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PART 2. REGULAR LANGUAGES, GRAMMARS AND AUTOMATA 
 

RIGHT LINEAR LANGUAGES. 

 

Right Linear Grammar:  Rules of the form: 

       A  α B, A  α  A,B  VN, α  VT
+
 

Left Linear Grammar:  Rules of the form: 

       A  Bα, A  α  A,B  VN, α  VT
+ 

 

Rewrite a nonterminal into a non-empty string of terminal symbols or a non-empty 

string of terminal symbols followed by a nonterminal (right linear)/ a nonterminal 

followed by a non-empty string of terminal symbols (left linear). 

 

Restricted Right Linear Grammar:  Rules of the form: 

A  aB, A  a  A,B  VN, a  VT 

Restricted Left Linear:  Rules of the form: 

 A  Ba, A  a  A,B  VN, a  VT 

 

Rewrite a nonterminal into a terminal symbol or a terminal symbol followed by a 

nonterminal (right linear)/a non terminal followed by a terminal symbol (left linear) 

  

Linear:   A  α B β, A,B  VN, α  VT
+
 and  β  VT* or α  VT* and  β  VT

+
 

                or A  α, A  VN, α  VT
+
. 

 

Rewrite a non-terminal into a non-empty string of terminal symbols, or into  

a non-terminal flanked by two strings of terminals (possibly empty). 

 

Remark 1:  for all these type: we include in the type Ge for grammars G of the type in 

reduced form. 

Remark 2:  Clearly, a restricted right linear grammar is right linear, a right linear 

grammar is linear, a linear grammar is context free. 

Remark 3:  Linear grammars are stronger than right linear grammars.  We will prove 

shortly that language  a
n
b

n
 (n>0)  (all string consisting of a's followed by an equal 

number of b's, at least 1 a and at least 1 b) cannot be generated by a right linear 

grammar. 

But S  ab, S  aSb is a linear grammar and generates a
n
b

n
 (n>0). 

  

The terminology is explained by the generated parse trees: 

 

Right linear:    Restricted right linear 

 A     A 

      α           A         a             A 

            α            A    a             A 

                   α            A           a            A 

                          α            A        a           A  

                                 α       a  

A single spine of non-terminals on the right side. 
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Left linear:    Restricted left linear 

           A                    A 

               A    α            A          a 

          A        α     A           a 

     A        α          A        a  

A         α    A a 

      α           a 

 

A single spine of non-terminals on the left side. 

 

Linear: 

 

           A 

     α    A    β 

     α    A    β 

     α    A    β 

    α     A    β 

    α           β 

 

A single spine of non-terminals. 

 

Theorem: For every right linear grammar there is an equivalent restricted right linear  

                  grammar. 

 

Proof: 

Let G be a right linear grammar.  The rules are of the form: 

A α, A αB, where α = a1...an. 

 

Take any such rule R.  Add to the grammar new non-terminal symbols X1...Xn-1 and 

replace R by the rules: 

       Xn-1an 

Aa1X1, X1a2X2,....   depending on R 

      Xn-1an B 

 

Example:   

AabcB,   Bb 

gives parse tree: 

 A 

a     b        c   B 

 

AaX1, X1bX2, X2cB, Bb 

gives parse tree: 

 

 A 

       a        X1 

             b        X2 

                  c           B 

                                     b 
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The resulting grammar generates the same languages and is a restricted right linear 

grammar. 

 

Example: 

 

(ab)
+
ccd(ab)

+
 

 

S  ab S 

S  ab A 

A  ccd B 

B  ab 

B  ab B 

 

       S 

 

a b       S 

     

     a b          A 

          

          c c d           B 

   

                       a b      B 

          

                               a     b  

S    a A1 

A1  b S 

A1  b A 

A   c A2 

A2  c A3 

A3  d B 

B   a A4 

A4  b 

A4  b A 
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      S 

a          A1 

 

      b           S 

    

            a               A1 

 

                   b                  A 

 

                             c                  A2 

 

                                                          c                     A3 

 

                                                 d                       B 

 

                                                                 a                  A4 

 

                                                                         b                       B 

 

                                                                                       a                       A4 

 

                                                                                                                  b                  

 

 

 

We obviously have the same result for left linear grammars and restricted left linear 

grammars. 

 

Theorem: For every right linear grammar there is an equivalent left linear grammar  

                  (and vice versa). 

Proof:  This will follow from other facts later. 

 

This means that the right linear languages are exactly the restricted right linear 

languages and are exactly the left linear languages. 

 

 

REGULAR LANGUAGES. 

 

Kleene closure, *, is an operation which maps every language A onto A*. 

Union, , is an operation which maps every two languages A and B onto A  B. 

We introduce a third operation product:  

Product, , is a operation which maps every two languages A and B onto A  B, 

defined as: 

 

 The product of A and B: A  B = {α

β: α  A and β  B} 

 

Example: If A = {a,b} and B = {cc, d} 

                A  B =  {acc, ad, bcc, bd} 
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Fact: A
+
 = A  A* 

Proof:   

Case 1.  Let e  A.   

Then A
+
 = A* , so the claim is: A* = A  A* 

-Let α  A and β  A*, then obviously, by definition of A*, α

β  A*, hence 

A  A*  A*. 

-A  A* = {α

β: α  A and β  A*} 

A* = {e

β: β  A*}, and since e  A, A*  A  A*. 

So indeed A  A* = A*. 

  

Case 2. e  A. 

-We have already proved that A  A*  A*. 

-Since e  A, e  A  A*, because every string in A  A* starts with as string from  

A.  

The two prove that A  A*  A
+
. 

-Let α  A
+
.   

Then either α  A, and since α = α

e

 
 and e  A*, α  A  A*. 

Or α = α1

...

αn, where α1,...,αn  A.  But then α1  A and α2


...

αn

 
 A*.   

Hence, α  A  A*.  So, A
+
  A  A*. 

Consequently, A
+
 = A  A*. 

 

Example: 
A = {a,b} 

A* = {e, a, b, ab, ba, aa, bb, aaa, ….} 

A £ A* =  

{ a^e, aa, ab, aab, aba, aaa, abb, aaaa,…. 

   b^e, ba, bb, bab,…} = 

{a, b, ab, ba, aa, bb, aaa, ….} = A
+ 

 

Take two languages A and B.  First take their union, (A  B).  Then take the Kleene 

closure of that: (A  B)*.   

