [54].

Another solution proposed in the past by the authors suggests approximate calcu-
lation of the initial derivative values. For this end one uses finite differences over r
sampling intervals of a reasonable length. The calculation can be repeated and some
average values can be taken for larger noises. That approach leads to the immediate
differentiator convergence, if the noises are small. Unfortunately, the initial error can
happen to be very large in the presence of significant noises.

Homogeneous differentiators [46, 59] are known to slowly converge from large
initial errors (see Section 1.9.3). In the sequel we demonstrate that the hybrid (bi-
homogeneous) filtering differentiators solve this problem converging fast even from
large initial errors.



Title Suppressed Due to Excessive Length 35

1.9.2 Output-feedback control of the integrator chain

Consider the disturbed third-order integrator chain

...
x = cos(x2 + ẍ+ 100t+ 1) + 3+2 cos2(1000t)

1+cos2(1000t) u, y = x,

yc(t) = cos(0.5t) + 0.6 sin t,
(1.68)

where y is the output of the system, and the signal yc(t) is to be tracked. The tracking
error is correspondingly defined as σy = y−yc. The relative degree of system (1.68)
is 3.

It is easy to see that the tracking error σy satisfies
...
σy = hy(t, x, ẋ, ẍ) + gy(t, x, ẋ, ẍ)u, |hy| ≤ 2, gy ∈ [2, 3]. (1.69)

Therefore, each its solution satisfies the DI
...
σy ∈ [−2, 2] + [2, 3]u. (1.70)

Apply control (1.67) for α = 5,

u = −5 · || #–σ y2||
− 1

2
h∞

σ̈y + 2 ·
⌊
σ̇y + bσye

2
3

⌉ 1
2


1
2

. (1.71)

The Euler integration method is applied with the integration step τ = 10−6 and the
initial conditions (x(0), ẋ(0), ẍ(0)) = (50,−50, 50).

1.9.2.1 3-SM control with exact measurements

First assume that all derivatives of σ be available in real time. The corresponding
performance of the system is presented in Figs. 1.14-1.16.

Fig. 1.14 Tracking error σy = y − yc and its derivatives σ̇y, σ̈y vs time in the case of the 3-SM
Control (1.71) with full exact measurements.
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Fig. 1.15 Zoom of the tracking graphs for y(t), yc(t) and their derivatives in the 3-SM Control
(1.71) in the case of the 3-SM Control (1.71) with full exact measurements..

Fig. 1.16 3-SM Control (1.71) in the case of full exact measurements.

The obtained tracking accuracies are |y − yc| < 4 · 10−10, |ẏ − ẏc| < 5 · 10−7
and |ÿ − ÿc| < 5 · 10−5 for t > 25.

Now consider the case when only the tracking error σy is available, and an
observer/differentiator is to provide the estimations of #–σ y2. The differentiator outputs
zi are substituted for σ

(i)
y , i = 0, 1, 2, in the controller (1.71).

The hybrid filtering differentiator (1.34), (1.35) is chosenwithL = 100,M = 0.5,
nd = 2, nf = 7, z(0) = (1000,−1000, 1000). We intentionally choose large initial
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observer values to demonstrate its fast convergence. The parameters λi, i = 0, ..., 9,
are taken from (1.37). The differentiator discrete version (1.45), (1.46) is employed.

Fig. 1.17 3-SM output-feedback control in the absence of noises. Control signal and convergence
of the differentiator output z0 to the tracking error σy .

Fig. 1.18 3-SM output feedback tracking performance in the absence of noises
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The performance of the output-feedback 3-SM control in the absence of noises
is demonstrated in Figs. 1.17, 1.18. The resulting accuracy is |y − yc| < 5 · 10−10,
|ẏ − ẏc| < 2 · 10−6 and |ÿ − ÿc| < 6 · 10−3 for t > 40.

1.9.2.2 Output-feedback 3-SM control in the presence of noises

Let now σy = y − yc be measured with the noise

η(t) = η1(t) + η2(t) + η3(t),
η1(t) ∈ N (0, 0.52),
η2(t) = 108 sin(5 · 108t),
η3(t) = 0.2 · sin(500000t) · | cos(500000t)|−0.5,

(1.72)

where η1(t) is a Gaussian noise of the standard deviation 0.5, η2(t) is a harmonic
noise of extremely high magnitude and frequency, and η3(t) is an unbounded noise
(Fig. 1.19, Example 3).

Fig. 1.19 Noises (1.72): the Gaussian noise η1, the harmonic noise η2, the unbounded noise η3.

We preserve the same controller, differentiator, initial values and the sampling
interval.

Note that not only the noise magnitude, but also its frequency are challenging
for the differentiator. Indeed, the sampling frequency is very low compared with
the frequencies of both η2 and η3. Under the considered sampling with interval
τ = 10−6 both signals can be considered as discrete random signals of a not clear
distribution. The numeric evaluation of the integrals is not valid, since the number
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of the integration points per period is less than 0.1 in the first case and less than 3 in
the second.

In particular, the peaks appearing in the graph of η3 (Fig. 1.19) are caused by
some digital resonance due to the finite number of the meaningful computer number
digits. Note that the differentiator indeed diverges for the harmonic-signal frequency
exceeding 1010.

