
 
 

 

  

Abstract—High-Order Sliding Mode (HOSM) control was 
originally proposed to overcome the dangerous chattering 
effect. The idea is to treat the time derivative of the actual 
control as a new control artificially raising the relative degree 
of the sliding variable. The resulting HOSM features finite-time 
stability, ultimate accuracy of sliding mode, and smooth control.  
Unfortunately, due to the interaction between the control and 
its derivative, the convergence to the HOSM is only ensured, if 
the initial values of the successive sliding-variable derivatives 
are small enough. It is proved in the paper that under mild 
conditions that restriction is removed. Output-feedback 
controllers are constructed. Computer simulation confirms the 
applicability of the approach. 

I. INTRODUCTION 
ONTROL under heavy uncertainty conditions remains 
one of the main subjects of the modern control theory. 
One of the most popular approaches to the problem is 

based on the sliding-mode control. The idea is to react 
immediately to any deviation of the system from some 
properly chosen constraint steering it back by a sufficiently 
energetic effort. Although very robust and accurate, the 
approach also features certain restrictions. The standard 
sliding mode may be directly implemented only if the 
relative degree of the constraint is 1, i.e. control has to 
explicitly appear already in the first total time derivative of 
the constraint function. Another problem is that the high-
frequency control switching may cause dangerous vibrations 
(chattering effect)  [2], [5]-[7], [10], [11], [27]. 
 The issues can be settled in a few ways. High-gain control 
with saturation is used to overcome the chattering effect 
approximating the sign-function in a narrow boundary layer 
around the switching manifold [25], the sliding-sector 
method [12] avoids chattering in control of disturbed linear 
time-invariant systems. The sliding-mode order approach 
[2]-[4], [9], [15]-[25] is capable to treat both the chattering 
and the relative-degree restrictions, while preserving the 
sliding-mode features and improving the accuracy. 

High order sliding mode (HOSM) [16], [17] actually is a 
movement on a discontinuity set of a dynamic system 
understood in Filippov's sense [8]. The sliding order 
characterizes the dynamics smoothness degree in the vicinity 
of the sliding mode.  

Consider a smooth dynamic system with a smooth output 
function s. The function s can for example be a tracking 
error. Let the system be closed by some possibly-dynamical 
discontinuous feedback and be understood in the Filippov 
sense [8]. The task is to make s vanish, keeping it at zero 
 

L. Dorel and A. Levant are with the School of Mathematical Sciences, 
Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel (phone: +972-3-
6408812; fax: +972-3-6407543; e-mail: levant@post.tau.ac.il). 

afterwards. Successively differentiating s along trajectories, 
a discontinuity will be encountered sooner or later in the 
general case. Thus, sliding modes s º 0 may be classified by 
the number r of the first successive total derivative s(r) which 
is not a continuous function of the state space variables or 
does not exist due to some reason, like trajectory 
nonuniqueness. That number is called the sliding order. The 
rth order sliding modes are also called r-sliding modes.  
 Recall that, roughly speaking, the relative degree is the 
number of the total time derivative of the output, in which 
the control appears explicitly for the first time [13]. The 
sliding order r coincides with the relative degree, if the 
output relative degree is well-defined., and the control is 
discontinuous.  
 One of the main results of the HOSM theory is that a 
number of predefined standard controllers are developed, 
defined for each given relative degree r, which solve the 
problem of keeping s = 0 in finite time. Such controllers are 
called r-sliding controllers [16], [17] and actually require 
only the knowledge of the system relative degree r. The 
produced control is a discontinuous function of s and of its 
real-time-calculated successive derivatives s& , ..., s(r-1). Such 
controllers provide for the accuracy s = O(tr) with the 
sampling interval t [18]. This asymptotics is preserved, when 
a robust exact differentiator of the order r - 1 [17] is applied 
as a standard part of the output-feedback r-sliding controller. 

The produced HOSM control features the high, 
theoretically infinite frequency of control switching, which 
can still be troublesome. In practice the control is inevitably 
based on sensor outputs. Also the control signal does not 
directly influence the system, either affects it via an actuator, 
being itself a dynamic system. The complicated interaction 
of frequent switching with various noises, delays, and fast 
dynamics of sensors and actuators produces dangerous high-
frequency system vibrations called the chattering effect.  

