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Abstract

Sliding-mode-based differentiation of the input f (t) yields exact estimations of the derivatives ḟ , ..., f (n), provided an upper bound L(t)
of | f (n+1)(t)| is available in real-time. In practice it involves discrete sampling and numerical integration of the internal variables between
the measurements. Accuracy asymptotics of different discretization schemes are calculated for discrete noisy sampling, whereas sampling
and integration steps are independently variable or constant. Proposed discrete differentiators restore the optimal accuracy asymptotics of
their continuous-time counterparts. Event-triggered sampling is considered. Extensive numeric experiments are presented and analyzed.
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1 Introduction
Differentiation of noisy signals is usually performed

by the algebraic, functional-analysis [31] and con-
trol/observation methods. The observation-approach is to
approximate the input by a signal with known derivatives to
be considered as derivatives’ estimations. Such tracking is
often based on high-gain [3], homogeneous [34] and sliding-
mode (SM) control [44,12,41,45]. High-order sliding modes
(HOSMs) [5,7,11,13,15,19,29,35,36,33,39,42] require
finite-time (FT) exact robust differentiators and use homo-
geneity theory for their development [2,9,19,20,32,37,40].

Homogeneous SM-based differentiators [19,22] provide
for the FT exact estimation of the derivatives f (i), i≤ n, of the
input f (t), provided an upper bound L, | f (n+1)| ≤ L, is avail-
able. They also provide for the optimal error asymptotics
with respect to the noise magnitude [27] (see Section 3.1).
Differentiators [25,28] also reject unbounded noises of small
average value. Variable L(t) is considered in [10,22,24].

A practical SM-based differentiator is a computer-based
system with a noisy discretely-sampled continuous-time in-
put, and numerical integration of the discontinuous dynam-
ics over each sampling interval [30,38]. Its error dynamics
are in fact hybrid [43,30].

The widely used Matlab solvers are based on the Runge-
Kutta methods and are not applicable to SM-based dynamics
due to accuracy deterioration and slow calculation. Thus
the Euler method becomes the main integration method in
application and simulation of such systems.

One naturally expects the vanishing Euler integration step
to restore the optimal error asymptotics [19,20] obtained in
the continuous-time case. That expectation is mathemati-
cally true, but we prove here that it is practically impossible
to choose a sufficiently small integration step if the differ-
entiation order n exceeds 1.
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Novelty. This paper is the first regular publication analyzing
the influence of intermediate integration steps in the discrete
SM-based differentiation. We prove and demonstrate some
of the results briefly announced at the conference [6] and,
without proofs, in the survey book chapter [26]. In contrast
to [6,26] we also introduce new homogeneous-discretization
methods, consider variable parameter L(t) for differentiators
[19] and extend the results to the non-homogeneous hybrid
differentiators recently introduced in [24].

The proposed new methods of homogeneous discretiza-
tion significantly extend results of [30] and restore the op-
timal continuous-time accuracy asymptotics [19,22,27] for
considered differentiator types. In that particular case the
intermediate integration steps are shown to neither destroy
nor improve the accuracy asymptotics.

A special implementation case corresponds to the input
produced by an event-triggered sensor, since the sampling-
time intervals become unbounded. Differentiation of such
signals by SM-based technique is a long-standing problem.
As a solution we propose a simple virtual-measurements’
strategy removing the possible differentiation instability and
even providing for the optimal accuracy asymptotics.
The paper structure. The weighted homogeneity theory
and SM-based differentiators are briefly introduced in Sec-
tions 2, 3. Theoretical results are presented in Sections 4, 5.
Extensive numeric experiments are analyzed in Section 6.
All proofs are concentrated in appendices.
Notation. Denote bAeB = |A|B signA if B > 0 or A 6= 0;
bAe0 = signA. Let f (Ω) = { f (ω) |ω ∈Ω} for any set Ω and
function f . For any sets Ω,Θ and the binary operation � de-
fine Ω�Θ = {ω �θ | ω ∈Ω,θ ∈Θ}, also ω �Θ = {ω}�Θ.
|| · || is the Euclidean norm, Bε = {x| ||x|| ≤ ε}. The upper

semi-continuity of a compact-set function F(x), F : Rk →
2R

k
, means that the maximal distance from the points of

F(x) to the set F(y) tends to zero, as x→ y.
A statement is said to hold for sufficiently small (large)

v1, ...,vk > 0, if there exist such w1, ...,wk > 0 that it holds for
any v1 ≤ w1, ...,vk ≤ wk (respectively v1 ≥ w1, ...,vk ≥ wk).

Preprint submitted to Automatica 24 October 2019



2 Weighted homogeneity of differential inclusions
Let TxRnx denote the tangent space to Rnx at the point x.

Recall that a solution of a differential inclusion (DI)

ẋ ∈ F(x), x ∈ Rnx , F(x)⊂ TxRnx , (1)

is defined as any locally absolutely continuous function x(t),
satisfying the DI for almost all t. DI (1) is called Filippov
DI, if F(x) is non-empty, compact and convex for any x, and
F is an upper-semicontinuous set function.

Filippov DIs feature existence and extendability of solu-
tions, but not the solution uniqueness [14].

Introduce the weights m1,m2, . . . ,mnx > 0 of the coor-
dinates x1,x2, . . . ,xnx in Rnx . Define the dilation dκ(x) =
(κm1x1,κ

m2 x2, ...,κ
mnx xnx) for κ ≥ 0.

Recall [4] that a function f : Rnx →Rm is said to have the
homogeneity degree (weight) q∈R, deg f = q, if the identity
f (x) = κ−q f (dκ x) holds for any x and κ > 0. We do not
distinguish between the weight of the coordinate xi and the
homogeneity degree of the coordinate function cxi(x) = xi:
degcxi = degxi = mi.

A vector-set field F(x) ⊂ TxRnx (DI (1)) is called ho-
mogeneous of the degree q ∈ R, degF = q, if the identity
F(x) = κ−qd−1

κ F(dκ x) holds for any x and κ > 0 [20].
Hence, the homogeneity of the vector-set field F(x) ⊂

TxRnx implies the invariance of DI (1) with respect to
the combined time-coordinate transformation (t,x) 7→
(κ−qt,dκ x), κ > 0, where −q can be considered as the
weight of t, deg t =−q.

The standard definition [4] of homogeneous differential
equations is a particular case here. Note the difference be-
tween the homogeneity degree of a vector function taking
values in Rnx and of a vector field which takes the values in
the tangent space TRnx .

The non-zero homogeneity degree q of a vector-set field
can always be scaled to ±1 by an appropriate proportional
change of the coordinate weights m1, ...,mnx .

The contractivity [20] of the homogeneous Filippov DI
(1) is equivalent to the existence of T > 0, R > r > 0, such
that for all solutions ||x(0)|| ≤ R implies ||x(T )|| ≤ r.

A Filippov DI ẋ ∈ F̃(x) is called a small homogeneous
perturbation of (1) if degF = deg F̃ , and F(x)⊂ F̃(x)+Bε ,
F̃(x)⊂ F(x)+Bε hold for some small ε ≥ 0 and any x∈ B1.
Theorem 1 ([23,21]) Let the Filippov DI (1) be homoge-
neous, degF = q. Then its asymptotic stability and contrac-
tivity features are equivalent and robust to small homoge-
neous perturbations. If q< 0 the asymptotic stability implies
the FT stability. Moreover, the FT stability of (1) implies
that q < 0.

3 SM-based differentiation
Assumption 1 a: The input f (t) = f0(t)+η(t) consists of a
bounded Lebesgue-measurable noise η(t) and an unknown
basic signal f0(t) with the locally Lipschitzian nth derivative
satisfying | f (n+1)

0 | ≤ L0(t) for almost all t and a locally
absolutely continuous function L0(t)> 0. b: The ratio η/L0
is bounded, |η |/L0(t)≤ ε . The number ε ≥ 0 is unknown.
Assumption 2 In its turn L0(t) is provided by the additional
input L(t), L(t)> 0, L(t) = L0(t)+ηL(t), where ηL(t) is a
Lebesgue measurable noise, |ηL(t)|/L0(t)≤ εL, and L0(t)>
0, |L̇0(t)|/L0(t)≤M. The number M≥ 0 is known, εL ∈ [0,1)
is unknown.
The problem is to evaluate the derivatives f (i)0 (t), i =
0,1, ...,n, in real time.

For example, in the case of the gain-scheduled control
(e.g. in flight control), when the system with the output

f (t) is locally approximated by linear models, L(t),M are
roughly determined by the model matrices and the control.
The corresponding function L(t) is discontinuous.

