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Abstract. A forecaster provides a probabilistic prediction regard-
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pendently of the state realizations, the difference between the average
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any test employed diminishes to zero. In other words, a forecaster has
a prediction scheme that passes almost any test. In particular, a fore-
caster can pass all the tests in a countable set simultaneously.
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Any Inspection is Manipulable

1. Introduction

Consider a sequential forecast which may vary with time and history. A calibration

test (see Dawid (1982), Foster and Vohra (1997) and Kalai, Lehrer and Smorodinsky

(1999)) compares the observed empirical frequency over a set of times with the average

prediction, over the same set of times. Each test checks different events at different

times. A forecasting scheme passes a calibration test at a sequence of state realizations

if the gap between these two figures diminishes to zero. In other words, each test defines

what is consistent with the observed facts differently. A forecast is consistent with the

observed facts according to a given test if the empirical frequency of the events checked

coincides asymptotically with the average prediction of these events. When the forecast

and the true distribution (according to which the states are selected) are the same, the

forecast passes any calibration test with probability one. A calibration test is, therefore,

Type I-error free.

The calibration tests treated in the literature are pure: After any history it is known

what specific event (for instance, “rain”, “foggy”) is being considered. Here, we introduce

mixed calibration tests, where, after each history, a randomly chosen event is checked.

A mixed test checks whether the average prediction of these randomly chosen events is

asymptotically equal to the frequency of their realizations. Like a deterministic test, a

mixed calibration test is also Type I-error free.

The main result of this paper shows that there is no mixed calibration test which

rejects any inaccurate forecast. That is, for any test of this kind, there exists a forecasting

scheme which is always consistent with the realized events. A constructive method to

produce this scheme is provided as well.

Another interpretation of the main result involves a forecaster and an inspector. The

inspector randomly chooses a calibration test according to a known distribution. It is

shown that a forecaster, without knowing anything regarding the way states are selected

can pass almost every test chosen by the inspector, independently of the sequence of

realizations. In other words, the forecaster has a forecasting method which is consistent

with the observed facts in the meaning induced by almost all tests.

Instead of randomly choosing one test, as discussed previously, the inspector can

employ a set of tests simultaneously. The main result implies that if the inspector employs

countably many calibration tests, for instance all those computable by a Turing machine,

a forecaster can, likewise, pass them all1 simultaneously. It means that a consultant or

1 The forecasting scheme will be non-computable in this case.
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a scientist (e.g., a weather forecaster) who knows the (countable) set of tests his model

needs to pass, can manipulate. That is, no matter what the sequence of realizations is,

his manipulative forecast will pass all the tests.

Foster and Vohra (1997), who were the first to introduce the subject of calibration

into game theory, deal with a combined calibration test. The forecast passes a combined

test if over those times, where the forecaster says that the next state will be ω with

probability p, the asymptotic empirical frequency of ω is indeed p. Foster and Vohra

showed that there always exists a forecast that is consistent with the observed realizations

in the sense that it passes the combined test for every sequence of state-realizations.

Fudenberg and Levine (1999a) proved this result by the minmax theorem. Hart and

Mas-Colell (1996) did the same using Blackwell’s approachability theorem (Blackwell

(1956), Foster and Vohra (1999)).

The proof of the main result relies on an extension of Blackwell’s approachability

theorem (Blackwell (1956)) to games with payoffs in infinite dimensional spaces (Lehrer

(1997)).

2. Forecasts and Checking Rules

Let Ω be a finite state space. At time n an outcome ωn ∈ Ω is realized. For each

infinite stream of outcomes, ω∞ = (ω1, ω2, ...) ∈ Ω∞, let ωn = (ω1, ω2, ..., ωn) denote

the history of length n, where ω0 denotes the null history. At any time a probabilistic

forecaster, after observing the past history ωn, assigns the distribution µ(·|ωn) to the

possible events in the subsequent period, n + 1. Formally, µ(·|ωn) is a probability over

Ω.

Remark 1. By the Kolmogorov extension theorem (see Shiryayev (1984)) the set of

all probabilities µ(·|ωn) induces a unique distribution, µ, over Ω∞. For any subset A

of Ω, µ(A|ωn) can be therefore interpreted as the conditional probability assigned by µ,

given ωn, that ωn+1 will be in A.

Definition. A checking rule is a pair, D = (C,U), where C and U are functions defined

on the set of all histories, ∪∞n=0Ω
n, with Ω0 being a singleton. For every history ωn, C(ωn)

and U(ωn) are events (i.e., measurable subsets) in Ω. Moreover, C(ωn) ⊆ U(ωn).

The checking rule D is interpreted as follows. After the history ωn, D determines

what (local) ”universe” to consider (i.e., U(ωn)) and, within this ”universe”, which event

to check (i.e., C(ωn)).