Nevertheless, HOSMs were historically created to remove 
the chattering effect. The idea is to consider the kth-order 
time derivative of the actual control as the new control input. 
As a result, the relative degree raises, and a new (r + k)-
sliding controller is applied, corresponding to the new 
relative degree r + k. The real control is now the output of an 
integrator chain, i.e. is smooth of the needed order k. The 
input u and its derivatives u& , …, u(k-1) are considered now as 
system coordinates.  The (r + k)-sliding-mode conditions s = 
s&  =  ... = s(r+k-1) = 0 define a manifold in that extended 
space. 

Recent results [5], [6], [10], [11], [21] show that the 
produced (r + k)-sliding dynamics is robust with respect to 
the influence of unaccounted-for small noises, delays, fast 
stable actuators and sensors. Moreover, it was proved that 
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the dangerous chattering effect is removed, and only 
negligibly small vibrations of infinitesimal energy persist 
[21]. Note that it is the specific combination of k integrators 
and the (r + k)-sliding control, which remove the chattering, 
and not just the integration chain itself. 

Any (r + k)-sliding controller is based on the domination 
of the new control u(k) in the expression for s(r+k). 
Unfortunately, in the general case u and its lower derivatives 
explicitly appear in s(r+k). Some interaction of u and its 
derivatives during the convergence to the (r + k)-sliding 
mode s = s&  =  ... = s(r+k-1) = 0 is inevitable. Thus, generally 
speaking, such an (r + k)-sliding controller is for sure 
effective in some vicinity of the (r + k)-sliding mode only. 
Indeed, the conditions  s(r)-=  ... =  s(r+k-1) = 0 determine u, 
u& , …, u(k-1) in a unique way (the equivalent control and its 
derivatives [26]), which excludes the above interaction in 
some vicinity of the sliding mode.  

The global convergence is so far assured only for the 
transfer from the relative degree 1 to 2, i.e. for r = k = 1 [16]. 
Semi-global convergence is provided in the general case, 
implementing (r + k)th order integral sliding mode [22].  
Note that in the latter case one needs to calculate a 
predefined transient trajectory in the coordinates s, s& ,  ..., 
s(r+k-1) connecting the initial point with the origin s = s&  =  
... = s(r+k-1) = 0. 

The above integral sliding mode approach is significantly 
simplified in this paper.  One does not need anymore to 
calculate a transient trajectory in advance.  Thus, the method 
can be easily applied for the chattering attenuation 
procedure, or just to exterminate the system uncertainty from 
the very beginning.    
 The produced controller can be equipped with a robust 
finite-time convergent differentiator [3], [14], [17], 
producing output-feedback control. The asymptotical 
accuracy of the sliding mode is calculated in the presence of 
measurement noises and discrete sampling. The results are 
illustrated by computer simulation. 

II. THE CHATTERING ATTENUATION PROBLEM  
Consider a dynamic system of the form 
 

      x&  = a(t,x) + b(t,x)u,    s = s(t, x),              (1) 
 
where x Î Rn, a, b and s: Rn+1 ® R are unknown smooth 
functions, u Î R is the control, n might be also uncertain. 
The task is to get s º 0. 
 All differential equations are understood in the Filippov 
sense [8], which allows discontinuous dynamics. The system 
relative degree r is assumed to be constant and known, which 
implies [13] that 
 
        s(r) = h(t,x) + g(t,x)u,           (2) 
 
where h(t,x) = s(r)|u=0, g(t,x) = u¶

¶ s(r) ¹ 0 are some unknown 

smooth functions. It is supposed that  
 

       0 < Km £ g(t,x) £ KM,      | h(t,x) | £ C               (3) 
 
for some Km, KM, C > 0. Note that at least locally it is always 
true. The corresponding local or semiglobal convergence 
Theorems [17] also make sense due to the finite-time 
convergence. Note that (3) indeed holds in most engineering 
applications. For example, any aircraft can operate only with 
bounded velocities, accelerations, altitudes, etc. 
 Trajectories of (2) are assumed infinitely extendible in 
time for any Lebesgue-measurable bounded control u(t, x). 
Though formally not needed, it is probably required in 
practice that the system feature bounded-input-bounded-state 
property.  
 The above problem statement is standard and is solved by 
a number of known r-sliding controllers  [4],  [17] - [19] 
 