In the case of constant L we assume that εL = 0, L = L0.
3.1 Homogeneous SM-based differentiators

In this subsection we assume that L = L0 is constant, M =
0. The following is the recursive form of the differentiator
[19]. Its outputs z j estimate the derivatives f ( j)

0 , j = 0, . . . ,n,
in FT for constant L = L0, M = 0, εL = 0:

ż0 =−λnL
1

n+1 bz0− f (t)e
n

n+1 + z1,

ż1 =−λn−1L
1
n bz1− ż0e

n−1
n + z2,

...

żn−1 =−λ1L
1
2 bzn−1− żn−2e

1
2 + zn,

żn =−λ0L sign(zn− żn−1).

(2)

An infinite sequence of parameters λi > 0 can be built
starting from any λ0 > 1, which is valid for all natu-
ral n [19]. In particular, one can choose (λ0, ...,λ7) =
(1.1,1.5,2,3,5,7,10,12) [27] which is enough for n ≤ 7.
In the absence of noises the differentiator provides for the
FT exact estimations.

Equations (2) can be rewritten in the non-recursive form

ż0 = −λ̃nL
1

n+1 bz0− f (t)e
n

n+1 + z1,

ż1 = −λ̃n−1L
2

n+1 bz0− f (t)e
n−1
n+1 + z2,

...

żn−1 = −λ̃1L
n

n+1 bz0− f (t)e
1

n+1 + zn,

żn = −λ̃0L sign(z0− f (t)).

(3)

It is easy to see that λ̃0 = λ0, λ̃n = λn, and λ̃ j = λ jλ̃
j/( j+1)
j+1 ,

j = n−1,n−2, . . . ,1.
Let the noise be absent, η = 0. Subtracting f (i+1)

0 (t) from
the both sides of the equation for żi of (3), denoting σi =(zi−
f (i)0 )/L, i = 0, ...,n, ~σ = (σ0, ...,σn)

T , and using f (n+1)
0 (t) ∈

[−L,L] obtain the FT-stable error dynamics [19]

σ̇0 = −λ̃nbσ0e
n

n+1 +σ1,

σ̇1 = −λ̃n−1bσ0e
n−1
n+1 +σ2,

...

σ̇n−1 = −λ̃1bσ0e
1

n+1 +σn,

σ̇n ∈ −λ̃0 signσ0 +[−1,1].

(4)

Here and further the DI is enlarged at the discontinuity points
by the Filippov procedure [14] producing the Filippov DI.
It is homogeneous with deg t = 1, degσi = n+1− i [19].
Notation. Assuming that the sequence~λ = {λ j}, j = 0,1, ...,
produces the coefficients λ̃ j, denote (4) by the equality

~̇σ ∈ ∆n(σ0,~σ ,~λ )+h0, h0 = (0, ...,0, [−1,1])T . (5)

with the first argument of the power function b·e(·) singled
out, and h0 addressing the uncertainty of f (n+1)

0 . It is easy to
see that (3) can be rewritten as ż = L∆n((z0− f )/L,z/L,~λ ).
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Assumption 3 The input f (t) is sampled at the time instants
tk, 0 < tk+1 − tk = τk ≤ τ . The sampling intervals τk are
bounded, τk ≤ τ , whereas τ > 0 is unknown.

Let the sampled difference z0(t)− f (t) be kept constant
for t ∈ [tk, tk+1) producing

ż = L∆n(
1
L (z0(tk)− f (tk)), 1

L z,~λ ), t ∈ [tk, tk+1). (6)

Then, according to Theorem 8 from Appendix 8 for sampling
time periods not exceeding τ > 0 and the maximal possible
sampling error Lε ≥ 0 the differentiation accuracy [19,20]

|zi(t)− f (i)0 (t)| ≤ γiLρn+1−i, i = 0,1, ...,n,

ρ = max[ε1/(n+1),τ]
(7)

is ensured, where the constant numbers γi ≥ 1 only depend
on the parameters λ0, ...,λn of the differentiator. Accuracy
(7) is kept for any ε,τ ≥ 0,z(0), f0,η . The accuracy of dif-
ferentiator (3) is formally included here as the continuous-
sampling case τ = 0.

It is proved that for constant L0 any differentiator exact on
noise-free inputs f0, f1 under Assumption 1 has the worst-

case steady-state accuracy sup |zi− f (i)0 |= 2
i

n+1 Kn,iL0ε
n+1−i

n+1

for some f0 and η = f1− f0 [27]. Here Kn,i ∈ [1,π/2] are
the Kolmogorov constants [17,27], e.g. K1,1 =

√
2.

Correspondingly, a differentiator is called asymptotically
optimal [18,19,27,28] if it has accuracy (7) for τ = 0.
Remark 1 Taking z0(t)− f (tk) instead of z0(tk)− f (tk) in
the differentiator (6) would create virtual measurements with
unbounded sampling error, since ḟ is not bounded under
Assumptions 1, 2. It is easy to demonstrate the possible
divergence of such a differentiator, for example taking f (t)=
t2, n≥ 1, L = 2, τk = τ > 0.

3.2 Hybrid differentiator with variable L and εL ≥ 0.
Suppose that L(t) = L0(t) is continuous, then under As-

sumption 2 differentiator (2) still locally converges in FT
provided the initial errors satisfy |z j− f ( j)

0 | ≤ δL for some
δ > 0, and δ ,εL are small enough [22,27]. The correspond-
ing accuracy still satisfies (7) for sufficiently small ε,εL and
τ . Divergence of differentiator (3) due to variable L(t) is
demonstrated in [24].

Introduce auxiliary functions ϕi, φi,

φi(ω̃) = λn−ibω̃e
n−i

n−i+1 +µn−iMω̃,

ϕi(t,ω) = L(t)φi(
1

L(t)ω)

= λn−iL(t)
1

n−i+1 bωe
n−i

n−i+1 +µn−iMω,

(8)

where λn−i,µn−i > 0, i = 0,1, ...,n. Then under Assump-
tions 1, 2 the hybrid differentiator [24] features global fast
convergence and has the form

ż0 = v0 =−ϕ0(t,z0− f (t))+ z1,

ż1 = v1 =−ϕ1(t,z1− v0)+ z2,

...

żn = −ϕn(t,zn− vn−1).

(9)

Its equivalent non-recursive form is

ż0 = −L(t)φ̄0(
1

L(t) [z0− f (t)])+ z1,

ż1 = −L(t)φ̄1(
1

L(t) [z0− f (t)])+ z2,

...

żn = −L(t)φ̄n(
1

L(t) [z0− f (t)]),

φ̄i(s) = φi(φi−1(...(φ0(
1

L(t) [z0− f (t)]))...)).

(10)

Hybrid differentiator (8), (9) turns into the standard dif-
ferentiator (2) for M = 0 and into the high-gain observer [3]
if λi = 0 and M >> 1. That explains its name.

In the absence of sampling noises, ε = 0, and sufficiently
small εL differentiator (9), (8) (and its nonrecursive form
(10)) converges in FT for any initial conditions, provided
the sequences ~λ ,~µ are properly chosen. Such double se-
quence {(λ j,µ j)} exists for any λ0 > 1,µ0 > 1, and is
valid for all n and M ≥ 0 [24]. The sequence ~λ = {λ j} is
also valid for the “standard” differentiator (2). In particular,
the sequence (1.1,2), (1.5,3), (2,4), (3,7), (5,9), (7,13),
(10,19), (12,23), ... has been validated for n≤ 7 [24,27].

Similarly to the standard differentiator (3) we rewrite (8),
(10) as

ż = L(t)Φn(
1

L(t) [z0− f (t)], 1
L(t) z,M,~λ ,~µ). (11)

Obviously, Φn(ω0,ω,0,~λ ,~µ) = ∆n(ω0,ω,~λ ).
Contrary to the simple non-recursive form (3) of the stan-

dard differentiator (2), the non-recursive form (10) is prac-
tically useless for n > 1. Indeed, already the first-order dif-
ferentiator (10) gets the complicated non-recursive form

ż0 =−λ1L
1
2 bz0− f (t)e

1
2 −µ1M(z0− f (t))+ z1,

ż1 =−λ0L sign(z0− f (t))

−µ0λ1L
1
2 Mbz0− f (t)e

1
2 −µ0µ1M2(z0− f (t)).

(12)

The Lyapunov-method convergence proof for (12) has been
recently published in [10].

The dynamics of the normalized error ~σ corresponding
to (11) are not homogeneous, but feature homogeneity in
bilimit [1] with a negative approximating homegeneity de-
gree at zero and the zero homogeneity degree at infinity [24].

Note that the approximately linear dynamics of large ~σ
can lose their stability for large enough τ , causing the in-
stability of the differentiator itself (Fig. 7). Large noises do
not destroy the dynamics stability, but the accuracy asymp-
totics change (Section 6.2). Thus, under Assumptions 1, 2,
3 differentiator (9),(8) with discrete measurements provides
for the same accuracy (7) for sufficiently small εL,ε,τ [24].