To empirically test the reliability of a forecast, Dawid (1982) introduced the notion of

calibration. A belief is declared as being calibrated with the truth if observed frequencies
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of events match their forecasted probabilities. The checking rule D is used to empirically

test the reliability of µ. This is done by comparing the relative frequency of the C’s

among the realizations of U to the conditional probability (according to µ) of C given U .

Relatedly, Kalai, Lehrer and Smorodinsky (1999) considered a special kind of checking

rules, where U(ωn) is either Ω or ∅.

For any checking rule define, In(D, ωn) = 1 if ωn ∈ U(ωn−1). Otherwise, In(D, ωn) =

0. Thus, In is equal to 1 if the realized state is in the “universe” checked. In this case,

we say that D is active. Let Tn(D, ωn) =
∑n

t=1 It(D, ωt). Tn is the number of times,

up to stage n, when the checking rule was active.

For any checking rule D, a forecast µ, and ω∞, denote,

(1)

fn(D, ωn, µ) =

∑n
t=1 1l{ωt∈U(ωt−1)}

(

µ
(

U(ωt−1)|ωt−1
)

1l{ωt∈C(ωt−1)} − µ
(

C(ωt−1)|ωt−1)
)

)

Tn(D, ωn)
,

where 0/0 is defined as 0 and ω0 denotes the null history.

Remark 2. Conditional on ωt−1, the expectation, with respect to µ, of the t-th sum-

mand of (1), 1l{ωt∈U(ωt−1)}

(

µ
(

U(ωt−1)|ωt−1
)

1l{ωt∈C(ωt−1)}−µ
(

C(ωt−1)|ωt−1
)

)

, is zero.

Therefore, by the strong law of large numbers, fn(D,ωn, µ) converges to zero µ-almost

surely.

Remark 3. In case It = 0, the t-th summand of (1) is equal to zero. That is, when

D is inactive at time t, f t−1(D, ωt−1, µ) = f t(D, ωt, µ).

Remark 4. An alternative definition of fn(D, ωn, µ) can be given using the terminol-

ogy of conditional expectation2. Let Ft be the field generated by the histories of length

t. Define two random variables Ct and Ut, both being Ft-measurable, which take only

two values, 0 or 1. Ct = 1 only if ωt ∈ C(ωt−1) and Ut = 1 only if ωt ∈ U(ωt−1). In other

words, Ct and Ut are the characteristic functions of C(ωt−1) and U(ωt−1), respectively.

Now, fn(D, ωn, µ) =

∑n

t=1
Ut

(

E
(

Ut|Ft−1

)

Ct−E
(

Ct|Ft−1

)

)

∑n

t=1
Ut

. Since Ct = 1 implies Ut = 1,

the right side of this equality can also be written as
∑n

t=1

(

E(Ut|Ft−1)Ct−E(Ct|Ut,Ft−1)Ut

)

∑n

t=1
Ut

or as
∑n

t=1
UtE(Ut|Ft−1)

(

Ct−E(Ct|Ut,Ft−1)
)

∑n

t=1
Ut

.

Definition. The forecast µ passes the calibration test induced by D at ω∞ = (ω1, ω2, ...),

if Tn(D,ωn) →∞ implies

lim
n→∞

fn(D, ωn, µ) = 0.

2 This formulation was suggested by one of the referees.
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The fact that limn→∞ fn(D, ωn, µ) = 0 means that the forecaster managed to have

a good track record along ω∞, according to D.

Definition. A test is a function, ψ, which attaches to any measure µ and ω∞ ∈ Ω∞

an element in the set {PASS, FAIL}. A test ψ is Type I-error free if for any measure

µ, ψ(µ, ω∞) is PASS with µ-probability one.

In other words, a test is Type I-error free if it is immunized against committing a

Type I-error of rejecting a true forecasting scheme.

Remark 5. Remark 2 implies that for every calibration test D µ passes the calibration

test induced by D at µ-almost every ω∞ (see also Dawid (1982) and Kalai, Lehrer and

Smorodinsky (1999)). Stated differently, the calibration tests are Type I-error free.

The combined calibration test introduced by Foster and Vohra (1997) is not Type

I-error free. For every p, a distribution over Ω, denote, N(p, ωn) =
∑n

t=1 1l{µ(·|ωt−1)=p}.

Thus, N(p, ωn) is the number of times, up to time n, that the forecast is p. Let ρ(p, ω, ωn)

be the fraction of those times for which the realization is ω ∈ Ω. Formally,

ρ(p, ω, ωn) =
∑n

t=1
1l{µ(·|ωt−1)=p}1l{ωt=ω}

N(p,ωn)

if N(p, ωn) > 0 and zero otherwise. The forecast µ passes the combined calibration test

at ω∞ if

lim
n→∞

∑

p

|ρ(p, ω, ωn)− p(ω)|N(p,ωn)
n = 0

for every ω ∈ Ω, where the summation is taken over all the distributions, p.

Consider a forecasting scheme that satisfies the following two properties: (a) at any

time, the forecast along the sequence of realizations ω∞ differs from all previous forecasts,

and (b) at any time, the probability assigned to each ω ∈ Ω is bounded away from zero.