         u = aUr(s, s& , ...,  s(r-1)),       (4) 
 
which actually solve the problem for the differential 
inclusion  
 
         s(r) Î [-C, C] + [Km, KM]u       (5) 
 
instead of  (2), (3). Here Ur is a bounded discontinuous 
function. Only the control gain a > 0 needs to be adjusted for 
the concrete values of C, Km, KM, providing for the finite-
time convergence of the inclusion trajectories to zero. 
Controllers considered in this paper in detail are quasi-
continuous [19], and are defined further. 
 Control (4) is discontinuous and therefore produces 
considerable chattering, when the sliding mode s º 0 is kept. 
In order to remove the dangerous high-energy vibrations 
consider u&  as the new system input. Differentiating (2) 
obtain 
 
     s(r+1) = h1(t,x,u) + g(t,x) u& ,           (6) 
    h1 = th¢ + xh¢ a + ( xh¢ b + tg¢ + xg¢ a)u + xg¢ bu2. 
 
According to the standard procedure the control is defined as   
 
    u&  = aUr+1(s, s& , ...,  s(r)).           (7) 
 
It is natural to suppose that  
 
| th¢ + xh¢ a | £ ca, | xh¢ b + tg¢ + xg¢ a | £ cb, | xg¢ b | £ cd,            (8) 
 
where ca, cb, cd are some positive constants. Also this 
assumption is always true at least locally.  
 Unfortunately, restrictions (3), (8) cannot ensure the 
domination in (6) of the term with u& , even if  a is large. 
Therefore, the control (7) might not provide for the 
convergence of  s, s& , ...,  s(r) to zero. The problem is 
resolved, if the initial point is close to the (r+1)-sliding 
manifold 
 
     s = s&  = ... =  s(r) = 0.         (9) 



 
 

 

 
Indeed, in that case s(r) = 0 implies that u is close to its 
unknown equivalent value 
 
      ueq = - h(t,x)/g(t,x),  
 
and h1 in (6) remains bounded. Thus, only local convergence 
in the extended space t, x, u is guaranteed. Unlike the 
conditions (3), (8) this condition is indeed very restrictive, 
since the convergence region can be really small, and ueq is 
uncertain. A simple effective solution of this problem is the 
main subject of this paper. 

III. QUASI-CONTINUOUS CONTROLLERS 
 While any r-sliding controller can be applied here, only 
one controller family is considered. Let i = 0, 1, …, r-1. The 
following recursive procedure defines the family of quasi-
continuous controllers [19] stabilizing (5) in finite time, and 
therefore solving the standard problem (1) - (3): 
  
 j0,r = s,  N0,r = |s|,      Y0,r = j0,r /N0,r = sign s,  
 ji,r = s(i)+bi

)1/()(
,1

+--
-

irir
riN Yi-1,r,  

 Ni,r= |s(i)|+bi
)1/()(

,1
+--

-
irir

riN ,   Yi,r = ji,r / Ni,r,   

 u = - aYr-1,r(s, s& , ...,  s(r-1)).            (10) 
 
 Here b1, ..., br-1 > 0, a > 0 are the controller parameters. 
Obviously, a is to be negative with (∂/∂u)σ(r) < 0. Denote Si 
= (s, s& …, s(i)). It is easy to see that Ni,r(Si) is a positive-
definite continuous function, Yi,r(Si) is continuous 
everywhere except Si = 0, and |Yi,r| £ 1. These controllers 
feature specific homogeneity properties [18].  
 A function f: Rn ® R (respectively a vector-set field F(x) 
Ì Rn, x Î Rn, or a vector field f: Rn ® Rn) is called 
homogeneous of the degree q Î R with the dilation [1], [18] 

             dk: (x1, x2, ..., xn) a ),...,,( 21
21

n
mmm xxx nkkk , 

where m1, ..., mn are some positive numbers (weights), if for 
any k > 0 the identity f(x) = k-q f(dkx) holds (respectively 
F(x) = k-qdk

-1F(dkx), or f(x) = k-qdk
-1f(dkx)). The non-zero 

homogeneity degree q of a vector field can always be scaled 
to ±1 by an appropriate proportional change of the weights 
m1, ..., mn.  
 Note that the homogeneity of a vector field f(x) (a vector-
set field F(x)) can equivalently be defined as the invariance 
of the differential equation x& = f(x) (differential inclusion 
x& Î F(x)) with respect to the homogeneity time-coordinate 
transformation 
  
             Gk : (t, x) a (k p t, dk x),   
  
where p, p = - q, might naturally be considered as the weight 
of t. Indeed, the homogeneity condition can be rewritten as 

x& Î F(x) Û )(
)(
)( xdF

td
xdd

p k
k Î

k
. 