The composition operation * o  is the operation which takes any two languages A 

and B and maps them onto *(A  B).   

 

Let O be the operation which maps any five languages A,B,C,D,E onto the language 

((A)*(B)*)(C(DE)*)*).  This operation can be decomposed as a finite 

sequence of compositions of the operations *,,: 

First apply * to A , then apply * to B, then apply  to the result.  Call this 1.   

Then apply union to D and E and apply * to the result. Call this 2.  

Apply  to C and 2, and apply * to the result. Call this 3. 

Now apply  to 1 and 3 and you get the output of O. 

 

Defining the notion of 'finite sequence of compositions' is technically complex and 

nitty-gritty.  I won't do that here, but assume instead that the intuition is clear. 
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The class of regular operations on languages is given by: 

 1. *,, are regular operations on languages. 

 2. Any operation which can be decomposed as a finite sequence of  

    compositions of the operations *,, is a regular operation. 

 

We define: 

 

 Language A is a regular language iff  

 A is a finite language or there is  regular operation O and finite languages 

 A1,…,An and A = O(A1,…,An). 

 

This means that any regular language can be gotten by starting with a finite number of 

finite languages and applying a finite sequence of the operations *,,. 

 

For example, a
n
b

m
(n,m0) is: {a}*{b}* 

                      a
n
b

m
(n,m1) is: {a}

+
{b}

+
 

Since we have shown that {a}
+
 = {a}{a}*, we see that: 

           a
n
b

m
(n,m1) is: ({a}{a}*)({b}{b}*) 

 

Equivalently, we can define the class of regular languages inductively as: 

 

R, the class of all regular languages  is the smallest class such that: 

 1. Every finite language is regular. 

 2. If A and B are regular languages, then A  B is regular. 

 3. If A and B are regular languages, then A  B is regular. 

 4. If A is a regular language, then A* is regular. 

 

(We say 'class' and not 'set' because in this definition we don't put any constraints on 

the alphabets that the languages are languages in.) 

 

Theorem: Every regular languages is a right linear language., 
 

Proof: 

Step 1:  Every finite language is a right linear language. 

Let A = {α1,…,αn} 

Sα1,….,Sαn is a right linear grammar. 

Note that  this also holds if e  A, because this grammar is trivially in reduced form. 

 

Step 2: If A and B are right linear languages, then A  B is a right linear language. 

Suppose GA is a right linear grammar generating A and GB is a right linear grammar 

generating B. 

 

-Change everywhere every non-terminal X in GA by a new non-terminal XA. 

-Change everywhere every non-terminal X in GB by a new non-terminal XB. 

(i.e. we make all non-terminals in GA and GB disjoint). 

-Take the union of the resulting grammars. 
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-For every rule of the form: 

 SAα AA, SAα, SBβ BB, SBβ 

add a rule of the form: 

 Sα AA, Sα, Sβ BB, Sβ 

Call the resulting grammar GAB. 

(Note that GAB is in reduced form.) 

GAB is a right linear grammar and GAB generates AB. 

 

Step 3:  If A and B are right linear languages, then A  B is a right linear language. 

Suppose GA is a right linear grammar generating A and GB is a right linear grammar 

generating B. 

 

-Change everywhere every non-terminal X in GB by a new non-terminal XB (not 

occurring in GA, i.e. we make all non-terminals in GA and GB disjoint). 

 

1. If e  A and e  B, then 

replace  every GA rule of the form: 

 Aα 

by a rule of the form: 

 Aα SB 

Call the resulting grammar GAB 

 

2. If e  A and e  B, GB contains rule SBe.   

Delete that rule and add for every GA rule of the form: 

 Aα 

a rule of the form: 

 Aα SB 

Call the resulting grammar GAB 

 

3. If e  A and e  B, then 

delete S ! e and 

replace  every remaining GA rule of the form: 

 Aα 

by a rule of the form: 

 Aα SB 

and add for every rule of the form: 

SB  α BB or SB α 

a rule of the form: 

 S α BB or S α 

Call the resulting grammar GAB 

 

4. If e  A and e  B, then GB contains rule SBe.   

Delete that rule and add for every remaining GA rule of the form: 

 Aα 

a rule of the form: 

 Aα SB 
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and add for every rule of the form: 

SB  α BB or SB α 

a rule of the form: 

 S α BB or S α 

Call the resulting grammar GAB 

 

In all four cases GAB is a right linear grammar and GAB generates AB. 

 

Step 4. If A is a right linear language, then A* is a right linear language. 

Suppose GA is a right linear grammar generating A. 

-If GA contains rule Se, delete that rule. 

-For every remaining rule of the form: 

 Aα 

add a rule: 

 Aα S 

This will generate A*{e}. 

-Convert the resulting grammar into reduced form and add Se to the result. 

Call the result GA*. 

GA* is a right linear grammar and generates A*. 

This completes the proof. 

 

So we know now that the class of regular languages is a subclass of the class of right 

linear languages.  We will soon see that the two classes actually coincide. 
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FINITE STATE AUTOMATA 
 

We now take a parsing perspective.   Whereas grammars generate strings, automata 

read strings symbol by symbol, from left to right, follow instructions, and 

determinine, when the string is read, whether the string  is accepted or rejected.  

 

At any point of its operation, we assume that the automaton is in a certain state.  We 

can think of this state as an array of switches which can be on or off.  Each 

combination of switch-settings that the automation allows is a possible state that the 

automaton can be in.  The instructions that the automaton follows, then, can be 

interpreted as instructions to reset switches, and hence as instructions to move from 

one state to another. 

 

A state automaton is an automaton that can do this and not more:  it can read the 

input from left to right, symbol by symbol, and at each point follow an instruction to 

switch state.  The state that it is in after reading the input will determine whether or 

not the string is accepted.  Importantly: 

A state automaton does not have any memory. 

 

A finite state automaton is a state automaton that has a finite number of possible 

states it can be in. 

 

A finite state automaton is deterministic iff in any state it is in, there is at most one  

state it can switch to, according to its instructions. 

A finite state automaton is non-deterministic iff possibly in some state there is more  

than one state it can switch to, according to its instructions.  

A deterministic state automaton is total iff in any state it is in, there is exactly one  

state it can switch to. 