Such a forecasting scheme does not pass the combined calibration test at ω∞. This is so

because up to any time n, there are n different p’s for which N(p, ωn) = 1 and, moreover,

for each such p, the difference |ρ(p, ω, ωn)− p(ω)| is bounded away from zero. Note that

the forecast does not pass the combined calibration test even if it is true, namely, even

if the sequence of realizations is randomly chosen according to the forecasting scheme.

Thus, the combined calibration test is not Type I-error free.

3. The Main Result

Denote by D the set of all checking rules. This set is naturally endowed with a

topology (an open set includes all the rules that agree on a finite set of histories), and a

σ-algebra (the algebra generated by all the open sets).
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Suppose that the inspector chooses a checking rule out of D according to the distri-

bution λ. The distribution λ will be referred to also as a mixed checking rule.

Theorem 1. Given λ, there is a forecasting µ s.t. for any ω∞, the sequence fn(D,ωn, µ),

of random variables defined over D, converges λ-almost surely to zero.

The theorem establishes the existence of a forecast which passes the calibration test

induced by almost every checking rule, at any realized sequence of states.

Corollary 1. For any given countable set D′ ⊆ D, there is a forecast µ s.t. µ passes

every calibration test induced by any checking rule in D′ at any ω∞ (i.e., fn(D,ωn, µ)

converges to zero for every D ∈ D′ at any ω∞.)

In other words, Corollary 1 states that for any given countable set D′, there is a

forecast µ which passes the calibration test induced by any D ∈ D′ over any sequence of

realizations, ω∞. This means that any countable set of tests can be manipulated by a

smart forecaster.

Proof of Corollary 1. Let D′ be a countable set of checking rules and let λ be a

distribution which assigns to any D ∈ D′ a positive probability. Since, by Theorem 1,

fn converges λ-almost surely to zero, fn(D) converges to zero for every D ∈ D′.

The proof of the main theorem, Theorem 1, requires some results regarding the

approachability of random variables. These results are of interest in themselves, and are

presented in the following sections.

4. The Game Played by the Forecaster and the Inspector

Fix ω∞ ∈ Ω∞ and consider the following sequential game. At time n, after the

history ωn−1 of states, the forecaster chooses a distribution µ(·|ωn−1) over Ω and the

inspector chooses a pair (C(ωn−1), U(ωn−1)) such that C(ωn−1) ⊂ U(ωn−1) ⊂ Ω. In

other words, the forecaster’s strategy is a complete forecasting scheme, µ, and the in-

spector’s pure strategy is a checking rule, D. The forecaster wins the game if µ passes the

calibration test induced by D at ω∞, and looses otherwise. We then say that Uω∞(µ,D)

is equal to 1 if the forecaster wins and equal to 0 otherwise. Denote this game by Γω∞ .

Note that in Γω∞ , both players cannot condition their strategies on the previous

choices made by their opponents. In subsection 10.1, we refer to the game where the

inspector can condition his choices on the previous forecaster’s predictions and claim that

the same results hold. In any case, the forecaster may rely solely on previously realized

states.

Returning to this game, the inspector is allowed to randomly choose a pure strategy.

Let λ be an inspector’s mixed strategy. Thus, λ is a distribution over D. We now
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extend the range of Uω∞ to accommodate also the inspector’s mixed strategies as follows:

Uω∞(µ, λ) = Eλ(Uω∞(µ,D)).

Since the players are not informed of ω∞ before the game starts, the players actually

play an unknown game selected from the set {Γω∞}ω∞∈Ω∞ . This is an incomplete infor-

mation game without a prior distribution over the set of possible games. Non-Bayesian

games of this kind were previously treated also in Banõs (1968) and in Megiddo (1980).

The following rephrases Theorem 1.

Theorem 1∗. Given an inspector’s mixed strategy λ, there is a forecasting scheme µ

s.t. Uω∞(µ, λ) = 1 for any ω∞.

The fact that the forecaster can win the game for any ω∞ means that whatever the

true distribution over Ω∞ may be, say, π, the following holds: minλ maxµ Eπ(Uω∞(µ, λ)) =

1. Thus, if the strategy of the inspector is known, the forecaster has a strategy that en-

sures him a win without knowing the true distribution that governs the evolution of

states.

5. The Principle of Approachability

This section is devoted to the geometric principle behind the proof. The simplest

version of this principle called the principle of approachability, is the following. Let

g1, g2, ... be a uniformly bounded sequence in IRk. Denote by fn the average of the n

first elements in the sequence. If for any n the inner product of fn and gn+1, denoted

〈fn, gn+1〉, is less than or equal to zero, then the sequence of the averages, fn, converge

to zero. That is, if for any n the element gn+1 and fn lie on two sides of the hyperspace

perpendicular to fn, then the latter approaches zero. In a sense, by lying on the other

side of the hyperspace perpendicular to fn, the vector gn+1 corrects the cumulative error

at time n.