 Let the coordinates  s, s& , ... ,s(r-1) have the homogeneity 
weights r, r - 1, …, 1 respectively. Then the differential 
inclusion  (5), (10) is homogeneous with the degree -1 and 
the homogeneity transformation 
 
Gk : (t, Sr-1) a (k t, dkSr-1) , dkSr-1= (krs, kr-1 s& , ... , ks(r-1)).  
 
The corresponding homogeneity is called r-sliding 
homogeneity, and the quasi-continuous controller (10) is 
respectively called r-sliding homogeneous [18]. 
Choice of the parameters bi. The idea of  the controller 
(10) is to keep Yr-1,r = jr-1,r/ Nr-1,r close to zero. The equality  
 
  jr-1,r = s(r-1)+bi )( 2

2/1
,2 -- SrrrN Yr-2,r(Sr-2) = 0   (11) 

 
defines an r-sliding homogeneous differential equation of the 
order r-1. The sufficient condition for the convergence of (5) 
(10) to zero in finite time with sufficiently large a is that (11) 
be finite-time stable. It is shown that (11) is finite-time stable 
if b1, ..., br-1 are chosen sufficiently large in the list order. 
 Note that while enlarging a increases the class (3) of 
systems, to which the controller is applicable, parameters bi, 
are tuned to provide for the needed convergence rate. The 
following procedure provides for the approximately l times 
reduction of the convergence time [20]. The new parameters 

1
~
b , …, 1

~
-br , a~  are calculated according to the formulas 

1
~
b = lb1,  2

~
b = lr/(r-1)b2,  ...,  1

~
-br = lr/2br-1,  a~ = lra. 

Following are the resulting quasi-continuous controllers with 
r £ 4 and simulation-tested bi: 
 
1. u = - a sign s, 
2. u = - a ( s& +l |s|1/2sign s)/(| s& |+l|s|1/2), 
3. u = - a [ s&& + 2l3/2 (| s& |+ l|s|2/3)-1/2( s& +l|s|2/3sign s ) ] /  

              [| s&& |+ 2l3/2 (| s& |+ l|s|2/3)1/2], 
4. j3,4 = 

s&&& +3l2[ s&& +l4/3(| s& |+0.5l|s|3/4)-1/3( s& +0.5l |s|3/4sign s)]   
     [| s&& |+l4/3(| s& |+0.5l |s|3/4)2/3]-1/2, 
N3,4 = | s&&& | + 3l2 [| s&& |+l4/3(| s& |+0.5l |s|3/4)2/3]1/2,  
u = - a j3,4 / N3,4 . 

IV. PROBLEM SOLUTION 
 Return to the chattering attenuation problem (1) – (3), (8). 
Consider the controller 
 
  u&  = - aYr,r+1(S, S& , ...,  S(r)) ,           (12) 
  s(r+1) = - a0Yr,r+1(s, s& , ...,  s(r)),   S = s - s,      (13) 
  s(t0) = s(t0), …, s(r)(t0) = s(r)(t0).          (14) 
 
Here the controller - a0Yr,r+1 is any r-sliding homogeneous 
controller, providing for  the desired convergence rate and 
the global finite-time stability of (13). The classical 
conception of the (first order) integral sliding mode [27]  
corresponds in the considered (r+1)th order case to  



 
 

 

   s(r+1) = - a0Yr,r+1(s, s& , ...,  s(r))        (15) 
 
instead of (13). In such a case the sliding manifold S = 0 
motion is defined by the "pure" feedback principle. The term 
"integral sliding mode" is clarified after one notes that s is 
the (r+1)th order integral of (13) or (15). 
Theorem 1.  Let the initial values of the system (1) belong to 
some compact region. Then with properly chosen 
parameters  of  the controllers (12), (13) and any sufficiently 
large a both controllers (12) - (14) and (12), (14), (15)  
provide for the establishment in finite time and keeping 
afterwards of  the (r+1)-sliding mode s º 0. The transient 
dynamics is described by the finite-time stable equation 
 
    s(r+1) = - a0Yr,r+1 (s, s& , ...,  s(r)).      
 