 

In the formal definition we only specify the things that vary from automata to 

automata: 

 

A finite state automaton is a tuple M = <S,Σ,δ,S0,F> where: 

 1. S is a finite set, the set of states. 

 2. Σ is a finite alphabet, the input alphabet.  

 3. δ, the transition relation, is a three-place relation relating a symbol in Σ 

   to two states (an input state and an output state):  δ  S  Σ  S. 

 4. S0  S.  S0 is the initial state. 

 5. F  S.  F is the set of final states. 

 

Let M be a finite state automaton: 

M is deterministic iff δ is a partial function from S  Σ into S, i.e. iff δ maps 

every pair consisting of an input state and an input symbol onto at most one  

output state. 

 

 Let M be a deterministic finite state automaton. 

M is total iff δ is a total function from S  Σ into S, i.e. iff δ maps 

every pair consisting of an input state and an input symbol onto exactly one  

output state. 
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Since we read 'non-deterministic' as 'possibly non-deterministic', we take 'finite state 

automaton' and 'non-deterministic finite state automaton' to be the same notion. 

 

I mentioned that we only specify the variable parts of the automaton.  The invariable 

parts are the following: 

 

1. Every automaton has an input tape, on which a string in the input alphabet is 

written. 

2. Every automaton has a reading head which reads one symbol at a time. 

3. Every computation starts while the automaton is in the initial state S0, reading 

the first symbol of the input string. 

4. We assume that after having read the last symbol of the input string, the automaton 

reads e. 

5. At each computation step the automaton follows a transition.   

We write transition δ(Si,a)=Sk as: 

 

 (Si,a)Sk 

 

And with this transition, the automaton can perform the following computation step: 

 

 Computation step:   

If the automaton is in state Si and reads symbol a on the input tape, it  

switches to state Sk and reads the next symbol on the input tape. 

 

6. We say: 

 

 The automaton halts iff there is no transition rule to continue. 

 

 Let α  Σ*. 

 A computation path for α in M is a sequence of computation steps beginning  

in S0 reading the first symbol of α, following instructions in δ until M halts. 

 

Fact: If M is a deterministic finite state machine, then every input string α  Σ* has a  

          unique computation path. 

 

This means that for each input string, the automaton will halt.   

Now, since e  Σ (since Σ is an alphabet), there is by definition of δ no instruction if 

M reads e.  This means that if the automaton reads e, it halts.  We use this in defining 

acceptance: 

 

 7DET. Deterministic finite state automaton M accepts string α  Σ* iff  

 at the end of the computation path of α in M, M reads e and M is in a final  

state. Otherwise M rejects α. 

 

This means that M rejects α if, at the end of the computation path for α in M, M reads 

e, but is not in a final state, or if M halts at a symbol before reading the whole input 

string, that is, if at the end of the computation path of α in M, M doesn't read e.  
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If M is a non-deterministic automaton, there may be more than one instruction that 

M can follow while reading an input symbol in a state.  This means that M can 

choose, and this means that for each string α of the input alphabet there may be more 

than one computation path for α in M.  (where a computation path for α in M is, 

once again, a sequence of computation steps licensed by transitions in M, starting in 

S0 reading the first symbol of α, and halting in some state.)  For non-deterministic 

automata we define acceptance: 

 

7NDET Non-deterministic finite state automaton M accepts string α  Σ* iff  

for some computation path for α in M, at the end of that computation path,  

M reads e and M is in a final state.  Otherwise M rejects α. 

 

This means, that there may be computation paths for α in M at the end of which M is 

not reading e, or M is not in a final state, and yet M accepts α:  as long as there is at 

least one computation path, where M ends up reading e in a final state, M accepts α. 

 

8.  Let M be a finite state automaton. 

L(M), the language accepted by M, is the set of all accepted input strings. 

 (So L(M)  Σ*).  We call L(M) a finite state language. 

 

 M1 and M2 are equivalent iff L(M1) = L(M2). 

 

Now we introduce pictures of finite state automata, called state diagrams: 

 

A state diagram of a finite state automaton represents the states as circles with the 

state names as labels, it represents the transitions in δ as arrows between the 

appropriate state circles, where each arrow is labeled by the appropriate input symbol, 

according to δ, and it represents final states as double circles. 

 

Example. 

M is given by: 

 S = {S0,S1} 

 Σ = {a} 

 δ(S0,a)=S1 

 δ(S1,a)=S0 

 F = {S0} 

         a 

     

            S0            S1  

            a 

 

Accepted: e, aa, aaaa, aaaaaa,... 

Rejected:  a, aaa, aaa, aaaaa,... 

Accepted language:  a
n
 (n is even.) 

 

Note that e is accepted by this automaton. 

The automaton starts out in S0 reading e, and halts there.  Since S0 is a final state, e is 

accepted.   

Fact: finite state automaton M accepts e iff S0 is a final state. 
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M is given by: 

 S = {S0,S1,S2} 

 Σ = {a} 

 δ(S0,a)=S1 

 δ(S1,a)=S0 

 F = {S1} 

        a 

     

            S0            S1  

            a 

 

Accepted: a, aa, aaa, aaaaa, ... 

Rejected: e, aa, aaaa, aaaaaa,... 

Accepted language: a
n
 (n is odd) 

 

M is given by: 

 S = {S0,S1} 

 Σ = {a,b} 

 δ: (S0,a)=S1 

     (S1,a)=S1 

     (S1,b)=S2 

     (S2,b)=S2 

 F = {S1} 

 

 

       a                           

                       b 

        a           b      

     S0            S1             S2 

             

 

Accepted language:  a
n
b

m
 (n>0, m>0) 

  

Two state diagrams are equivalent iff they are state diagrams for equivalent  

                                                              automata. 

A state diagram is reduced iff there is no equivalent state diagram with fewer  

  states. 

Reduction Theorem:  Any two reduced equivalent state diagrams are  

                                     isomorphic (i.e. differ at most in the names of the  

 states). 

Proof: Omitted. 

 

 This means that for each finite state language, there is, up to isomorphism, a  

unique smallest automaton recognizing that language. 
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Theorem: For every deterministic finite state automaton, there is an equivalent  

                  total deterministic finite state automaton. 

Proof:  
Let M be a deterministic finite state automaton.  Add a new state G (for garbage) to 

M, which is not a final state.   

For each state Si  and each symbol a such that δ(Si,a) is undefined, add: δ(Si,a)=G  

(also for G itself).  The resulting automaton is deterministic and total, and clearly 

recognizes the same language as M. 