Performance of the system in the presence of the combined noise η(t) is demon-
strated in the Fig. 1.20. The tracking accuracy is (|σy|, |σ̇y|, |σ̈y|) ≤ (0.15, 1, 6.5)
for t > 45.

Fig. 1.20 Output-feedback 3-SM control (1.71) under the noise measurements. Control and con-
vergence of y(t) to yc(t).

1.9.3 Output-feedback robot SMC

Consider the academic example of a 1-link robot with a joint elasticity, inspired by
[40] (Fig. 1.21),
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J1q̈1 = u+K(t)(q2 − q1)− F1q̇1;
J2q̈2 = −K(t)(q2 − q1)− F2q̇2 −mgnd cos(q2).

(1.73)

Here q1 and q2 are the angular positions; J1 and F1 represent inertia and viscous
constants of the actuator, K(t) is the elasticity of the spring in an uncertain way
depending on the environment conditions. Control u is the torque produced at the
actuator axis. Similarly J2 and F2 are the corresponding constants of the link;m and
d represent the mass and the distance to the gravity center of the link, gn = 9.81 is
the free-fall acceleration.

Fig. 1.21 A one-link robot.

The system would be feedback-linearizable, if K(t) were a known constant. Let
J1 = 1,F1 = F2 = 1,J2 = md2 = 1,m = 0.25,d = 2, gn = 9.81. The "unknown"
functionK(t) and the signal q2c(t) to be tracked are chosen asK(t) = 5+sin t and
q2c(t) = cos(0.5t) + 0.6 sin t. The tracking error is defined as σ = q2 − q2c.

The system relative degree is 4, since q(4)2 = ...+K/(J1J2)u. Correspondingly
a 4-SMC of the form (1.66) is applied.

1.9.3.1 Robot output-feedback 4-SM control

Obviously system (1.73) satisfies a DI of the form (1.13) only locally. Therefore, the
developed SMC is also only locally effective. In order to start the control one needs
some initial values for the differentiator. Once more we choose large initial values of
the differentiator which naturally correspond to an attempt to algebraically evaluate
the initial tracking-error derivatives in the presence of large noises.

Apply the hybrid filtering differentiator (1.45), (1.46) with nd = 3, nf = 7,
L = 150,M = 0.5, z(0) = (10000,−12000, 20000,−10000). Note that q(4)2 grows
fast with the norm of the system state of (q1, q̇1, q2, q̇2), and the value L = 150 is
not exaggerated.

Choose the system initial values (q1, q̇1, q2, q̇2) = (1,−1, 1,−1). Let the sam-
pling step be τ = 10−6. Apply control (1.66) with α = 10 and zi substituted for
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σ(i), i = 0, 1, 2, 3. In order to feed the control with reasonably accurate derivative
estimations, the control is only applied at t = 10 providing the time for the observer
convergence.

Performance of the system in the absence of noises is presented in Figs. 1.22,
1.23. The system converges to the region

(|σ|, |σ̇|, |σ̈|, |...σ |) ≤ (1.2 · 10−6, 5.3 · 10−7, 3.7 · 10−5, 0.06).

Fig. 1.22 Robot 4-SMC, hybrid differentiator in the feedback: tracking performance and control in
the absence of noise. Control is applied from t = 10.

Let now σ be measured with the noise η = 105 cos(107t) (Fig. 1.24). Once more
note that the noise frequency is way too high for the sampling/integration interval
τ = 10−6. The corresponding performance of the output-feedback controller is
shown in Fig. 1.25. The tracking accuracy is

(|σ|, |σ̇|, |σ̈|, |...σ |) ≤ (1.9 · 10−2, 0.026, 0.18, 4.5).

Let now check the performance of the homogeneous filtering differentiator with
exactly the same parametersL = 150, nd = 3, nf = 7, butM = 0, in the absence of
noises. Both differentiators are applied in the same feedback and all the parameters,
initial values, etc. are the same as above. The only difference is in the parameterM .
The results are presented in Fig. 1.26.

While the filtering differentiator is very stable and converges to the exact values
of #–σ 3 in FT, the convergence time is so long here that its application is practically
impossible.
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Fig. 1.23 Robot 4-SMC, hybrid differentiator in the feedback in the absence of noises. Below:
convergence of the tracking errors σ, σ̇, σ̈, ...σ to zero; above: convergence of the differentiator
outputs zi to σi, i = 0, 1, 2, 3. Control is applied from t = 10 in order to provide some time for
the differentiator convergence.

Fig. 1.24 Robot 4-SMC, the noise η = 105 cos(107t) of the sampled tracking errorσ = q2−q2c.

1.10 Conclusion

Newmethodology of homogeneous SMcontrol design and homogeneous/bihomogeneous
SM-based observation are presented. Extensive numeric experiments demonstrate
the effectiveness of the technique in the presence of very large and even unbounded
sampling noises.
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Fig. 1.25 Robot 4-SMC, hybrid differentiator in the feedback. Performance in the presence of the
noise η = 105 cos(107t). Above: the tracking of q2c by the angle q2 and the graph of the angle
q1. Below: the control is applied from t = 10.

Fig. 1.26 Robot 4-SMC, with a differentiator in the feedback. Comparison in the absence of noises
for the same initial values z(0) = (10000,−12000, 20000,−10000). Above: Convergence of
the hybrid differentiator (M = 0.5). Below: practical divergence of the filtering differentiator.
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