Proof.  First take the controller (12) – (14). Consider the 
output function S = s – s for the system (1), (12), (13). As 
follows from (12), (13) 
 
S(r+1) = h1(t,x,u) + g(t,x) u& + a0Yr,r+1(s, s& , ...,  s(r)),       (16) 
S(r) = h(t,x) + g(t,x)u -  s(r). 
 
Let s(t) be the solution of (13), t ³ t0. It vanishes in finite 
time and stays at zero afterwards. Thus, from the equation 
S(r) = 0 obtain 
 
      ueq = (s(r)(t) - h(t,x))/ g(t,x). 
 
Hence, the (r+1)-sliding manifold S º 0 is described by the 
equations 
 
s - s(t) = s& - s&  = … = s(r-1) - s(r-1) = 0,  u - ueq(t,x) = 0. 
 
The motion in the (r+1)-sliding mode s - s(t) º 0 is 
described by the equations 
 
 x&  = a(t,x) + b(t,x) (s(r)(t) - h(t,x))/ g(t,x),                   (17) 
  s = s(t), s& = s& (t),  …  s(r-1) = s(r-1)(t).      (18) 
 
There is a correspondence between trajectories of (17), (18) 
and trajectories of (13), (14) in the auxiliary coordinates s. 
The initial conditions of (13), (14) also automatically belong 
to some compact set. Take a time segment so large that all 
the trajectories of (13), (14) terminate at zero. The 
corresponding trajectory segments of (17), (18) with the 
initial conditions (14) comprise a compact point set W which 
is the projection of a high-dimensional compact set in the 
coordinates t, x, s. The continuous function ueq(t,x) is 
obviously bounded on W. Let 
 
    C1 > ca + cb sup |ueq |  + cd sup2 |ueq |. 
 
 Due to (16) any trajectory of (12), (13), (14) satisfies the 
inclusion  
 

   S(r+1) Î [-C1 - a0, C1 + a0] + [Km, KM] u&    
 (19) 
 
whenever (t,x) Î W. Taking now a sufficiently large, provide 
for the finite-time stability of (19). Taking into account the 
initial conditions (14), obtain that S º 0 is kept from the very 
beginning. Therefore, the resulting trajectories are exactly 
the trajectories of (17), (18), (13), (14).  
 The case of the controller (12), (14), (15) is similarly 
considered. The trajectories still satisfy inclusion (19) 
whenever (t,x) Î W. Due to the initial conditions (14) the 
resulting trajectories are exactly the same.n 
 Implementing an rth order robust exact differentiator [17] 
obtain the output-feedback controller 
 
u&  = - aYr,r+1(z0 - s, z1 - s& , ..., zr - s

(r)) ,  ,        (20) 
s(r+1) = - a0Yr,r+1(s, s& , ...,  s(r)),            (21) 
s(t0) =  z0(t0), …, s(r)(t0) =  zr(t0).             (22) 

0z&  = v0, v0 = - l r L
1/(r+1)| z0 - s| r/(r+1) sign(z0 - s) + z1,  

1z&  = v1,  v1 = - l r-1 L
1/r| z1 - v0|

 (r-1)/r sign(z1 - v0) + z2,  
          ...             (23) 

1-rz& = vr-1, vr-1 = -l1 L
1/2| zr-1 - vr-2|

 1/ 2sign(zr-1- vr-2)+ zr, 

rz& = -l0 L sign(zr - vr-1), 
 
where L > C1 + aKM, and parameters li of  differentiator 
(12) are chosen in advance. In particular, the following 
values can be used for any r £ 5: l 0 = 1.1, l 1 = 1.5, l 2 = 3, 
l 3 = 5, l 4 = 8, l 5 = 12 [19].  
Theorem 2. The discrete-measurement version of the 
controller (20)-(23) with the sampling interval t provides in 
the absence of measurement noises for the inequalities 
 