We proceed next to the first extension. Suppose that at any time there is also an

activeness vector In ∈ IRk whose coordinates are either 0 or 1. The coordinates of the

vector In tell whether their corresponding coordinates in gn are active or not: the i-th

coordinate of gn is active only if the i-th coordinate of In is 1. Let Tn =
∑n

t=1 It. Thus,

the i-th coordinate of Tn is the number of times the i-th coordinate was active in the

vectors g1, g2, ..., gn.

Define f1 = g1 and fn = T n−1fn−1+gn

T n , where the product (resp. quotient) of two

vectors is the vector whose coordinates are the product (resp. quotient) of the corre-

sponding coordinates. The i-th coordinate of fn is the average of the i-th coordinates of

g1, g2, ..., gn when these are active.
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An example. Suppose that g1 = (1,−3), g2 = (7, 5), g3 = (−2, 9), I1 = (1, 1),

I2 = (1, 0) and I3 = (1, 1). Then, T 3 = (3, 2) and f3 = (2, 3).

Note that in case all the coordinates are always active (that is, In is a vector of 1’s

for every n), then Tn is a vector of n’s and fn is, as before, the ordinary average.

An extension of the principle of approachability to this case is the following. Suppose

that all the coordinates of Tn go to infinity. If for any n the inner product of fn

T n+1 and

gn+1, 〈fn, gn+1

T n+1 〉, is less than or equal to zero, then fn converges to zero. Note that

when, as in the previous case, Tn+1 is constant, then 〈fn, gn+1

T n+1 〉 ≤ 0 is equivalent to

〈fn, gn+1〉 ≤ 0. fn is the average of g1, g2, ..., gn over the active times. Thus, the

contribution of any coordinate of gn+1 (to fn+1) is greater when the corresponding

coordinate of Tn+1 is smaller. More precisely, the contribution is gn+1

T n+1 . If for any n this

vector lies on the other side of the hyperspace perpendicular to fn (i.e., 〈fn, gn+1

T n+1 〉 ≤ 0),

meaning that the vector gn+1 corrects the cumulative error at time n, then fn converges

to zero.

This extension is sufficient for the case where the inspector is restricted to using

only a finite number of calibration tests. In this case, each one of the k coordinates is

dedicated to one test. The objective of the forecaster is, then, to obtain the average of

each coordinate over the active times converging to zero. That is, to have the average

vectors approaching the zero vector.

In case the inspector employs more than a finite number of tests, one needs a further

extension of the principle of approachability. Let g1, g2, ... be a sequence of random

variables whose variance is finite. These random variables are measurable functions

from a probability space to the set of the real numbers. Denote by λ the underlining

probability. The vectors in the previous case can be thought of as functions defined over a

finite set consisting of k points. Here, the coordinates of the finite vectors are replaced by

the points in the probability space. Let In be a random variable which attains either 0 or

1 as values and let Tn =
∑n

t=1 It. As before, In is the activeness random variable while

Tn counts the number of active times that correspond to every point in the probability

space. Define f1 = g1 and fn = T n−1fn−1+gn

T n , where the product (resp. quotient) refers

to the pointwise product (resp. quotient) of two random variables. The value of fn at a

certain point is the average of the values that g1, g2, ..., gn take at the same point, over

the active times.

Note that the expectation of the product of two random variables can serve as an

inner product in the space of random variables whose variance is finite. The principle of

approachability then takes the following form. If Tn goes to infinity and if, in addition,

for any n the expectation of the product of fn and gn+1

T n+1 , E(fn gn+1

T n+1 ), is less than or
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equal to zero, then fn converges to zero. In symbols, if

∫

fn T n+1

gn+1 dλ = 〈fn, gn+1

T n+1 〉 =
∫

fn

T n+1 gn+1dλ = 〈 fn

T n+1 , gn+1〉 ≤ 0,

then fn converges to zero. The convergence here is in the “almost surely” sense. That

is, fn → 0 with λ-probability 1.

This principle is summarized by Proposition 1 in Lehrer (1997).

Proposition 1. Suppose that

(a)
{

Tn
}∞

0 is a sequence of non decreasing random variables that assume integer values.

Tn+1 − Tn ≤ 1, Tn →∞ λ-a.s. and T 0 = 0;

(b)
{

gn
}

is a sequence of random variables that take values in [−1, 1] s.t. Tn+1−Tn = 0

implies gn+1 = 0;

(c) fn+1 = T nfn+gn+1

T n+1 ; and

(d) 〈 fn

T n+1 , gn+1〉 ≤ 0.

Then, fn converges to zero with λ-probability 1.