4 Discretization of SM differentiators
In reality the described differentiators are realized by

means of computers. This turns a real-time differentiator
into a discrete dynamic system handling the noisy input
f (t) = f0(t) + η(t) produced by the continuous-time DI
f (n+1)
0 ∈ L0[−1,1]. The SM-based system (3) or (10) is to be

numerically integrated. The aim of this paper is to propose
and study the corresponding integration schemes.
Assumption 4 Let tk be the sampling instants. The inte-
gration steps take place at the discrete time instants tk, j,
j = 0, ..., lk, tk,0 = tk, tk,lk = tk+1 = tk+1,0. Thus, all sampling
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instants are also the points of the integration subdivision.
It is also assumed that the integration steps are bounded,
0 < tk, j+1− tk, j = τk, j ≤ τ .

Assumptions 3, 4 imply that τ ≤ τ . The authors took 100
and more equal Euler integration steps between sampling
instants, but for n > 1 the accuracy remained much worse
than the predicted accuracy (7) (Section 6.1, Fig. 3). The
question why the standard accuracy is not restored in spite of
small integration steps between the measurements remained
unsolved till the recent conference paper [6].

In short, the answer is that the number of the integra-
tion steps over each sampling interval is to be of the order
τ−(n−1), which becomes very large for n > 1 and τ << 1.

4.1 Discretization of homogeneous differentiators
This subsection extends the results [30] to the case when

each sampling interval contains a number of integration
steps. We also significantly generalize the method of homo-
geneous discretization proposed in [30].

Consider the standard differentiator (2) or (3), which is
represented as ż = L∆n((z0− f )/L,z/L,~λ ). In this subsec-
tion the function L is constant, and L0 = L, εL = 0 are as-
sumed without loss of generality.

The Euler discretization of (3) takes the form

z(tk, j+1) = z(tk, j)+L∆n(
z0(tk)− f (tk)

L ,
z(tk, j)

L ,~λ )τk, j,

j = 0, ..., lk−1, tk+1 = tk+1,0 = tk,lk , k = 0,1,2, ... .
(13)

Theorem 2 Consider the standard homogeneous differen-
tiator (2) under assumptions 1-4. Let L > 0 be constant,
εL = 0, and the integration steps be equal, tk, j+1− tk, j =

τk, j = τ . Also suppose that the derivatives f (i)0 of the orders

2,3, ...,n are bounded: | f (i)0 |/L≤ Di, Dn+1 = 1. Then there
exist such constants γi > 0 that the inequalities

|z0(tk, j)− f0(tk, j)| ≤ γ0Lρn+1; ρ = max[ε
1

n+1 ,τ]

|zi(tk, j)− f (i)0 (tk, j)| ≤ γiLρn+1−i + iLτDi+1, i = 1, ...,n,
(14)

hold after a FT transient for any input and initial values of
the discrete differentiator (13). Coefficients γi > 0 are only
defined by the parameters λ0, ...,λn of the differentiator.

Hence, asymptotics (14) known for coinciding integration
and sampling steps, lk = 1, with constant sampling intervals,
τk = τ = τ [30], remain true for variable sampling intervals
τk, provided the Euler integration steps τk, j are equal.
Theorem 3 Under the conditions of Theorem 2 let also the
integration steps be variable and uniformly bounded, τ ≤
τM . Then for some constants γi > 0 the inequalities

|zi(tk, j)− f (i)0 (tk, j)| ≤ γiLρn+1−i, i = 0,1, ...,n,

ρ = max[ε1/(n+1),τ1/n,τ]
(15)

hold after a FT transient for any τ and τ ≤min[τ,τM]. Note
that coefficients γi depend on λ0, ...,λn, D2, ...,Dn and τM .

Fixing τM = 1 get that the standard asymptotics (7) are
only restored for τ = O(τn). Also the boundedness require-
ment for derivatives f (i)0 , i = 2, ...,n, is restrictive. The fol-
lowing discretization removes all these limitations.
Homogeneous Discrete Differentiator. The proposed dis-

crete differentiator contains correction terms Hn, Ĥn ∈Rn+1,

z(tk, j+1) = z(tk, j)+L∆n(
z0(tk)− f (tk)

L ,
z(tk, j)

L ,~λ )τk, j

+Hn(z(tk, j),τk, j)τ
2
k, j +LĤn(

z0(tk)− f (tk)
L ,τk, j)τ

1+χ

k, j ,

0 < χ ≤ 1, j = 0, ..., lk−1,

(16)

Let ω,s ∈ R. The vector Hn contains Taylor-like terms,

Hn,i(z,ω)ω2 =
zi+2
2! ω2 +

zi+3
3! ω3 + ...+ zn

(n−i)! ωn−i,

i = 0, ...,n−2,

Hn,n−1(z,ω) = Hn,n(z,ω) = 0.

(17)

The vector correction term Ĥn(s,ω) is assumed bounded in
a vicinity of (s,ω) = (0,0), and for degs = n+1, degω = 1
satisfies the homogeneity conditions

deg[Ĥn,i(s,ω)ω1+χ ] = n− i+1, i = 0,1, ...,n−1,

Ĥn,n(s,ω) = 0.
(18)

Terms Hn, Ĥn grant homogeneity properties to the discrete
error dynamics. The term Hn is required, but only appears
for n > 1. The dicretization [30] corresponds to the case
Ĥn = 0, lk = 1, τk,0 = τk. Note that (16) can be also rewritten
in the recursive form for Ĥn = 0 (see (26) below).
Exact discretization. Rewrite (3) in the form

ż =W (z0− f (t))+ Jn+1z,

Wi(s) =−λ̃n−iL
i+1
n+1 bse

n−i
n+1 , i = 0, ...,n,

(19)

where Jn+1 is the (n+1)×(n+1) Jordan block with the zero
diagonal. Under Assumptions 1-3 its exact discretization is

z(tk+1) = eJn+1τk z(tk)+
[∫ τk

0 eJn+1ω dω
]
W (z0(tk)− f (tk)).

(20)
One can see that (20) is a particular case of (16)-(18) for
lk = 1, τk,0 = τk, χ = 1, and

Hn(z,ω)ω2 = eJn+1ω z− z− Jn+1zω,

Ĥn,i(s,ω)ω2 =

− λ̃n−i−1
2! bse

n−i−1
n+1 ω2− ...− λ̃0

(n−i+1)!bse
0
ωn−i+1.

(21)

Theorem 4 Under Assumptions 1-4 and for any τ,τ > 0,
τ ≤ τ , εL = 0, L = const, differentiator (16) in FT provides
for the accuracy

|zi(tk, j)− f (i)0 (tk, j)| ≤ γiLρn+1−i, i = 0,1, ...,n,

ρ = max[ε1/(n+1),τ], j = 1, ..., lk,
(22)

for some constants γi > 0 independent of the function f0 and
the choice of the sampling intervals and integration steps.

Thus, discrete differentiator (16) completely reclaims the
accuracy asymptotics (7) of its continuous-time analogue.
This result has been obtained in [30] for Ĥn = 0 and the
coinciding integration and sampling intervals. The term Ĥn
only influences the coefficients γi. The simulation (Section
6.1) shows that additional integration steps and Ĥn from (21)
do not cause any noticeable accuracy change.
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4.2 Discrete hybrid differentiator with variable L, εL ≥ 0.
Results [6,30] are extended here to differentiators (9), (8).
Let L(t) be variable, and |L̇|/L ≤ M hold for some M.

Then under Assumptions 1, 2, 3 above schemes make sense
and have similar accuracies. The Euler-integration-based
discrete differentiator corresponding to the variable-gain hy-
brid differentiator (10) takes the form

z(tk, j+1) = z(tk, j)+

L(tk)Φn(
z0(tk)− f (tk)

L(tk)
,

z(tk, j)
L(tk)

,M,~λ ,~µ)τk, j,

j = 0, ..., lk−1, tk+1 = tk+1,0 = tk,lk , k = 0,1,2, ... .

(23)

By formally substituting M = 0 in (23) obtain the discrete
scheme (13) for differentiator (2), but with variable L, i.e.

z(tk, j+1) = z(tk, j)+L(tk)∆n(
z0(tk)− f (tk)

L(tk)
,

z(tk, j)
L(tk)

,~λ )τk, j.