 

Example.   

We make the last automaton total: 

 

       a                           

                       b 

        a           b      

     S0            S1             S2 

             

 

       b   a 

 

              G 

 

           a      b 

 

 

Since it is so easy to turn a deterministic automaton into a total deterministic 

automaton, when I ask you to make a deterministic automaton, I don't require you to 

make it total.   

But make sure that it is deterministic, because often it is much easier to make a non-

deterministic automaton than a deterministic one (and I sometimes don't want you to 

do the easier thing). 

 

Example: 

In alphabet {a,b} I want an automaton that recognizes  

a
n
  b

m
  ab

k
  ba

p
  (n,m>0,k,p ≥0) 

-any string of one or more a's 

-any string of one or more b's 

-any string consisting of one b, followed by as many a's as you want. 

-any string consisting of one a, followed by as many b's as you want. 

This is straightforward to do non-deterministically. 

         

                 a  

              b              S1  

    a       

             S0 

        a 

    b            b 

                          S2  
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On the path from S0 to S1 and looping on S1, you accept any string of one or more a's, 

and any string starting with b, followed by any number of a's. 

On the path from S) to S2 and looping on S2, you accept one or more b's and any string 

starting with a, followed by any number of b's.  Since what the automaton accepts is 

the union of what it accepts along each of these paths, it accepts the language 

specified.  

Deterministically, you need to think a bit more, though it is not very difficult: 

 

 

               a  

       S3 

           a 

                   

              S1         b  

  a            b  S4 

 S0 

         

  b       b               b 

              S2   S5 

             

          a 

             a 

       S6 

 

 

We will prove below that the class of non-deterministic finite state languages and the 

class of deterministic finite state languages coincide.  But we will prove some simpler 

things first. 

 

It is useful to introduce for automata a familiar notion and a familiar theorem: 

 

Finite state automaton M is in reduced form iff S0 does not occur in the range  

of δ, i.e. if M has no arrows going into S0.  

 Theorem:  Every finite state automaton is equivalent to a finite state  

                               automaton in reduced form.  

 Proof:  The same as for grammars: replace each occurrence of S0 in M by S0'
, 

  
              add a new initial state S0, and add for each transition (S0',a)Sk a  

 transition (S,a)Sk.  Make S0 a final state iff e  L(M).  The resulting 

automaton is in reduced form and generates the same languages as M.  
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Example: 

         a 

     

            S0            S1  

            a 

 

          a 

         a 

     

       S0           S0'            S1  

            a 

 

 

Theorem: The right linear languages are exactly the finite state languages. 

 

Proof: 
Step 1: If a language is right linear, there is a finite state automaton accepting it. 

Let G = <VN,VT,S,P> be a restricted right linear grammar.   

 

We construct a finite state automaton M: 

1. Σ = VT. 

2. S = VN  {Q}, with Q a symbol not in VN. 

3. For every rule Aa B, we have a transition (A,a)B in δ. 

4. For every rule Aa, we have a transition (A,a)Q in δ. 

5. S is the initial state. 

6. -If Se is not in G, then Q is the final state. 

    -If Se is in G, then Q and S are the final states. 

 

Claim:  G and M are equivalent. 

A. If G generates α, M accepts α. 

-If α=e and G generates α, then S is a final state and M accepts e. 

-Suppose G generates α, and α = a1...an. 

Then there is a derivation in G of the form: 

Sa1A1....a1...an-1An-1a1....an  

This means that G contains rules: 

Sa1A1, ...,An-2an-1An-1, An-1a 

This means that in the automaton we have: 

           

     S    a1     A1       ......an-1   An-1   an            Q      

 

Clearly, then M accepts α. 

B.  If M accepts α, G generates α. 

-If α=e and M accepts e, then Se is in G, by definition of M, so G generates e. 

-If M accepts α and α = a1...an, M contains a path of the above form.   

Note that even though, S may in principle be a final state, if α  e, M will not accept α 

in S, because S is only a final state if Se is in  G, and that can only be the case if G 

is in reduced form.  But that means that M is also in reduced form, and this means 

indeed that the path accepting α is of the above form. 



 34 

But from the construction of M, we know that then all of the rules: 

Sa1A1, ...,An-2an-1An-1, An-1a are in G (because that's how we got those 

transitions in the first place).  Hence G generates α. 

 

Example:    

          a     b 

S  a A 

A  a A         a                      b                  cc   

A  b A         S0          A        B      Q 

B  b B  

B  c 

 

  

Step 2: If a language is a finite state language, there is a right linear grammar  

             generating it.  

Let M be a finite state automaton in reduced form. 

We define grammar GM: 

1. VT = Σ. 

2. VN = S 

3. For every instruction in δ: (Ai,a)Ak we add a rule: AiaAk. 

4. For every instruction in δ: (Ai,a)F, where F is a final state, we add a rule: Aia. 

5. S=S0. 

6. If S0 is a final state, we add Se. 

Since M was in reduced form, GM is in reduced form.  Clearly, by an argument which 

is the inverse of the above argument, GM will generate what M accepts.  And GM is 

right linear.  Since the class of finite state languages is the class of languages accepted 

by finite state automata in reduced form, we have proved our theorem.  

 

Example: 

         

                 a  

              b              S1  

    a       

             S0 

        a 

    b            b 

                          S2  

             

 

S  a S1 S  b S1  S  a  S  b 

S  a S2 S  b S2  

S1  a S1    S1  a 
S2  b S2    S2  b 
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Theorem: The Left linear languages are exactly the finite state languages. 

 

Proof: 

We define for string a1...an, for language A, and for restricted right linear grammar G: 

 

 The reversal of a1...an, (a1a2...an)
R
 = an...a2a1 

 The reversal of A,         A
R

  = {α
R
: α  A}  

 The reversal of G,       G
R
 is the result of replacing in G every rule of the  

                                                    form AaB by ABa. 

 

Fact:  L(G
R
) = (L(G))

R
 

Proof: This is obvious:  Right linear derivation D gets replaced by left linear 

derivation D': 

 

D  S    D'       S 

a         A        A          a 

      a         B   B         a 

            b            b 

aab    baa 

 

THEOREM:  If A is a finite state language, A
R
 is a finite state language. 

Proof: 

Let M be a finite state automaton that accepts A. 