     |s| < g0t

r+1, | s& | < g1t
 r, ..., s(r) < grt   

 
for some g0, g1, ..., gr > 0. In the presence of any Lebesgue-
measurable sampling noise of the magnitude e the 
accuracies  
 
   |s| < d0e, | s& | < d1e

 r/(r+1), ..., s(r) < dr – 1e
1/(r+1)   

 
are obtained for some d0, d1, ..., dr - 1 > 0. 
 That asymptotic accuracy is the best possible with 
discontinuous s(r) and discrete sampling [16]. 
Proof. Denote si = zi – s(i). Then using s(r+1) Î [-L, L] the 
control can be rewritten as 

u&  = - aYr,r+1(s0 + S, s1 + S& , ..., sr + S(r)),      (24) 

0s& = - lr L
1/(r+1)|s0 |

 r/(r+1)  sign(s0) + s1  ,  

1s& = - lr-1 L
1/(r-1)| s1- 0s& |(r-2)/(r-1)sign(s1- 0s& ) + s2, 

     ….                            (25) 

1-sr& = - l1 L
1/2|sr-1- 2-sr& |1/2sign(sr-1- 2-sr& ) + sr, 



 
 

 

rs&  Î - l0 L sign(sr - 1-sr& ) + [-L, L]. 

Solutions of (19) - (23) satisfy the Filippov differential 
inclusion (19), (24), (25). Assign the weights r +1 - i to si, 
S(i),  i = 0, 1, ..., r, and obtain a homogeneous differential 
inclusion (6), (13), (14) of the degree -1. The part (25) of 
this inclusion collapses in finite time [17]  and si º 0 from 
that moment. The inclusion (19), (12) is also finite-time 
stable. Thus, (19), (24), (25) is finite-time stable, and its 
accuracy is readily given by [18].n 

V. CHATTERING ANALYSIS 
A few notions recently introduced in [21] are briefly 

reviewed here. Define the L1-chattering of the signal x(t) 
with respect to x (t) as  

L1-chat(x, x ; 0, T) = 
T

0
ò | x& (t) - x& | dt. 

In other words, L1-chattering is the distance between x&  and 

x&  in L1-metric, or the variation of the signal difference Dx. It 
can be also interpreted as the work of the virtual dry friction 
force f = – sign D x& . Lp-chattering, p > 1, is similarly defined. 
These notions are almost equivalent [21], and the prefix   
"Lp-" is further omitted. 

Let x(t) Î Rn, t Î [0, T], be an absolutely continuous 
vector function, and M(t, x) be some positive-definite 
continuous symmetric matrix with the determinant separated 
from 0. The chattering of a trajectory x(t) with respect to 
x (t) is defined as  

 chat(x, x ; 0, T) = dtxtxxtMxtx
T

tt 2/1

0

)])((),())([( &&&& --ò . 

 Consider a chattering family of absolutely continuous 
trajectories (signals) x(t,e) Î Rn, t Î [0, T], e Î Rl. The 
family parameters ei measure some imperfections and tend to 
zero. Define the nominal trajectory (signal) as the limit 
trajectory (signal) x (t) = 

0
lim
®e

 x(t,e),  t Î [0, T]. The 

chattering is not defined in the case, when the limit trajectory 
x (t) does not exist or is not absolutely continuous. 
 The chattering is infinitesimal if 

0
lim
®e

chat(x, x ; 0,T) = 0. 

The chattering is bounded if 
0

lim
®e

chat(x, x ; 0,T) > 0. 

The chattering is unbounded if 
0

lim
®e

chat(x, x ; 0, T) = ∞. 

 In the case of a uniformly converging chattering family the 
notions of the chattering infinitesimality, boundedness and 
unboundedness are invariant with respect to smooth 
transformations of time and coordinates, and to the choice of 
a continuous positive-definite symmetric matrix M. 
 It is said that there is infinitesimal chattering in a closed-
loop control system depending on a small vector chattering 
parameter, if any local chattering family of plant state 
trajectories features infinitesimal chattering. It is said that the 
chattering is bounded (unbounded) if there exists a local 
chattering family with bounded (unbounded) chattering.  