(24)
Under Assumption 2 with M > 0 scheme (24) is only reliable
for sufficiently small initial errors.
Theorem 5 Theorems 2 and 3 remain true for the case when
L(t) is variable with the following changes:
(1) if scheme (24) is applied in spite of M > 0 the noise

amplitudes ε,εL, the maximal sampling interval τ and
the initial error ~σ(t0) are to be small enough;

(2) in the case of the hybrid differentiator (23) with M > 0
the noise amplitudes ε,εL, and the maximal sampling
interval τ are to be small enough, but there is no re-
striction on the initial error ~σ(t0).

Also here proper discretization allows to restore the accuracy
(7). The term Ĥn of (16)-(18) is not applicable here. The
modified discrete hybrid differentiator (23) turns to be

z(tk, j+1) = z(tk, j)+

L(tk)Φn(
z0(tk)− f (tk)

L(tk)
,

z(tk, j)
L(tk)

,M,~λ ,~µ)τk, j

+Hn(z(tk, j),τk, j)τ
2
k, j,

(25)

where Hn is defined in (17).
In practice it is more convenient to use the equivalent

recursive form using functions ϕi, vi from (8), (9),

z0(tk, j+1) = z0(tk, j)+ τk, jv0(tk, j)+Hn,0(z(tk, j),τk, j)τ
2
k, j,

v0(tk, j) =−ϕ0(tk,z0(tk)− f (tk))+ z1(tk, j),

z1(tk, j+1) = z1(tk, j)+ τk, jv1(tk, j)+Hn,1(z(tk, j),τk, j)τ
2
k, j,

v1(tk, j) =−ϕ1(tk,z1(tk, j)− v0(tk, j))+ z2(tk, j),

...

zn(tk, j+1) = zn(tk, j)+ τk, jvn(tk, j)+Hn,n(z(tk, j),τk, j)τ
2
k, j;

vn(tk, j) =−ϕn(tk,zn(tk, j)− vn−1(tk, j));

j = 0, ..., lk−1, tk+1 = tk+1,0 = tk,lk , k = 0,1,2, ... .
(26)

Formally substituting M = 0 turns (26) into the recursive
form of (24). Also here the Taylor terms Hn do not appear
for n = 0,1, since Hn,n = Hn,n−1 = 0.
Theorem 6 Under assumptions 1, 2, 3 there exist such con-
stants γi > 0, i = 0,1, ...,n, that for any sufficiently small
maximal sampling step τ and noise magnitudes ε,εL inde-
pendently of the input function f0 and the choice of the sam-
pling intervals and integration steps the inequalities (22)
hold after a FT transient of the hybrid differentiator (25).

Remark 2 Calculating z(tk+1) only requires the values of
f (tk), z(tk) and tk+1. Thus, one can estimate the derivatives
at any time t ∈ (tk, tk + τ] by applying the corresponding
discrete scheme up to the time t and formally considering t
as the virtual sampling time tk+1. It preserves the precision
stated in Theorems 2-6, provided tk, f (tk),z(tk) correspond
to the differentiator steady state, and actually becomes a
prediction, if t is still in the future.

5 Differentiation of event-triggered sensor outputs
All the differentiation results presented in Sections 3-4 re-

quired Assumption 3 that the sampling intervals are bounded
by τ , though the bound τ itself can be unknown. In some
important practical cases that assumption does not hold.

Let the sensor yielding the input signal f (t) have its own
logic preventing new measurements if the signal has not
significantly changed. The reason can be saving the bounded
information pass band or the sensor structure. For example, a
tachometer differentiates the rotation angle measured using
a photo-diode detecting the passing-it slot of a rotating disk.
Thus, the sampling time intervals become unbounded when
the disk is slowing down.

Surprisingly, large sampling intervals due to slowly
changing inputs can destroy the filter accuracy and even
lead to instability, if the filter contains terms of non-negative
homogeneity degrees (for example for linear filters) [21].
In particular, differentiators (23), (25) can lose stability
(see simulation in Section 6.3). A simple strategy proposed
below removes such danger.

Assumption 3 is removed in this section. The following
assumption is used instead of Assumption 1b.
Assumption 5 At no moment between the measurements the
actual value of the unknown smooth signal f0(t) differs from
the last measured value by more than εT L(t), εT > 0.

For generality the value εT is assumed unknown. Note
that Assumption 5 also does not exclude the existence of
measurement noises η(t) with bounded ratio η/L.

A constant measurement error threshold is included in the
assumption, if L is constant or separated from zero. Indeed,
one can always take new function L̃ = L+h, h > 0. The fol-
lowing is the alternative assumption in the case one consid-
ers not reasonable that a sensor is “aware” of the value L(t).
Assumption 6 The actual value of the unknown smooth sig-
nal f0(t) never differs from the last measured value by more
than εT , εT > 0. L(t) is separated from zero, L(t)≥ Lm > 0.

Assumptions 5, 6 allow taking a virtual measurement at
any moment. One simply once more takes the last measured
value, since such “measurement” does not introduce error
exceeding L(t)εT (Assumption 5) or εT (Assumption 6).

Suppose that a virtual measurement is performed at each
time t ∈ [tk, tk+1) (tk+1 = ∞ is allowed), when the time since
the last real/virtual sampling passes the value τT,k > 0, and
the real measurement does not occur.

The following theorem is a direct corollary of Theorems
2-6.
Theorem 7 All theorems 2-6 remain true under Assump-
tions 1a, 2, 4, 5 for ε = εT and τ = τT,k = const. Moreover, if

the threshold εT is known, taking variable τT,k ≤ τ =CT ε

1
n+1

T
for some constant CT > 0 provides for the accuracy (22) of
the discrete differentiator (25). Similarly under Assumptions
1a, 2, 4, 6 one gets accuracy (22) for τT,k ≤CT (

εT
L(tk)

)
1

n+1 ,

τ =CT (
εT
Lm

)
1

n+1 , ε = εT
Lm

.
The theorem implies that a valid fault-proof strategy is

simply to choose the least practically-possible τT .
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6 Numeric experiments
The presented results are obtained by fitting suitable dis-

crete homogeneous dynamic models to complicated nonho-
mogeneous processes (see the proofs in appendices). Being
true for all possible inputs the resulting estimations are in-
evitably very rough. In the following we study the proposed
discretizations numerically.

The suggested parameters ~λ = {1.1,1.5,2,3,5,7,10,12,
...} [24,27] correspond to the parameters λ̃i of the dif-
ferentiator (2) in its non-recursive form (3) for n ≤ 7
(Fig. 1). Recall that the hybrid differentiator always
has the recursive form (8), (9) with the same ~λ and
~µ = {2,3,4,7,9,13,19,23, ...}.

Fig. 1. Optional parameters λ̃0, λ̃1, ..., λ̃n of differentiator (3).

The following software/computer-based accuracy restric-
tions are crucially important in the numerical study.
Digital accuracy restrictions. The double-precision com-
puter number has 15 meaningful decimal digits correspond-
ing to the input noise of the magnitude 5 ·10−16 for signals
close to 1. In particular, in that case the accuracy sup |z0− f0|
is not better than 5 ·10−16, and the 5th-order-derivative ac-
curacy of any 5th-order differentiator is expected to be not
better than (π/2) ·25/6(5 ·10−16)1/6 ≈ 0.01 for L = 1 [27].
Notation. Introduce the notation EDD for the Euler dis-
cretization scheme (13) of the differentiator (3) and HDD for
homogeneous discrete differentiator (16) with the additional
Taylor-like term Hn of the form (17), but with Ĥn = 0. The
homogeneous discrete differentiator (20) is denoted as exact
HDD and corresponds to (16) with Ĥn in the form (21).

Correspondingly EDHD denotes the Euler discretization
scheme (23) of the hybrid differentiator, and HDHD denotes
the scheme (25), i.e. (23) with the additional term Hn.

6.1 Performance in the absence of noises
Taking into account the theoretical asymptotics (22) and

the above digital accuracy restrictions it is convenient to
choose an input signal f0(t) of the magnitude close to 1 and
featuring | f (n+1)

0 | ≤ 1. Choose the input f (t) = f0(t)+η(t),
|η(t)| ≤ ε , where

f0(t) = 0.5cos(t)+ sin(0.5t), (27)

and assign L = L0 = 1 for all differentiation orders. Let
ε = 0 to get the best possible digital discretization accuracy.
Choose the differentiation order n = 5 and zero initial dif-
ferentiator conditions.

Hybrid differentiator (11) features the same dynamics as
differentiator (5) for small enough errors, noises and sam-
pling intervals. Thus the above digital restrictions leave only
a very narrow range of τ available (see Fig. 4a). It is natu-
ral, therefore, to start with the “standard” differentiator (5)
to study the accuracy of schemes in the absence of noises.

First consider the most widespread case of equal sampling
steps and substeps. That case corresponds to Theorem 2.

Correspondingly τ is the constant sampling step, while τ =
τ/N is the constant Euler integration substep.