Case 1.  Assume M has one final state F. 

-turn every transition (Si,a) Sk into (Sk,a)Si. 

-make S0 the final state. 

-make F the initial state.  

The resulting finite state automaton accepts A
R
. 

Case 2.  Assume M has final states F1,...,Fn. 

-turn every transition (Si,a) Sk into (Sk,a)Si. 

-make S0 the final state. 

-add a new initial state S', and add for every transition: 

(Fi,a)Sk a transition (S',a)Sk. 

The resulting automaton is in reduced form.  If e  A, make S' a final state as well. 

The resulting automaton recognizes A
R
. 

This completes the proof. 

 

Corrollary:  The left linear languages are exactly the right linear languages. 

Proof:   

-Let A be a right linear language.  Then A is a finite state language.  Then A
R
 is a 

finite state language, by the above theorem, and hence A
R
 is a right linear language.   

Take a right linear grammar G for A
R
.  G

R
 is a left linear grammar that generates 

A
RR

, by the earlier theorem.  But A
RR

 = A.  Hence A is a left linear language. 

-Let A be a left linear language.  Then A
R
 is a right linear language, hence A

R
 is a 

finite state language, hence A
RR

 is a finite state language, so A is a finite state 

language, and hence A is a right linear language.  

 

The next proof is a difficult proof.  It is one of the two difficult proofs I do in this 

class.  I do it, because it illuminates the structure of regular languages so well. 
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Remember that we proved earlier that every regular language is a right linear 

language, and hence (we now know) a finite state language.  We will now prove the 

converse of this:   

 

THEOREM:  Every finite state language is a regular language. 

 

Proof: 

Let M be a finite state automaton with n states.   

Assign numbers 1,...,n to the states in M: state m is the state we assign number m. 

 

We are going to define for each number k ≤ n and each two states i and j, with  

i,j ≤ n, a set of string R
k

i,j. 

 

The intuition is that we look at all the paths through the automaton that bring you 

from state i to state j, and we are interested in the strings that are accepted along 

those paths.  This does not mean that these strings are accepted by the automaton M, 

but only that if you start in state i, these strings will bring you from there to state j. 

 

The number k puts a restriction on which paths to include and which to exclude. 

k says: ignore any path that goes through any state m where m > k. 

 

This means, then, that R
n
i,j is the set of all strings that bring you from state i to state j, 

because there are no states m with m > n, so all paths count. 

 

Similarly, R
0

i,j is the set of strings that bring you from state i to state j, while ignoring 

any path that goes through a state 1,....,n.  We will interpret that as meaning that R
0

i,j 

is the set of strings that directly bring you from state i to state j. 

 

Following this intuition, we will define the latter sets as follows: 

 

Definition: for every i,j ≤ n: 

        if i  j then: R
0

i,j = {α: δ(i,α) = j} 

        if i = j then:  R
0

i,j = {α: δ(i,α) = j}  {e} (i.e. this is R
0
i,i) 

 

We are now going to look at R
k

i,j where k >0. 

 

R
k

i,j is the set of strings which bring you from i to j, without going through any state 

with number higher than k.  

 

Intuitively, we can split this set of strings into two sets:   

-the set of strings that bring you from i to j, without going though any state with 

number higher than k1: that is, R
k1

i,j 

 

-the set of strings that bring you from i to j, while going through state k. 

Let us call the latter set for the moment K. 

That means that:  

 

R
k

i,j = R
k1

i,j  K 
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Now we focus our attention on set K, the set of strings that bring us from i to j while 

going through state k. 

Such strings may go through state k more than once, in that case they loop in state k. 

But intuitively we can divide any such string into three parts: 

 

-a string that brings you from state i to state k on a path that doesn't itself go 

through state k. (i.e. the string you get the first time you reach state k). 

-a string that brings you from state k to state k 0 or more times. 

-a string that brings you from state k to state j on a path that doesn't itself go 

through state k (i.e. the string you get by going from the last time you are in state k 

to state j). 

 

Thus, any string in K is a concatenation  of a string in R
k1

i,k followed (possibly) by a 

string that loops from k to k, followed by a string in R
k1

k,j 

Writing for the moment L for the set of all middle parts, the strings that loop in k, we 

see that: 

 

 K = R
k1

i,k
 
  L  R

k1
k,j 

 

Now, the loop strings are strings that bring you from state k to state k. 

Each such string can be described as a concatenation of strings that bring you from 

state k to state k without going through state k itself. 

This is obvious: if you loop m times in state k and get string α, divide α into the 

substrings you get each time you reach state k again: these substrings themselves  do 

not go through state k. 

This means that loop set L is the closure under string formation of the set R
k1

k,k 

the string closure of the set of strings that bring you from k back to k, without going 

through k (or a state with a higher number):   

 

 L = (R
k1

k,k)*  

 

Filling in L in K, we get: 

 

 K = R
k1

i,k
 
  (R

k1
k,k)*  R

k1
k,j 

 

Filling in K in R
k

i,j, we get: 

 

R
k

i,j = R
k1

i,j  (R
k1

i,k
 
  (R

k1
k,k)*  R

k1
k,j) 

 

This we use as a definition: 

 

Definition:  for every k, such that 0 < k ≤ n, 

          for every i,j ≤ n: 

 

         R
k

i,j = R
k-1

i,j  (R
k-1

i,k
 
  (R

k-1
k,k)*  R

k-1
k,j) 

 

This means that, with our two definitions, we have defined R
k

i,j for every number  

k ≤ n, and for every states i,j ≤ n. 

 

Now we state a theorem: 
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Theorem:  for every number k ≤ n and for every two states i,j ≤n: R
k

i,j is regular. 

 

Proof: 

 

We prove this with induction to the number k.  We will prove the following two 

things: 

 

Proposition 1:  For every two states i,j≤ n: R
0

i,j is regular. 

Proposition 2:  For any number k with 0 < k ≤ n: 

               If it is the case that for every two states a,b: R
k1

a,b is regular,  

               Then it is the case that for every two states i,j: R
k
i,j is regular 

 

The proofs of these two propositions together form an induction proof of the 

theorem, for the following reason: 

Proposition 2 says that if the theorem holds for k1, it holds for k (with k >0).   

Since proposition 1 says that the theorem holds for k=0, it then follows with 

proposition 2, that the theorem holds for k=1. 