6. An Illustration of the Manipulative Forecast

Since non-Bayesian games are hard to handle, we consider a different game where the

players are the forecaster and nature. As before, the forecaster provides a prediction while

nature chooses a realization. The payoffs at any round are not numbers but functions

defined over the set of pure tests. For any of the players’ actions the value of the function-

payoff that corresponds to a test is the gap between the forecaster’s prediction (of an

event determined by the test) and nature’s choice (1 for the case where nature’s choice is

in this event and 0 otherwise.) It is shown that the forecaster has a strategy that ensures

that the partial average payoffs converge to zero with probability 1. In other words, the

gaps between the relative frequency and the realizations that correspond to almost all

tests converge to zero.

To illustrate the game and the strategy of the forecaster (his manipulative forecast),

consider3 Ω = {a, b, c}. Suppose that the inspector chooses one of the tests D1, ..., D4

with probability 1
4 each. Suppose, furthermore, that on the null history the tests are

defined as follows: C1 = {a}, U1 = {a, b}; C2 = {a}, U2 = {a, c}; C3 = {c}, U3 =

{a, b, c}; and C4 = {b, c}, U4 = {a, b, c}. Assume that the first realization, ω1, is a. Thus,

I1(Di, ω1) = 1 for i = 1, ..., 4. Assume that the forecast at the first stage was ( 1
3 , 1

3 , 1
3 ).

Thus, f1(D1, ω1, µ) = 1
3 ; f1(D2, ω1, µ) = 1

3 ; f1(D3, ω1, µ) = − 1
3 ; and f1(D4, ω1, µ) =

− 2
3 .

3 For an example with C strictly in U 6= Ω, we need more than two states.
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The forecast at the second stage depends on the tests employed, which depend on

the history ω1 = (ω1). Assume that C1(ω1) = {a}, U1(ω1) = {a, b}; C2(ω1) = {c},

U2(ω1) = {a, c}; C3(ω1) = {c}, U3(ω1) = {b, c}; and C4(ω1) = ∅, U4(ω1) = {a, b, c}.

Let4 GDi for i = 1, ..., 4 be the four following 3× 3 matrices.





a b c
a 0 1 0
b −1 0 0
c 0 0 0





GD1





a b c
a 0 0 −1
b 0 0 0
c 1 0 0





GD2





a b c
a 0 0 0
b 0 0 −1
c 0 1 0





GD3





a b c
a 0 0 0
b 0 0 0
c 0 0 0





GD4

.

Note that each one of the matrices GDi is anti-symmetric5. These matrices are

related to the tests in the following sense. Suppose that the forecast at the second stage is

µ(·|ω1) = (µa, µb, µc). The product of the matrix GDi with the vector (µa, µb, µc), which

is a three-dimensional vector, determines, along with the realization on the second stage,

ω2, the value of f2(Di, ω2, µ). More precisely, let the product of the matrix GDi with

the vector (µa, µb, µc) be denoted as (g2(Di, (a, a), µ), g2(Di, (a, b), µ), g2(Di, (a, c), µ)).

If the realization on the second stage is ω2, then ω2 = (a, ω2) and f2(Di, ω2, µ) =
f1(Di,ω1,µ)+g2(Di,ω2,µ)

T 2(Di,ω2,µ) , (see (1)). For instance, if the realization on the second stage is

b, then g2(D1, (a, b), µ) = −µa and f2(D1, ω2, µ) = f2(D1, (a, b), µ) =
1
3+(−µa)

2 . Since

ω2 is not in U2(ω1), the second test, D2, is inactive on the second stage and, hence,

f2(D2, ω2, µ) = f1(D2, ω1, µ).

Consider now the matrix G =
∑4

i=1
1
4

f1(Di,ω1,µ)
2 GDi . This is a linear combination

of four anti-symmetric matrices and is, therefore, anti-symmetric in itself. The matrix G

is equal to





a b c
a 0 1

24
−1
24

b −1
24 0 1

24
c 1

24
−1
24 0





G

.

Considered as a zero-sum game, the matrix G has 0 as a value. Thus, the column

player has an optimal strategy that ensures that the payoff will not exceed 0. This

strategy, ( 1
3 , 1

3 , 1
3 ), is chosen to be the forecast at the second stage.

Refer to f1(Di, ω1, µ) and g2(Di, ω2, µ) as four-dimensional vectors (the coordinate

i corresponds to the checking rule Di, i=1,2,3,4). The fact that the column player can

ensure that the payoff in G will be at most 0, ensures that 〈f1, g2〉 ≤ 0. This is so no

4 The notation corresponds to that used in the general construction given in Section 5.
5 A square matrix A =

(

aij
)

is anti-symmetric if aij = −aji for any i and j.
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matter what the realization at the second stage may be. Thus, for any realization, g2 and

f1 lie on different sides of the hyperspace in IR4 that is perpendicular to f1. Following

a similar procedure in all the subsequent stages will enable one to use the principle of

approachability and to prove that fn converges to the zero of IR4 or, in other words, to

prove that all four tests are passed.

7. The Proof of the Existence of a Manipulative Forecast

Proof of Theorem 1.