Denote σ̃i = zi− f (i)0 , |σ̃ |n = (|σ̃0|, ..., |σ̃n|). The conver-
gence graphs for t ∈ [0,20] appear in Fig. 2. List the corre-
sponding accuracies.

The accuracy of EDD with N = 50, τ = 0.01, calculated
over the steady state interval t ∈ [10,30] is provided by the
component-wise inequality |σ̃ |5 ≤
(2.0 ·10−9,5.1 ·10−5,1.3 ·10−4,8.5 ·10−4,0.013,0.12),
whereas the accuracy of HDD for N = 1, τ = τ = 0.01
(Fig. 2), is |σ̃ |5 ≤
(3.7 ·10−9,4.3 ·10−7,3.2 ·10−5,1.0 ·10−3,0.017,0.15).
The accuracy of the exact HDD differs from the HDD only in
the 5th meaningful digit of each component and is omitted.

The accuracy of the EDD with N = 1, τ = τ = 0.0001,
for t ∈ [10,30] (Fig. 2) is |σ̃ |5 ≤
(6.7·10−16,3.75·10−5,5.9·10−5,8.4·10−5,1.6 ·10−4,0.13),
whereas the accuracy of the HDD and the exact HDD is
|σ̃ |5 ≤
(4.4·10−16,8.6·10−13,7.2·10−10,3.4·10−7,8.5·10−5,0.13).

The graphs of zi for all the schemes do not visually dif-
fer for τ = 0.0001. For the comparison, in Fig. 2 we also
demonstrate the simple divided-difference estimation of f (5)0
exploding due to the computer round-up errors.

Fig. 2. Performance without noise. Left: estimations of f (4)0 and

f (5)0 by the 5th-order EDD with N = 50, τ = τ/50, and HDD for
τ = 0.01 and input (27). Right: convergence of the estimations by
EDD/HDD for τ = 0.0001, the divided-difference explosion.

According to Theorems 2, 4 the accuracy asymptotics of
HDD, exact HDD for N = 1 and EDD for N = O(τ1−n) =
O(τ−4) are to be the same up to possibly different coeffi-
cients. Fig. 3a shows that the accuracies of HDD and exact
HDD coincide at least for the input (27). The direct lines
in the graph have the slopes 6.02,5.02,4.03,3.02,1.99,0.90
which very well fit the theoretical asymptotics.

Note that the negation of the term (21) in (16) causes some
accuracy improvement (up to 30%, not shown). Another
particular choice of the terms Ĥn (18) has been quite recently
independently proved and shown to improve the accuracy-
asymptotics’ coefficients in simulation for equal sampling
steps and absent additional integration substeps [16].

Numeric experiments reveal surprising features of the
EDD for different values of N and τ ∈ [0.0001,0.1]. The
logarithmic plot in Fig. 3b shows that there exists a direct
bifurcation line depending on N, and corresponding to the
direct proportionality of the derivative-estimation accuracy
to the sampling step τ .

Roughly speaking, above the line the accuracies are the
same as of the HDD, whereas the accuracy lines for deriva-
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Fig. 3. Logarithmic graphs of the 5th-order differentiation accura-
cies. The graphs correspond to the derivative orders 0, 1, 2, 3, 4,
5 from the bottom to the top. Integration and sampling steps are
constant, τ = τ/N. a: N = 1. Accuracies of HDD (in red) and ex-
act HDD (in blue) are practically identical. b: EDD with N = 30,
the bifurcation lines for N = 30,100 are shown.

tives 2,3,4 break at the bifurcation line and follow it to the
left of their intersections with it. Accuracies of the last 5th
derivative and the tracking accuracy of the 0th derivative f0
remain roughly the same as those of the HDD.

The bifurcation line moves down when N grows from 1 to
infinity. That motion slows down for larger N. The lines for
N = 30 and N = 100 are shown in the graph (Fig. 3b). The
line corresponding to N = 50 is between them and cannot
be shown. Obviously there is no much difference between
the accuracies for N = 30,50,100.

According to Theorems 2-4 there exists such Γn > 0 that
under the listed assumptions the inequality τ ≤ Γnτn ensures
asymptotics (22) for all inputs, all sampling and integration
subdivision strategies.

Solving the equation τ∗/N = Γbτn
∗ , n = 5, for Γb at the

intersection point τ = τ∗ of the bifurcation line and the ac-
curacy line for z1− ḟ0 obtain that the HDD asymptotics of
EDD hold for τ ≥ τ∗, i.e. while τ = τ/N ≤ Γbτ5 holds. Cal-
culating Γb for N = 30,50,100 obtain Γb ≈ 5000. Naturally
Γ5 ≤ 5000 is to hold.
The case of variable sampling and integration steps.
Consider the 5th-order hybrid differentiator (11) with the
same~λ ,~µ , as mentioned above, and L = M = 1. The initial
values (z0(0), ...,z5(0)) = (100,−100,100, ...,−100) are
taken to demonstrate the fast differentiator convergence.
The accuracy |σ̃ |5 ≤
(3.3·10−16,7.3·10−13,6.9·10−10,3.3·10−7,8.4·10−5,0.12).
is got by the corresponding HDHD for τ = 10−4, t ≥ 13.2.

One expects (Theorem 5) that for sufficiently large τ the
hybrid differentiator (23) is not stable, for smaller τ the
accuracies obey the standard HDD asymptotics (7), |zi(t)−
f (i)0 (t)| ≤ γiτ

6−i. Those asymptotics are once more destroyed
when τ becomes too large compared with τ5 (Theorem 5,
accuracy (15)), further also those asymptotics are destroyed
by the digital saturation for even smaller τ .

The hybrid differentiator indeed diverges in the simula-
tion for τ > 0.06 and Fig. 3 implies that the digital satura-
tion takes place for τ ≤ 0.001. Also further see the HDHD
performance in Fig. 6 for small τ and n = 3.

As we see, fixing a maximal sampling step τ and gradu-
ally reducing the maximal integration step τ is not realistic,
since the HDD accuracy reclamation requires τ =O(τ5). In-
stead fix the maximal integration step τ = 0.0001 and grad-
ually increase τ starting from τ = τ , while calculating the
corresponding accuracies sup |zi− f (i)0 | over the steady-state
time interval t ∈ [14,16].

The random sampling intervals τk are taken uniformly
distributed in the range [10−4,τ], whereas τ remains constant

during each run, τ ∈ [10−4,0.05]. Also the integration steps
τk j are uniformly distributed in the range [10−6,10−4].

Note that this Monte-Carlo experiment strategy com-
pletely excludes the case τ j = τ , τk j = τ/N, considered
above, due to its obvious “improbability”.

Fig. 4. Logarithmic graphs of the 5th-order differentiation accura-
cies for τ = 0.0001: a: EDHD differentiator (23), b: HDHD (25).
The lines correspond to the derivative orders 0, 1, 2, 3, 4, 5 from
the bottom to the top. Integration and sampling steps are variable.

The standard continuous-time asymptotics (22) are only
kept for τ ∈ [0.03,0.06] (Fig. 4a). The inequality τ ≥ 0.03
corresponds to τ ≤ Γvτ5 for Γv ≈ 4000. Thus, the above
universal constant Γ5 satisfies Γ5 ≤ 4000 which is consistent
with the estimation Γ5 ≤ 5000 obtained from Fig. 3.

Thus, in order to get asymptotics (22) one needs τ ≤
4 ·10−7 for τ = 0.01, and τ ≤ 1.3 ·10−10 for τ = 0.002.

It is also seen from the graphs that sup |z5− f (5)0 | stabilizes
at about 0.1 which is ten times larger than the hypothetical
best possible accuracy 0.01. The tracking accuracy stabilizes
at |z0− f0| ≤ 6 · 10−9, which is much worse than the best
possible digital error 5 ·10−16.

Consider now the discrete hybrid differentiator (26) with
additional Taylor-like terms. One sees from Fig. 4b that
it features the ideal continuous-time asymptotics for τ ∈
[0.001,0.02]. At τ = 0.001 the tracking accuracy stabilizes
at almost the best possible computer precision 10−15. At
the same time the 5th-order derivative estimation accuracy
is about 0.02, which is close to the expected best possi-
ble value. The graph slopes calculated over the interval
log10 τ ∈ [−2,−2.5] are 5.9,4.8,4.0,3.0,2.0,1.0 from the
bottom to the top (Fig. 4) and fit the theory very well.

Hence, the simulation shows that variable integration
steps significantly destroy the EDD and EHDD asymptotics
in comparison with the HDD and the HDHD respectively.
It also shows that additional intermediate integration steps
practically do not affect the HDD or HDHD accuracy (com-
pare Figs. 3a, 4b).