 Some coordinates of the closed-loop-system mathematical 
model can be excluded from the plant state. It happens, in 
particular, if a dynamic controller is used, based on the 
computer technique. The chattering of the internal computer 
variables can be ignored. 
 Note that the least possible chattering in this classification 
is the infinitesimal one. In other words the infinitesimal 
chattering is present in any control system as a result of 
infinitesimal disturbances of different nature. One can prove 
that under mild conditions infinitesimal-chattering 
mechanical systems have only infinitesimal heat emission.  
 It is proved [21] that sliding-mode control systems feature 
bounded chattering. High gain systems feature unbounded 
chattering, if infinitesimal sampling noises are accounted for. 
Systems obtained by means of the above chattering 
attenuation procedure have only infinitesimal chattering in 
the presence of small delays, sampling noises, fast stable 
actuators and sensors [21]. 

VI. SIMULATION 
Consider a simple pendulum without friction. An engine 
transmits a torque u. The features of the engine 
uncontrollably change in time as a result of some additional 
load. The task is to track some function xc given in real time 
by the angular coordinate x of the pendulum. 
 The system is described by the equation 

     x&&  = - sin x + R(t) u,   R(t) Î [0.5, 1.5].              

Here R&  and cx&  are assumed bounded, s = x-xc is available. 
The relative degree of the system is 2, and straight-forward 
sliding-mode control leads to the hard chattering of the 
system coordinate x& . Artificially increase the relative degree 
to 3, considering u&  as a new control. 
 The initial conditions are x(0) = -6, x& (0) = -15, u(0) = 3. 
Following are the functions R and xc considered in the 
simulation: 
 
R = 2 + sin 4t,      xc = 0.5 sin 0.5t + 0.5 cos t . 
 
 The output-feedback controller takes on the form 
 
u&  = - 40 [S2+ 2 (|S1|+ | S0|

2/3)-1/2(S1+ | S0|
2/3sign S0 )] / 

               [|S2|+ 2 (|S1|+ | S0|
2/3)1/2]; 

s = x-xc, S0 = z0 – s, S1 = z1 - s& , S2 = z2 - s&& ; 
s&&& = -l320[ s&& + 2l3/2 (| s& |+ l|s|2/3)-1/2( s& +l|s |2/3sign s ) ] /       
            [| s&& |+ 2l3/2 (| s& |+ l| s |2/3)1/2], 

s(t0) =  z0(t0),  s& (t0) =  z1(t0), s&& (t0) =  z2(t0); 

0z&  = v0, v0 = - 18.5664 | z0 - s| 2/3 sign(z0 - s) + z1, 

1z&  = v1,  v1 = - 42.4264 | z1 - v0|
 1/2  sign(z1 - v0) + z2, 

2z& = - 880 sign(z2 - v1). 

Here L = 800. The time t0 = 0.5 provides some time for the 
differentiator convergence; z0(0) = s(0), z1(0) = z2(0) = 0. 



 
 

 

Two values l = 0.8, 0.5 were considered in order to 
demonstrate the transient dynamics rate change. 

 
Fig. 1. Performance with different l and noise magnitude e 

 The integration was carried out according to the Euler 
method (the only reliable integration method with 
discontinuous dynamics). The sampling step was equal to the 
integration step t = 10-5.  
 In the absence of output noises the tracking accuracies 
|s| £ 1.4×10-10, | &s | £ 6.0×10-7, | &&s | £ 0.007 are obtained with 
l = 0.8, 0.5 and t = 10-5 (Fig. 1a,b). With the sampling noise 
of the magnitude e = 0.01 the accuracies |s| £ 0.018, | &s | £ 
0.28, | &&s | £ 7.2 are obtained. They change to |s| £ 0.0015, 
| &s | £ 0.062, | &&s | £ 3.3 with e = 0.001. Coordinates s, &s  of 
the system demonstrate infinitesimal chattering only (Fig. 
1d,e), while &&s , and u feature bounded chattering (Fig. 1c,f), 
which corresponds to [21]. One needs to raise the relative 
degree once more if the bounded chattering of the control is 
not acceptable.  

VII. CONCLUSIONS 
A simple chattering attenuation procedure is proposed 

based on HOSMs, which is free of the interaction between 
the control and its derivatives. Also output feedback 
controllers are constructed, and asymptotic accuracies 
calculated.  

Each procedure step increases the order of the plant 
coordinate derivatives with bounded chattering by one. As a 
result the hard chattering phenomena are removed from the 
plant to auxiliary control devices, usually computers.  
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