Let ω∞ be fixed throughout. For any D ∈ D, let

G(D,ωn)(ω′, ω′′) = 1l{ω′,ω′′∈U(ωn)}(1lω′∈C(ωn) − 1lω′′∈C(ωn)).

For a given D and ωn one may consider G(D,ωn)(ω′, ω′′) as a zero-sum game, where player

1 chooses ω′ ∈ Ω and player 2 chooses ω′′ ∈ Ω. Since G(D,ωn)(ω′, ω′′) = −G(D,ωn)(ω′′, ω′),

it follows that G(D,ωn) is a zero-sum game whose matrix is anti-symmetric. As such, its

value is 0.

One may think of the forecaster as the column player and of nature, which chooses

the realization, as the row player. A forecaster’s prediction at time n + 1, µ(·|ωn), is a

distribution over the columns. In other words, for a given D, the forecaster’s prediction

is the column player’s mixed strategy in G(D,ωn). Nature’s choice at time n + 1 is a

row, ωn+1. In case the forecaster predicts µ(·|ωn) and nature chooses ωn+1, the expected

payoff (corresponding to G(D,ωn)(ω′, ω′′)) is

(3) gn+1(D, ωn+1, µ) = 1l{ωn+1∈U(ωn)}

(

µ
(

U(ωn)|ωn)

1l{ωn+1∈C(ωn)} − µ
(

C(ωn)|ωn)

)

.

This term represents the n + 1 summand in the numerator of (1). Note that by

Remark 3, whenever In+1(D, ωn+1) = 0, that is, whenever the checking rule D is inactive,

gn+1(D, ωn+1, µ) = 0. Thus, fn+1(D, ωn+1, µ) is the average payoff, over the times when

D was active, of the expected payoffs in the games G(D,ωt), t = 1, ..., n. Alternatively,

(4) fn+1(D,ωn+1, µ) =
∑n+1

t=1
gt(D,ωt)

T n+1(D,ωn+1) = fn(D,ωn,µ)T n(D,ωn)+gn+1(D,ωn+1,µ)
T n+1(D,ωn+1) .

The forecaster and nature are, then, engaged in a sequential game. At round n + 1

they take actions (the forecaster takes a mixed action, a prediction, and nature takes

a pure action, a realization) and receive payoffs from many zero-sum games (G(D,ωn),

D ∈ D). The problem arising is how to manage many games played simultaneously and

to arrive at fn+1(D, ωn+1, µ) converging to zero for λ-almost all D. The key idea is

10
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to combine all the games played into one game and then to play in the game obtained,

optimally.

Let h be a bounded random variable over D. Consider the game

G
h
ωn(ω′, ω′′) =

∫

h(D)G(D,ωn)(ω′, ω′′)dλ(D). G
h
ωn(ω′, ω′′) is, like G(D,ωn)(ω′, ω′′), a game

where the forecaster chooses a mixture over the columns, ω′′, and nature chooses a

realization, a row ω′. The game G
h
ωn is a linear combination of the games G(D,ωn).

Since each one of the games G(D,ωn) has an anti-symmetric matrix, so does the game

G
h
ωn . Therefore, the column player can guarantee a payoff that does not exceed zero.

In other words, there exists a distribution, call it µh(·|ωn), over the columns of the

matrix G
h
ωn such that for every row, ω′, the expected payoff,

∑

ω′′ µ
h(ω′′ at time n +

1|ωn)
∫

h(D)G(D,ωn)(ω′, ω′′)dλ(D), is less than or equal to zero. That is,

∑

ω′′
µh(ω′′ at time n|ωn)

∫

h(D)G(D,ωn)(ω′, ω′′)dλ(D) =

∫

h(D)
∑

ω′′
µh(ω′′ at time n|ωn)G(D,ωn)(ω′, ω′′)dλ(D) =

∫

h(D)
∑

ω′′
µh(ω′′ at time n + 1|ωn)(1l{ω′,ω′′∈U(ωn)})(1lω′∈C(ωn) − 1lω′′∈C(ωn)) ≤ 0.

Rearranging the terms, we obtain that when the realization ω′ is ωn+1,

∫

h(D)1l{ωn+1∈U(ωn)}

(

µh(

U(ωn)|ωn)

1l{ωn+1∈C(ωn)} − µ
(

C(ωn)|ωn)

)

dλ(D) =

(5)
∫

h(D)gn+1(D, ωn+1, µh)dλ(D) ≤ 0.

Recall that In+1(D, ωn+1) indicates whether the checking rule D is active or not at

time n+1 and that Tn+1(D, ωn+1) counts the number of active times up to n+1. Both

figures depend not only on ωn but also on ωn+1, the realization at time n + 1. However,

the forecaster is unaware of this realization, and he may rely only on the information

available to him, ωn, before providing the prediction at time n + 1.