It holds for k=1, so once again, proposition 2 says it holds for k=2, etc. 

This means that, if we can prove propositions 1 and 2, we have indeed proved the 

theorem.   

 

Proof of proposition 1: 

By definition of R
0

i,j, R
0
i,j is a finite set for every i and j, hence for every i and j, R

0
i,j 

is regular (because finite sets are regular). 

 

Proof of proposition 2: 

We assume that it is the case for every two states a,b that R
k1

a,b is regular. 

Let i and j be any states.  We prove that R
k

i,j is regular. 

 

By definition: 

 

         R
k

i,j = R
k1

i,j  (R
k1

i,k
 
  (R

k1
k,k)*  R

k1
k,j) 

 

By assumption: 

 

 R
k1

i,j is regular, R
k1

i,k is regular, R
k1

k,k is regular, and R
k1

k,j is regular. 

 

But then R
k1

i,j  (R
k1

i,k
 
  (R

k1
k,k)*  R

k1
k,j) is regular, since it is built from those 

sets with regular operations , , and *. 

Hence R
k

i,j is regular. 

 

With the proof of propositions 1 and 2 we have proved the theorem. 

 

Now we will use this theorem to prove the main theorem. 

 

Let a be the number of the initial state and b be the number of a final state. 

R
n

a,b is the set of all strings accepted by M in final state b.  

It follows from the theorem just proved that R
n

a,b is regular. 

 



 39 

Let a be the number of the initial state and b1,...,bm be the numbers corresponding to 

all the final states in M. 

Then the language accepted by M is: 

 

 L(M) = R
n

a,b1  ...  R
n

a,bm 

 

Since we have just seen that all the sets in this union are regular, L(M) is a union of 

regular sets, and hence L(M) is itself regular. 

This proves the main theorem:  every language accepted by a finite state automaton is 

regular. 

 

We have now proved that all the language classes discussed here, right linear 

languages, left linear languages, finite state languages form one an the same class of 

languages, the class of regular languages. 

 

 

Example: 

                         b 

 

            a  a      b 

S1  S2  S3 

 

 

                         b 

 

R
3
13 = R

2
13  ( R

2
13  (R

2
33)

*
  R

2
33)   R

0
13 = {b} 

 

R
2
13 = R

1
13  ( R

1
12  (R

1
22)

*
  R

1
23)   R

0
11 = {e} 

 

R
2
33 = R

1
33  ( R

1
32  (R

1
22)

*
  R

1
23)   R

0
12 = {a} 

 

R
1
13 = R

0
13  ( R

0
11  (R

0
11)

*
  R

0
13)   R

0
22 = {e, b} 

 

R
1
12 = R

0
12  ( R

0
11  (R

0
11)

*
  R

0
12)   R

0
21 = Ø 

 

R
1
22 = R

0
22  ( R

0
21  (R

0
11)

*
  R

0
12)   R

0
23 = {a}    

 

R
1
23 = R

0
23  ( R

0
21  (R

0
11)

*
  R

0
13)   R

0
33 = {e,b} 

 

R
1
33 = R

0
33  ( R

0
31  (R

0
11)

*
  R

0
13)   R

0
31 = Ø 

 

R
1
32 = R

0
32  ( R

0
31  (R

0
11)

*
  R

0
12)   R

0
32 = Ø 
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Hence: 

 

R
1
32 = Ø  (Ø  {e}  {a})     R

1
32 = Ø 

 

R
1
33 = {e,b}  ( Ø  {e}  {b})    R

1
33 = {e,b} 

 

R
1
23 = {a}  ( Ø  {e}  {b})    R

1
23 = {a}  

 

R
1
22 = {e,b}  ( Ø  {e}  {a})     R

1
22 = {e,b} 

 

R
1
12 = {a}  ( {e}  {e}  {a})   R

1
12 = {a} 

 

R
1
13 = {b}  ( {e}  {e}  {b}   R

1
13 = {b} 

 

 

And: 

 

R
2
33 = {e,b}  (Ø  ({e,b}

*
  {a})   R

2
33 = {e,b} 

 

R
2
13 = {b}  ( {a}  {b}

*
  {a})      

 

R
3
13 = {b}  ( {a}  {b}

*
  {a})  

({b}  ( {a}  {b}
*
  {a}))  {e,b}

*
  {e,b} 

 

Since {e,b}
*
  {e,b} = {e,b}

*
 we simplify to: 

 

R
3
13 = {b}  ( {a}  {b}

*
  {a})  

({b}  ( {a}  {b}
*
  {a}))  {e,b}

*
  

 

Since {b}  ( {a}  {b}
*
  {a}) falls under ({b}  ( {a}  {b}

*
  {a}))  {e,b}

* 

we simplify to: 

 

R
3
13 = ({b}  ( {a}  {b}

*
  {a}))  {e,b}

*
  

 

This language is:  b
n
  ab

m
ab

k
 (n>0,  m0, k0) 
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Now the theorem promised above: 

 

Theorem: For every non-determininstic finite state automaton there is an equivalent 

                  deterministic finite state automaton. 

 

We start with some notation for non-deterministic finite state automata: 

 

δ[S,a]: the set of states that you get to from S by a: 

δ[S,a] = {S1:  <S,a,S1>  δ} 

 

This is the set of states that δ maps S and a onto. 

 

δ[S,α]: the set of states you get to from S by α:  

Let α = a1…an 

δ
1
[S,α] = δ[S,a1] 

δ
2
[S,α] = {S2: S1  δ

1
[S,α]: δ[S1,a2]=S2} 

… 

δ
i
[S,α] =  {Si: Si1  δ

i1
[S,α]: δ[Si1,a2]=Si} 

 

δ[S,α] = δ
n
[S,α] 

 

This is the set of states for which there is a derivation of α from S.  

 

 

Proof:  
Let M be a non-deterministic finite state automaton. 