6.2 Effect of noises
The choice of sampling steps and the integration sub-

division have minor influence on the differentiator accu-
racy in the presence of large, usual and reasonably small
noises η , |η | ≤ ε . Indeed, accuracies (15) are the functions
of ρ = max[ε1/(n+1),τ1/n,τ]. Our experiments in the pres-
ence of noises demonstrate that EDD and HDD, as well as
EDHD and HDHD, provide for the same accuracies up to 3
meaningful digits.

Performance of EDDs/HDDs in the presence of noises
has been well studied. Thus we concentrate on the hybrid
differentiators. Their fast convergence and insensitivity to
changing L has a price involved.

The hybrid differentiators EDHD/HDHD feature the non-
linear dynamics (4) of the EDD/HDD for small errors corre-
sponding to ~µ = 0. For larger errors the dynamics are quasi-
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linear almost as if~λ = 0 were true. This quasi-linearity pro-
vides for the fast exponential convergence, but also for the
overregulation, the steady-state error proportional to ε for
larger ε and the sensitivity to large sampling intervals.

Fix τ = τ = 0.0001. The value M = 1 is found to
cause rather high sensitivity to noises. Performance of
the EDHD/HDHD in the presence of different noises for
M = 0.2, z(0) = 0 is presented in Fig. 5.

Fig. 5. Performance of the HDHD/EDHD with M = 0.2 in the
presence of different noises η for τ = 10−4. Upper graphs are
cut from above and from below. The shrinked complete graph is
added in the case η = 0.01cos(2t).

The noise η = 0.01cos(2t) is practically exactly differen-
tiated by EDHD, and the corresponding accuracy is covered
by the Kolmogorov-like worst-case steady-state accuracy

sup |zi− f (i)0 | ∈ 2
i

n+1 [1,π/2]Lε
n+1−i

n+1 , (28)

where n = 5 [27] (Section 3.1). The resulting accuracy is
|σ̃ |5 ≤ (0.01,0.02,0.04,0.08,0.16,0.33). The same accu-
racy is obtained for M = 1 and M = 0 (i.e. by EDD/HDD).

The noise η = 0.01cos(20t) has a large 6th derivative,
and while the accuracy (22) remains in charge, the ob-
tained accuracy |σ̃ |5 ≤ (0.099,0.098,0.48,1.20,1.67,1.25)
is not covered by (28). Note that the accuracy |σ̃ |5 ≤
(0.015,0.24,2.19,10.2,32.6,65.3) is obtained for M =
1, and is clearly produced by the quasi-linear large-
scale dynamics. For the comparison, the EDD corre-
sponding to M = 0 provides for the accuracy |σ̃ |5 ≤
(0.011,0.10,0.47,1.10,1.29,0.82).

The noise η = cos(20t) is certainly not covered by (28),
and is very challenging for the EDHD. The corresponding
accuracy is |σ̃ |5 ≤ (0.51,2.7,7.3,9.6,7.7,3.5).

The response of EDHD to the noise η = cos(105t)
demonstrates its strong approximability features [8] and
the accuracy |σ̃ |5 ≤ (0.014,0.13,0.61,1.43,1.63,0.98).
The corresponding accuracy of the EDD is |σ̃ |5 ≤
(0.043,0.29,0.90,1.17,0.71,0.51).
6.3 Triggered measurements and variable L

Consider the inputs

f0(t) = cos4 t +1.003, f (tk) = f0(tk)+η(tk),

L0(t) = 40+240cos2 t, L(tk) = L0(tk).
(29)

It is easy to check that f (4)0 (t) = 256cos4 t−240cos2 t +24,

| f (4)0 (t)| ≤ 40 < L0(t), L̇0 ≤ 2L0, M = 2 (Fig. 7a).
Apply the third-order hybrid differentiator (9), (8). Ac-

cording to Theorem 6 intermediate integration steps do not

influence the accuracy assymptotics of the discrete hybrid
differentiator HDHD (26). Thus, take lk = 1, τk, j = τk,
whereas always j = 0. The corresponding one-step dis-
cretization (26) produces the ready-to-use recursive discrete
filter HDHD

z0(tk+1) = z0(tk)+ v0(tk)τk +
1
2 z2(tk)τ2

k +
1
6 z3(tk)τ3

k ,

v0(tk) =−3L(tk)1/4bz0(tk)− f (tk)e3/4

−5M(z0(tk)− f (tk))+ z1(tk),

z1(tk+1) = z1(tk)+ v1(tk)τk +
1
2 z3(tk)τ2

k ,

v1(tk) =−2L(tk)1/3bz1(tk)− v0(tk)e2/3

−4M(z1(tk)− v0(tk))+ z2(tk),

z2(tk+1) = z2(tk)+ v2(tk)τk,

v2(tk) =−1.5L(tk)1/2bz2(tk)− v1(tk)e1/2

−3M(z2(tk)− v1(tk))+ z3(tk),

z3(tk+1) = z3(tk)−1.1L(tk) sign(z3(tk)− v2(tk))τk

−2M(z3(tk)− v2(tk))τk.

(30)

Let z(0) = (1000,−1000,1200,10000). First demonstrate
the convergence of differentiator (30) with τk = τk, j = 10−5.
It approximately corresponds to differentiator (9), (8) with
continuous exact measurements. The convergence is very
fast and takes 4 time units (Fig. 6). The accuracies over the
time interval [7,15] are described by the component-wise
inequality |σ̃ |3 = (|z0− f0|, |z1− ḟ0|, |z2− f̈0|, |z3−

...
f 0|) ≤

(1.3 ·10−15,9 ·10−11,2.4 ·10−6,0.03).

Fig. 6. Convergence of the hybrid differentiator (30) for the ini-
tial values z(0) = (1000,−1000,1200,10000) with exact uniform
sampling. a: differentiation errors, b: comparison of the estimated
and exact derivatives, graphs are cut from above and from below.

Triggered measurements. Let bAc denote the max-
imal integer not exceeding A, εT > 0 be the sensitiv-
ity threshold. Let the sensor produce the measurement
f (tk) = b f0(t)/εT cεT at each time tk as it detects the change
of the integer number b f0(t)/εT c (Fig. 7c).

Let now the integration step be τ̃ > 0, and the sensor check
the value of f0(t) with the same time step τ̃ . Hence, the mea-
surement also contains a small quantization noise η(tk) =
f (tk)− f0(tk), |η(tk)| ≤max[εT , | ḟ0(tk)|τ̃ + sup | f̈0|τ̃2].

Let the sensor sensitivity parameter be εT = 0.01, τ̃ =
0.0001. The resulting triggered sampling step varies between
0.0001 and 0.43 (Fig. 7b). It is a piece-wise-constant func-
tion with peaks at the points with ḟ0 = 0.

Direct application of the hybrid differentiator (30) with
the same large initial conditions leads to the immediate ex-
plosion (Fig. 7d). For initial conditions ||z(0)|| ≤ 20 the dif-
ferentiator demonstrates the practical stability with |σ̃ |3 ≤
(1.7,34,270,1265).

Now introduce virtual measurements artificially keeping
the sampling interval not exceeding 0.001. The resulting
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Fig. 7. Triggered sampling causes explosion. a: Graphs of the
function L(t) and | f (4)0 (t)|; b: the triggered sensor sampling in-
tervals; c: function f0(t) and sampled values f (tk), a zoom is
also presented; d: explosive divergence of the hybrid differen-
tiator (30) due to the triggered sampling for the initial values
z(0) = (1000,−1000,1200,10000).

Fig. 8. Convergence of the hybrid differentiator (30) for the initial
values z(0) = (1000,−1000,1200,10000) with virtual measure-
ments and triggered sampling. Left: differentiation errors, Right:
comparison of the estimated and exact derivatives, the graphs are
cut from above and from below. Only estimations of f0, ḟ0 are
shown on the right.

performance is demonstrated in Fig. 8b. The correspond-
ing accuracy is |σ̃ |3 ≤ (0.007,0.28,4,28). The accuracy
does not significantly change for the virtual measurements
keeping the variable upper sampling-interval bound τT =
0.1(εT/L(t))1/4.

7 Conclusions and further research directions
Discretization schemes of SM-based homogeneous and

non-homogeneous “hybrid” differentiators with variable and
constant Lipschitz parameters are considered. For the first
time the influence of the numerical integration between the
sampling instants is studied.

The new homogeneous discretization (16)-(18) extends
results [30] and restores the optimal accuracy asymptotics
of the continuous-time differentiaton.

The proposed virtual sampling preserves the same accu-
racy asymptotics in the case of triggered measurements.