Note that Tn(D, ωn) + 1 6= Tn+1(D,ωn+1), only if ωn+1 /∈ U(ωn). In this case,

gn+1(D, ωn+1, µ) = 0 for any µ (see(3)). Thus,

(6) gn+1(D,ωn+1,µ)
T n(D,ωn)+1 = gn+1(D,ωn+1,µ)

T n+1(D,ωn+1) .

Now we are ready for the key step of the proof: defining the forecast at time n + 1.

Let h(D) = fn(D,ωn,µ)
T n(D,ωn)+1 . The function h depends only on past information, ωn. Define

µ(·|ωn) = µh(·|ωn).

11
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The term h(D) is the coefficient of the game G(D,ωn) in the linear combination

G
h
ωn . The greater the cumulative error of test D, fn(D, ωn), the greater the coefficient.

Moreover, The greater the value of Tn(D, ωn) the smaller the coefficient. The intuition

of the last statement is that when Tn(D, ωn) is relatively large, meaning that D was

relatively active up to time n, the contribution of the next result, gn+1(D, ωn+1, µ), and

hence the coefficient of G(D,ωn) are relatively small.

By (5) and by the definition of h, one obtains,

(7)
∫

fn(D,ωn,µ)
T n(D,ωn)+1gn+1(D, ωn+1, µ)dλ(D) ≤ 0.

Stated differently, gn+1(D,ωn+1,µ)
T n(D,ωn)+1 corrects (on average) the cumulative error, fn(D,ωn, µ)

in the sense described in Section 5. (6) and (7) imply that

(8)
∫

fn(D,ωn,µ)
T n+1(D,ωn+1)g

n+1(D, ωn+1, µ)dλ(D) ≤ 0.

Let ω∞ be the sequence of realized states, and let µ be the forecast just defined. We

complete the proof by applying Proposition 1 to the random variables fn = fn(D,ωn, µ),

gn = gn(D, ωn, µ)), and Tn+1 = Tn+1(D, ωn+1), n = 1, 2, ... . Note that ω∞ is fixed;

therefore, fn, gn and Tn+1 are functions of D only. Note that all the random variables

involved are functions of finite histories, and are, therefore, measurable.

Condition (a) of the proposition is satisfied due to the definition of Tn+1(D, ωn+1).

Condition (b) is satisfied by the definition of gn(D, ωn, µ) (see (3)) and by Remark 3.

Condition (c) is implied by (4) and condition (d) is satisfied due to (8). Proposition

1 implies that whenever Tn+1(D,ωn+1) goes to infinity, fn+1(D, ωn+1, µ) converges to

zero, λ-almost surely. This means that the forecast µ passes the tests induced by λ-almost

all checking rules at ω∞. Since ω∞ was arbitrary, Theorem 1 is proven.

One may also conceive of the game played by the forecaster and nature as a game

with payoffs in the space of random variables over D. At stage n+1, the one-shot payoff

is the random variable gn+1(·, ωn+1, µ) and the average payoff is fn+1(·, ωn+1, µ).

It turns out that for any specific checking rule and at any period of time, the pay-

offs are obtained from an anti-symmetric game. Since any linear combination of anti-

symmetric games is also anti-symmetric, the combined game, G
h
ωn , is also anti-symmetric.

The value of an anti-symmetric game is zero; therefore, the column player, the forecaster,

can guarantee that the stage-payoff will not exceed zero no matter what state nature may

choose. This is why (7) can be guaranteed.

12
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The geometric meaning of (7) is that the forecaster can ensure that the contribution

of the one-shot payoff at time n + 1, gn+1

T n+1 (which is a point in the Hilbert space of the

random variables whose second moment is finite), to the average payoff is on the other

side of the hyperspace perpendicular to the average payoff up to time n (i.e., the point

fn).

The intuition is as follows: fn(D, ωn, µ) can be thought of as the error related to

the test D at time n. Thus, the point fn (in the Hilbert space) represents the errors of

all the tests employed. The direction of fn in that space is the direction of the error;

the opposite direction is the direction of the error correction. gn+1, on the other hand,

is the result of the n + 1 stage; its contribution to the average at time n + 1, fn+1, is
gn+1

T n+1 . The fact that gn+1

T n+1 is on the other side of the hyperspace perpendicular to fn,

means that gn+1

T n+1 lies in the direction of the error correction. Proposition 1 ensures that

if gn+1 corrects the error in this way, at any time n + 1, then, the error diminishes to

zero. That is, fn goes to the 0 point of the Hilbert space.

8. The Span

Definition. a. Let D′ be a set of checking rules. We say that the checking rule D

is in the span of D′ if for every ω∞, whenever a forecast µ passes the calibration test

induced by D′ at ω∞ for every D′ ∈ D′, µ also passes the calibration test induced by D

at ω∞. Denote by sp(D′) the set of all the checking rules in the span of D′. This set is

called the span of D′.

b. A set D′ of checking rules is called minimal if D ∈ D′ implies D /∈ sp(D′ \ {D}).