 

We define a deterministic finite state automaton K: 

 

 SK = pow(SM) 

 FK = {SK: SM: SM SK}        The set of sets of K-states that contain at least one final 

state of M. S0,K = {S0,M} 

 

 δ[{S1,…,Si},a] = δ[S1,a]  …  δ[Si,a] 

 

Claim: δ[{S0},α] = δ[S0,α] 

 

Step 1:   δ[{S0},e] = δ[S0,e]  (which is {S0} or Ø) 

 

Step 2:  Assume that δ[{S0},α] = δ[S0,α] 

Then δ[{S0},αa] = {S: S1  δ[{S0},α]: S  δ(S1,a)} 

                           =  {S: S1  δ[S0,α]: S  δ(S1,a)} (by induction) 

               =  δ[S0,αa] 

 

With this it follows that: δ[{S0},α]  FK iff δ[S0,α]  FK 

By definition of FK: δ[S0,α]  FK  iff S  δ[S0,α]: S  FM  

Hence: δ[{S0},α]  FK iff S  δ[S0,α]: S  FM 

 

This means that K generates α iff M generates α, hence K and M are equivalent. 
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THE PUMPING LEMMA FOR REGULAR LANGUAGES. 

 

Let A be a regular language.  A is accepted by a finite state automaton M, with, say, n 

states. 

Let α  A, α = a1...am, m ≥ n. 

Assume that there is a path through M for a1...am from S0 to final state F. 

Let's call the occurrences of states on that path S
0
...S

m
. 

Since m≥n, it is not possible that all the states S
0
...S

m
 are distinct, because S

0
...S

m
 

form at least n+1 occurrences of states, and there are only n states. 

This means that for some j,k≤n:  S
j 
= S

k
  (let's assume j < k).  In other words,  

S
0
...S

m
 contains a loop. 

 

Suppose substring aj+1...ak is a part of a1...am accepted by going through this loop 

once.  We know then that: 1 ≤ |aj+1...ak| ≤ n. 

Now, instead of going through the loop from S
j
 to S

k
 in S

0
...S

m
, and then on to S

k+1
, 

we could have skipped the loop and gone on directly from S
j
 to S

k+1
, and the 

resulting string, α with aj+1...ak replaced by e, would also have been accepted.  

Hence, α with aj+1...ak replaced by e, is also in language A. 

Similarly, we could have gone through the loop twice,  and then go on as before, 

and the resulting string, α with  aj+1...ak replaced by aj+1...akaj+1...ak, would also have 

been accepted, hence, α with  aj+1...ak replaced by aj+1...akaj+1...ak is also in language 

A. 

 

Thus, if a1....ajaj+1...akak+1...am  A, then  

              a1....aj(aj+1...ak)
z
ak+1...am  A, for every z≥0. 

Hence, for every sufficiently long strong string a1...am  A, we can find a substring 

that can be 'pumped' through the loop, and the result is also in A.  This is the pumping 

lemma. 

 

Pumping lemma for regular languages: 

  Let A be a regular language.  There is a number n called the pumping  

constant for A(not greater than the number of states in the smallest automaton  

accepting A) such that: 

For every string φ  A with |φ|≥n: 

φ can be written as the concatenation of three substrings: αβγ such that: 

1. |αβ| ≤ n 

2. |β|>0 

3. for every i≥0:  αβ
i
γ  A. 
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Application: a
m

b
m

 is not a regular language. 

 

Proof:  

Assume a
m

b
m

 is a regular language.  Let n be the pumping constant for this language. 

Choose a number k such that 2k>n,and consider the string a
k
b

k
   a

m
b

m
 of length 2k: 

 

 a.....................ab.....................b 

 

  k  k 

 

According to the pumping lemma, we can write this string as αβγ, where βe, 

|αβ|≤n and αβ
i
γ  a

m
b

m
. 

Try to divide this string. 

-If β consists only of a's, then pumping β will make the number of a's and b's not the 

same, hence the result is not in a
m

b
m

. 

-If β consists only of b's, the same. 

-If β consists of a's and b's, it is of the form a
u
b

z
.   

So our string is: 

 a..................(a
u
b

z
)......................b 

But then pumping β once gives: 

 a..................(a
u
b

z
) (a

u
b

z
)......................b 

and this string has the a's and b's mixed, in the middle, hence it is not in a
m

b
m

. 

Since these are the only three possibilities, we cannot divide this string in a way that 

satisfies the pumping lemma.  This means that a
m

b
m

 does not satisfy the pumping 

lemma for regular languages, and hence a
m

b
m

 is not a regular language. 

 

We will see shortly that it follows from this that English is not a regular language. 

 

Note that the pumping lemma goes one way:  if a language is regular, it satisfies the 

pumping lemma.  But languages that satisify  the pumping lemma are not necessarily 

regular. Let L1 and L2  be languages such that L1  L2 = Ø.  Assume that L1 is regular, 

but L2 is not, say, L2 is intractable.  Let n be the pumping constant for L1 and let L1
n
 

be the set of L1 strings of length larger than n.  Look at L1
n
  L2.  Obviously, L1

n
  L2 

is intractable in the same way that L2 is.  But, L1
n
  L2 satisfies the pumpinglemma, 

because the strings in L1
n
 do, by the fact that L1 is regular. 
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CLOSURE PROPERTIES OF REGULAR LANGUAGES. 

 

We already know that if A,B are regular, then so are A*, AB, and AB. 

 

Theorem: Let L be a language in alphabet A (L  A*). 

       If L is regular, then A*L is regular. 

 

A*L is the complement of L in A*.  This means that the class of regular languages is 

closed under complementation. 

 

Proof:  Let L be regular, and let M be a deterministic and total automaton accepting  

 L  Make every final state in M non-final and every non-final state final. 

 The resulting automaton accepts A*L 

 

Example:
 

 

a
n
b

m
 (n,m > 0) 

       a                           

                       b 

        a           b      

     S0            S1             S2 

             

 

       b   a 

 

              G 

 

           a      b 

 

 

       a                           

                       b 

        a           b      

     S0            S1             S2 

             

 

       b   a 

 

              G 

 

           a      b 

 

 

Any string, as long as it is not just a's followed by b's: 

Example:  aaaabbbbbaaaab 

 

 

 

 

 



 45 

Corrollary:  If A and B are regular languages then A  B is a regular language. 

 

Proof:   

Let A and B be regular languages in alphabet Σ (which can be taken to be just the 

union of the symbols occurring in A and the symbols occurring in B). 

A  B = Σ*((Σ*A)  (Σ*B)).  That is, the operation of intersection can be defined 

as a sequence of compositions of the operations of complementation and union, Since 

we have proved the latter operations to be regular, and since sequences of  

compositions of regular operations are regular, intersection is regular. 

 

Making an intersection automaton is a lot of work , though. 

-Start with a deterministic automaton of A and a deterministic automaton for B. 