In the case of the constant Lipschitz parameter L one can
choose between the homogeneous discretization of the stan-
dard differentiator (16) and the hybrid differentiator (25).
The latter features global fast FT convergence, but can lose
its stability if sampling steps are too large. The first one is
extremely stable, but slowly converges from a large error.

The results are directly extendable to the filtering differ-
entiators [25,28] which reject some unbounded noises.
Acknowledgment. The authors highly appreciate the com-
ment by the anonymous reviewer on the exact discretization
option (20).

8 Appendix: Preliminaries. Accuracy of disturbed ho-
mogeneous DIs

Consider a disturbed DI

ẋ ∈ F(x,π), x ∈ Rnx , π ∈ Rν , (31)

where π is the vector disturbance parameter. The set field
F(x,π)⊂ TxRnx is a non-empty compact convex set-valued
function, upper-semicontinuous at all points (x,0), x ∈ Rnx .

Introduce the dilations

dκ : (x1, ...,xnx) 7→ (κm1x1, ...,κ
mnx xnx), m1, ...,mnx > 0,

∆κ : (π1, ...,πν) 7→ (κmπ1π1, ...,κ
mπν πν), mπ1, ...,mπν > 0.

Inclusion (31) is assumed homogeneous in both x and π ,
while the undisturbed DI ẋ ∈ F(x,0) is assumed FT stable
of the homogeneity degree q =−p, p > 0. Hence, mi ≥ p.

The homogeneity of DI (31) means that the transfor-
mation (t,x,π) 7→ (κ pt,dκ x,∆κ π), κ > 0, establishes a
one-to-one correspondence between the solutions of the
DI (31) with parameters π and ∆κ π . In other words,
F(x,π) = κ p d−1

κ F(dκ x,∆κ π). In particular, the standard
homogeneity F(x,0) = κ p d−1

κ F(dκ x,0) is obtained for
π = 0.

In its turn π ∈ Π(ω,x) ⊂ Rν , where Π is a homoge-
neous compact non-empty set-valued function with the
magnitude parameter ω ≥ 0, i.e. ∀κ,ω > 0∀x ∈ Rnx :
Π(κmω ω,dκ x) = ∆κ Π(ω,x), mω > 0. The function Π

monotonically increases with respect to the parameter ω ,
i.e. 0 ≤ ω ≤ ω̂ implies Π(ω,x) ⊂ Π(ω̂,x). It is also as-
sumed that Π(0,x) = {0} ⊂ Rnx and Π(ω,x) is Hausdorff-
continuous [4] in ω,x at the points (0,x).

Obviously, the transformation (t,ω,x) 7→ (κ pt,κmω ω,dκ x)
establishes a one-to-one correspondence between the solu-
tions of ẋ ∈ F(x,Π(ω,x)) with different values of ω .

Now, consider the general retarded DI

ẋ ∈ F(x(t−ϖ [0,1]),Π(ω,x(t−ϖ [0,1]))), (32)

where ϖ ≥ 0 is the maximal possible time delay. Moreover,
we allow each coordinate xi of x to have its own different
independent delay at each of its two appearances on the right.

The presence of the delays requires some functional initial
conditions [23], which can be canceled in our case, since
the dynamics are not affected by the state values for t < 0.
Indeed, the first sampling is at t = 0.

The existence of some solutions of (32) is obvious. No-
tably, the solutions with velocity ẋ frozen between the “sam-
pling instants”, ẋ(t) = ẋ(tk) ∈ F(x(tk),Π(ω,x(tk))) for t ∈
[tk, tk+1), tk+1− tk ≤ ϖ , are indefinitely extendable in time.
Theorem 8 ([21,23]) There exist γi > 0, i = 1, ...,nx, such
that for any ω,ϖ ≥ 0 each extendable solution of DI (32)
after a finite-time transient enters the region |xi(t)| ≤ γiδ

mi ,
δ = max{ω1/mω ,ϖ1/p}, to stay there forever.

9 Appendix: Proofs of Theorems 2-4
Proof of Theorem 2. It is given that τk, j = τ = const. In-
troduce the sequence fk, j = ( f 0

k, j, ..., f n
k, j)

T , where f 0
k, j =

f0(tk, j), f i
k, j+1 = ( f i−1

k, j+1− f i−1
k, j )/τ for i = 1,2, ...,n. It is the

sequence of divided differences. It is known that

f i
k, j = f (i)0 (ξk, j), ξk, j ∈ [tk, j−i, tk, j], | f n+1

k, j | ≤ L. (33)
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The sequence tk, j is naturally formally defined for negative j,
e.g. tk,−1 = tk−1,lk−1, etc. Obviously, f i

k, j+1 = f i
k, j + f i+1

k, j+1τ ,
i = 0,1, ...,n.

Subtract fk, j+1 from both sides of (13), and denote sk, j =

(s0
k, j, ...,s

n
k, j)

T , si
k, j = (zi(tk, j)− f i

k, j)/L. It yields

sk, j+1 ∈ sk, j +∆n(s0
k,0 +[−ε,ε],sk, j,~λ )τ + τh0,

h0 = (0, ...,0, [−1,1])T .
(34)

Note that there is a variable discrete delay of s0
k,0 with respect

to s0
k, j which does not exceed lk. System (34) describes the

node points of solutions~s(t) = (s0(t), ...,sn(t))T with piece-
wise-constant derivatives of the system

~̇s(t)∈ ∆n(s0(t−ρ[0,1])+ρ
n+1[−1,1],~s(t−ρ[0,1]),~λ )+h0

which approximate solutions of the FT stable DI (5). Pa-
rameters τ , τ , ε define the system disturbance parameter

ρ = max{τ,ε
1

n+1 }. Therefore, solutions converge into a
bounded attractor, whose asymptotics is defined by Theo-
rem 8, degρ = 1. Taking into account the features (33) of
divided differences and | f (i+1)

0 | ≤ LDi+1 obtain

f i
k, j = f (i)(ξk, j) ∈ f (i)0 (tk, j)+ iLDi+1τ[−1,1]

and the claimed accuracy. �
Notation. In the rest of Appendix 9 denote

si
k, j =

1
L0(tk, j)

(
zi(tk, j)− f (i)0 (tk, j)

)
, sk, j = (s0

k, j, ...,s
n
k, j)

T .

Recall that if L is assumed constant in the theorem conditions
then L = L0 = const.
Proof of Theorem 3. Subtract

f (i)0 (tk, j+1) ∈ f (i)0 (tk, j)+ f (i+1)
0 (tk, j)τk, j

+ 1
2 τ2

k, jLDi+2[−1,1], i = 0, ...,n−1,

f (n)0 (tk, j+1) ∈ f (n)0 (tk, j)+L[−1,1]τk, j, i = n

from the both sides of the equation for zi of (13), divide by
L = L0 and get

sk, j+1 ∈ sk, j +∆n(s0
k,0 +[−ε,ε],sk, j,~λ )τk, j

+τk, jh0 + τ2
k, jh1,

h1 =
1
2 [−1,1](D2, ...,Dn+1,0)T .

(35)

Here h1 presents the disturbance.
Rewrite (35) as nodes of a solution of the disturbed re-

tarded DI (5) with piece-wise constant derivative taking
switches at tk, j:

~̇σ(t) ∈ ∆n(σ0(t− τ[0,1])

+ ε[−1,1],~σ(t− τ[0,1]),~λ )+h0 + τh1. (36)

Rewrite solutions of (36) as solutions of the larger DI

~̇σ(t) ∈ ∆n(σ0(t−ρ[0,1])+ρn+1[−1,1],~σ(t−ρ[0,1]),~λ )

+h0 + h̃(ρ̃),

h̃(ρ̃) = 1
2 [−1,1](ρ̃nτMD2, ρ̃

n−1τMD3, ..., ρ̃τMDn+1,0)T ,

(37)

where ρ̃ = τ
− 1

n
M ρ = τ

− 1
n

M max{τ,ε
1

n+1 ,τ
1
n }, τ ≤ τM,degρ =

1. The final accuracy (15) follows now from Theorem 8. �
Proof of Theorem 4. Subtract

f (i)0 (tk, j+1) ∈ f (i)0 (tk, j)+ f (i+1)
0 (tk, j)τk, j

+...+ 1
(n−i)! τ

n−i
k, j f (n)0 (tk, j)+ 1

(n+1−i)! τ
n+1−i
k, j L[−1,1],

i = 0, ...,n−1,

f (n)0 (tk, j+1) ∈ f (n)0 (tk, j)+L[−1,1]τk, j, i = n

from the both sides of the equation for zi of (16), divide by
L and get

sk, j+1 ∈ sk, j +∆n(s0
k,0 +[−ε,ε],sk, j,~λ )τk, j + τk, jh0

+Hn(sk, j,τk, j)τ
2
k, j + Ĥn(s0,k, j,τk, j)τ

χ+1
k, j +h2(τk, j),

h2 = [−1,1]( 1
(n+1)! τ

n+1
k, j , ..., 1

3! τ3
k, j,

1
2 τ2

k, j,0)
T ,

(38)

where si
k, j = [zi(tk, j)− f (i)0 (tk, j)]/L. Rewrite (38) as nodes of

a solution of the disturbed retarded DI (5) with piece-wise
constant velocity taking switches at tk, j:

~̇σ(t) ∈ ∆n(σ0(t− τ[0,1])+ ε[−1,1],~σ(t− τ[0,1]),~λ )

+h0+τ
−1
k, j h2(τk, j)+Hn(sk, j,τk, j)τk, j+Ĥn(s0

k, j, [0,τ])τ
χ

k, j.