As Oakes (1985) showed, any µ has a D and ω∞ s.t. µ does not pass the calibration

test induced by D at ω∞. This fact and Corollary 1 show the following:

Proposition 2. The set of all checking rules cannot be the span of any countable set.

9. Sampling Rules

Definition. A sampling rule is a function, F , from the set of histories, ∪tΩt, to {0, 1}.

A sampling rule indicates whether the realization that comes after the history h ∈

∪tΩt will be included in the sample (in case F (h) = 1) or not (in case F (h) = 0).

For a given sampling rule F , and a sequence ω∞, denote by Nn(F, ωn) the number

of observations that were sampled according to F up to time n. That is, Nn(F, ωn) =
∑n

t=1 F (ωt). Let the empirical frequency of the sample, according to F up to time n, be

denoted by en(F, ωn). In other words, en is a distribution over Ω which assigns to ω ∈ Ω

13
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a probability that is equal to the number of times ω appeared in the sample up to time

n divided by Nn(F, ωn).

Definition. A forecast µ is F -good at ω∞ if limn Nn(F, ωn) = ∞ implies

lim
n→∞

‖en(F, ωn)−
∑n

t=1
µ(·|ωt)1l{F (ωt)=1}
Nn(F,ωn) ‖ = 0.

In other words, the forecast µ is F -good if, over the sample determined by F , the

gap7 between the empirical frequency and the average prediction tends to zero.

Fudenberg and Levine (1999b) referred to countably many sampling rules that gen-

erate a partition of the entire sample. That is, each observation is sampled by exactly

one F . Corollary 1 implies a result which holds for any countable family of sampling

rules, as follows.

Proposition 3. For any given countable family of sampling rules, there is a forecasting

scheme µ such that µ is F -good at any ω∞ and for every F in the family.

Proof: Apply Corollary 1 to the following countable set of checking rules. For every

sampling rule F , and for every ω ∈ Ω, consider the checking rule defined as U(ωn−1) = Ω

and C(ωn−1) = {ω} whenever F (ωn−1) = 1 and U(ωn−1) = C(ωn−1) = ∅ otherwise.

Verbally, the checking rule corresponding to F and ω is the one that checks the singleton

{ω} whenever the observation is to be sampled according to F and is inactive otherwise.

10. Concluding Remarks and Open Problems

10.1 Checking Rules that Depend on Previous Predictions.

The checking rules defined above are, at any time, functions of the history of real-

izations. One may extend the checking rules so that the events checked may depend in

addition also on all historical predictions. It turns out that Theorem 1 remains correct

when applied to such extended checking rules.

The key step of the proof in Section 7 is to find the function h that depends only on

past information, ωn, and based on that function to define µ(·|ωn) = µh(·|ωn). As long

as the checking rules, whether deterministic or not, depend solely on past information

(i.e., whether the rules depend on past realizations or on past predictions), one may

define a function h that depends on the history alone. This enables one to define µ(·|ωn)

as before.

This means that Theorem 1∗ remains true, even if the inspector is allowed to con-

dition his choice on past predictions.

7 Note that this time, the gap is between distributions over Ω.
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10.2 Checking Rules which Also Depend on Current Predictions. The main

result tells us that when the inspector uses only past information, the forecaster can

manipulate. The checking rules we dealt with are not forecast based and the proof of

Section 7 cannot be applied to such checking rules.

Sandroni, Smorodinsky and Vohra (1999) showed that checking rules that may de-

pend on the stage prediction are manipulable as well. The forecasting scheme provided

in Section 7 is such that after every history, the forecaster chooses deterministically one

prediction. In contrast, the forecasting scheme of Sandroni, Smorodinsky and Vohra

(1999) chooses a prediction randomly out of a finite set of possible predictions.

10.3 Failing a Test in an Uncountable Set.

Corollary 1 states that if D′ is countable, then there is a forecast which passes any

test induced by any D ∈ D′ at any ω∞. The question then arises as to whether for any

uncountable D′, such a statement is always incorrect. Formally, let µ be given and let

D′ be an uncountable minimal set of checking rules. Are there always a checking rule

D ∈ D′ and a sequence ω∞ of realizations such that fn+1(D, ωn+1, µ) does not converge

to zero?

10.4 An Impossibility Result.

Definition. A set of tests, D, is said to be Type I-error free if for any µ, on a set

of ω∞’s whose µ-probability is 1, µ passes the calibration test induced by D at ω∞, for

every D ∈ D.

Obviously, any countable D is Type I-error free. It was shown previously that for

any countable D there exists a forecasting scheme which passes all tests in the set on

every ω∞. It is conjectured that any Type I-error free set is manipulable.

While the definition of Type I-error seems to be the only natural definition, there is

no obvious way to define what is Type II-error (not rejecting wrong models). I believe

that one can find a reasonable sense of Type II-error so that an affirmative answer to

the conjecture would mean that there is no set of tests which is immunized against both

Type I-error and against Type II-error.
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