(39)

In their turn, solutions of (39) satisfy the larger DI

~̇σ(t) ∈
∆n(σ0(t− [0,ρ])+ρn+1[−1,1],~σ(t− [0,ρ]),~λ )

+h0 + h̃(ρ)+Hn(~σ(t− [0,ρ]), [0,ρ])[0,ρ]

+Ĥn(σ0(t− [0,ρ]), [0,ρ])[0,ρχ ],

h̃(ρ) = [−1,1]( 1
(n+1)! ρn, 1

n! ρn−1, ..., 1
2 ρ,0)T ,

(40)

where ρ = max{τ,ε
1

n+1 },degρ = 1. The final accuracy fol-
lows now from Theorem 8. �

10 Appendix: Proofs of Theorems 5-7
For any function g(t) denote gk, j = g(tk, j), gk = g(tk) =

g(tk,0). Also denote Iω = [1−ω,1+ω] for ω ≥ 0.
Proof of Theorem 5.
1. First consider the case of the simplest discrete differen-

tiator (24) with variable L and equal integration steps.
Fix some t∗, L∗ = L0(t∗) and some time interval ∆T > 0.

Then L0(t) ∈ I2M∆T L0(t∗) for t ∈ [t∗−∆T, t∗+∆T ] and ∆T
small enough. Obviously I2M∆T retracts to {1} as ∆T → 0.

For the equal integrations steps τk, j = τ similarly to the

10



proof of Theorem 2 denote si
k, j = (zi(tk, j)− f i

k, j)/L∗ and get

sk, j+1 ∈ sk, j

+I2M∆T ∆n(s0
k,0 + eM∆T [−ε,ε],sk, j,~λ )τ + τeM∆T h0,

h0 = (0, ...,0, [−1,1])T .

(41)

Solutions of (41) are approximate solutions of

ṡ ∈ I2M∆T ∆n(s0,s,~λ )+ eM∆T h0, (42)

which is FT stable for sufficiently small ∆T > 0 [20,23].
Take now such a vicinity of s = 0 that is forward invariant
with respect to (42) [20] and all solutions starting within it
converge to zero in the time 0.5∆T . The resulting accuracy
is obtained from Theorem 8 as in the proof of Theorem 2.

The further proof follows [22]: solutions are extended to
infinity by the simple multiplication of s by L0(t∗)/L0(t∗+
∆T ) at the end of each ∆T -time interval and the setting of
the new value of t∗ to t∗+∆T .
2. Consider the case of the discrete differentiator (24) with

variable L and variable integration steps. Denoting si
k, j =

(zi(tk, j)− f (i)0 (tk, j))/L0(t∗), Î = I2M∆T+εL obtain

~̇σ(t) ∈ Î∆n(σ0(t− τ[0,1])+ eM∆T ε[−1,1],

~σ(t− τ[0,1]),~λ )+ eM∆T (h0 + τh1),

h1 =
1
2 [−1,1](D2, ...,Dn+1,0)T .

(43)

The further proof is similar to the case 1.
3. Consider the case of the discrete differentiator (23) with

variable L and constant or variable integration steps. The
dynamics in the vicinity of ~σ = 0 is considered similarly to
the cases 1, 2 above.

Indeed, it is easily seen from (8), (10) that for arbitrarily
small ε0 and sufficiently small s0, εL

φ̄i(s0) ∈ −λ̃n−iIε0bs0e
n−i
n+1 , (44)

Now taking sufficiently small ∆T and t ∈ [t∗−∆T, t∗+∆T ]
get for some small ε1

z(tk, j+1) ∈ z(tk, j)+

L∗Iε1Φn(
z0(tk)− f (tk)

L∗
,

z(tk, j)
L∗

,M,~λ ,~µ)τk, j

Consider the constant integration steps’ case. Repeating
the proof 1. above, taking into account (44) and denoting
si

k, j = (zi(tk, j)− f i
k, j)/L∗ get

sk, j+1 ∈ sk, j + Iε2∆n(s0
k,0 + eM∆T [−ε,ε],sk, j,~λ )τ

+τeM∆T h0,

for some small ε2 > ε1 + ε0. The further proof is the same
as in case 1. above.

In the same way the case of variable integration steps is
considered. Respectively, in a small vicinity of ~σ = 0 the

error dynamics is described by the FTS DI

~̇σ(t) ∈ Iε2∆n(σ0(t− τ[0,1])+ eM∆T ε[−1,1],

~σ(t− τ[0,1]),~λ )+ eM∆T (h0 + τh1),

h1 =
1
2 [−1,1](D2, ...,Dn+1,0)T .

and the further proof is the same as in case 2.
One still needs to prove the existence of a FT invariant

attractor in an arbitrarily small vicinity of ~σ = 0.
Recall how the convergence of differentiator (11) is

proven [24]. A number Rn > 0 is chosen, which is further
supposed to be small and defining the radius of the above
small vicinity. Now it is proved that for some fixed Qn ≥ 1,
time T > 0 and any R ≥ Rn, all trajectories starting in the
ball BR = {~σ | ||~σ || ≤ R} in time T concentrate in the ball
BR/2 to stay there forever. On the way trajectories do not
leave the ball BQnR.

Denote ζi = σi/R = σ̃i/(L0R), where σ̃i = zi− f (i)0 . Then,
since L̇0 ∈ [−M,M]L0, get ζ̇ ∈ ˙̃σ/(L0R)− [−M,M]ζ . Thus,
from (10),(11) get

ζ̇ ∈Φn(ζ0,ζ ,M,~λ ,~µ)− [−M,M]ζ . (45)

According to [24] all solutions starting in ||ζ || ≤ 1 in time
T converge to ||ζ || ≤ 0.5 without leaving ||ζ || ≤ Qn on the
way.

Now denoting Lk, j = L0(tk, j) (omitting index 0) get the
trivial relations

σ̃k, j+1
Lk, j+1

=
σ̃k, j
Lk, j

+
σ̃k, j+1−σ̃k, j

Lk, j
− σ̃k, j+1

Lk, j+1

Lk, j+1−Lk, j
Lk, j

,
σ̃k, j+1
Lk, j+1

∈
[
e−Mτk, j ,eMτk, j

]−1
[

σ̃k, j
Lk, j

+
σ̃k, j+1−σ̃k, j

Lk, j

]
,

which imply that for τ small enough

ζk, j+1 ∈ ζk, j +
σ̃k, j+1−σ̃k, j

Lk, jR
+2Mτ[−1,1]

[
σ̃k, j+1−σ̃k, j

Lk, jR

]
.

Obviously L0(t +∆t) ∈ I2M∆tL0(t) for ∆t > 0. Once more
denote Î = I2Mτ+εL . Now (23) implies that

σ̃k, j+1−σ̃k, j
Lk, jR

∈ ÎΦn(ζ0,k,0 +
1
R ε,ζk, j,M,~λ ,~µ)τk, j

+eMτ(h0 + τh1),
(46)

where ζ0,k,0 is the first component of ζk,0. It means that
solutions of the error equations for (23) are approximated
solutions of (45). Respectively solutions starting in ||ζ || ≤ 1
in time T converge to ||ζ || ≤ 0.6 without leaving ||ζ || ≤ 2Qn
on the way. The further proof is trivial. �
Proof of Theorem 6. The proof is divided into the asymp-
totics analysis for ~σ close to zero which is practically the
same as the proof of Theorem 4, and the proof of the con-
vergence into this vicinity, which is very similar to that of
the case 3 from the above proof of Theorem 5. The only
difference is that (46) is replaced with

σ̃k, j+1−σ̃k, j
Lk, jR

∈ ÎΦn(ζ0,k,0 +
1
R ε,ζk, j,M,~λ ,~µ)τk, j

+eMτ [τk, jh0 +Hn(ζk, j,τk, j)+h2(τk, j)],

where h2 has been introduced in (38). �
Proof of Theorem 7 is straightforward due to Theorems 5,
6. �
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