-Take for both of them the complement automaton (i.e. switch final and non-final 

states).   

-For the resulting two automata, M1 and M2 form the union automaton.  This goes in 

the same way as we did for right linear grammars:   

make the states of the two automata disjoint, add a new initial state, add for every 

arrow leaving M1's old initial state to some state Si a similar arrow from the new 

initial state to Si, and the same for any such arrow leaving M2's old initial state. 

Make the new initial state a final state if one of the old initial states was final. 

-Next convert this automaton to a deterministic automaton (since the union procedure 

tends to give you a non-deterministic automaton).  And finally take the complement 

automaton of the result.  This will be an automaton for the intersection. 

I will give a simple construction of an intersection automaton later in this course. 

 

These resuls mean that the set of regular languages in a certain alphabet form a 

Boolean algebra. 

    

Let A and B be alphabets. 

A homomorphism from A* into B* is a function that maps strings in A* onto strings 

in B* in which the value for a complex string in A* is completely determined by the 

values for the symbols of A.  Formally: 

 

 A homomorphism from A into B is a function h:A*B* such that: 

  1. h(e)=e 

  2. for every string in A* of the form αa, with αA* and a  A: 

      h(αa) = h(α)

h(a). 

 

So: if h(b)=bb and h(a)=aa, then: 

      h(bba)= h(bb)h(a) = h(bb)aa = h(b)h(b)aa = h(b)bbaa = bbbbaa. 

 

 Let L be a language in alphabet A, and let h:A*B* be a homomorphism, 

then:  the homomorphic image of L under h, h(L) is given by: 

h(L) = {h(α): α  L} 

 

Theorem:  If L is a regular language in alphabet A and h:A*B* is a  

      homomorphism, then h(L) is a regular language in alphabet B. 

Proof: below 
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Example:   
Let A = {a,b}.  Let B =  {a,b,c} 

Let h:A*B* be a homomorphism such that: 

 h(e)=e 

 h(a)=aa 

 h(b)=cc 

We know that: a
n
b

m
 (n,m>0) is a regular language. 

h(a
n
b

m
 (n,m>0)) = (aa)

n
(cc)

m
 (n,m>0). 

It follows that:  (aa)
n
(cc)

m
 (n,m>0) is also a regular language. 

 

Example: 
Let A = {a,b,c}.  

Let h:A*A* be a homomorphism such that: 

 h(e)=e 

 h(a)=a 

 h(b)=b 

 h(c)=e 

 

We have proved that a
n
b

n
(n≥0) is not a regular language. 

We look at: a
n
cb

n
(n≥0).   

h(a
n
cb

n
(n≥0)) = a

n
b

n
(n≥0). 

Consequently we know:  if a
n
cb

n
(n≥0) were regular, a

n
b

n
(n≥0) would be regular.  But 

a
n
b

n
(n≥0) is not regular. Hence: 

a
n
cb

n
(n≥0) is not regular. 

 

 

Let h:A*B* be a homomorphism. 

For each string β  B*, we define:  

h
1

(β) = {α  A*: h(α)=β} 

We call h
1

 the inverse homomorphism of h. 

(Note: h
1

 is not a function from B* into A*, but from B* into pow(A*).) 

 

 For L  B* we define: 

 h
1

(L) = {α  A*: h(α)  L} 

 

Theorem: If L is a regular language in alphabet B and h:A*B* is a  

                 homomorphism, then h
1

(L) is a regular language in alphabet A. 

Proof: 

Let h: A*  B* is a homomorphism and L a regular language in B*. 

Let M be a deterministic total finite state automaton for L. 

 

We simplify the notation introduced for Non-deterministic finite state automata:  

Let β = b1….bn  B* 

 δ
1
[S,β] = δ[S,b1] 

 δ
2
[S,β] = δ[δ

1
[S,β],b2

] 

 … 

 δ
i
[S,β] = δ[δ

i1
[S,β],bi

] 

 

 δ[S,β] = δ
n
[S,β]  
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We turn M into M': a deterministic total finite state automaton on A* by defining: 

 δ[S,a] = δ[S,h(a)] 

 

Claim:  M' acceps α iff M accepts h(α) 

 

Case 1:  M' accepts a iff M accepts h(a) 

M' gets to the same state final or non-final state after a where M gets after h(a), by the 

construction. 

 

Case 1:  Assume M' accepts α iff M accepts h(α) 

Then M' accepts αa iff M accepts h(α)h(a). 

Again, this is obvious from the construction.   

 

 

Let A and B be alphabets. 

A substitution from A into B is a function that maps every string of A* onto a set of 

strings in B which is determined by the values of the symbols in the following way: 

The strings in the set associated with a complex string α are gotten by substituting all 

values for the symbols in α at the place where they occur.  Formally: 

 

 A substitution from A into B is a function s:A*pow(B*) such that: 

 1. s(e)={e} 

 2. For any string of the form αa, with α  A* and a  A:  

    s(αa) = s(α)s(a) 

 

 If L is a language in alphabet A and s a substitution from A into B, then, 

 the substitution language of L relative to s, s(L), is given by: 

 s(L) = αLs(α). 

 

Idea: 

s(a) = {1, 2} 

s(b) = {} 

s(c) = {1, 2} 

 

 a          ^          b          ^          c   L  

                                                  

      {1, 2}           {}              {1, 2}  s(L) 

 

Example:  

ab
n
cd

m 
(n,m>0) is a regular language in A={a,b,c,d} 

(a, followed by as many b's as you want, followed by c, followed by as many d's as 

you want). 

 

We take alphabet B = {John, Bill, Mary, and, walk, talk, sing}  

and we take s, a substitution from A into B given by: 

 s(a) = {John, Bill, Mary} 

 s(b) = {and John, and Bill, and Mary} 

 s(c) = {walk, talk, sing} 

 s(d) = {and walk, and talk, and sing} 
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s(abbcddd) =  

 

{John, Bill, Mary}  {and John, and Bill, and Mary}  {and John, and Bill, and 

Mary}  {walk, talk, sing}  {and walk, and talk, and sing}  {and walk, and talk, 

and sing}  {and walk, and talk, and sing}. 

 

So, one of the strings in the substitution language of abbcddd is: 

 

John and Bill and Mary walk and talk and sing. 

 

Another one is: 

 

Mary and Mary and Mary talk and talk and talk. 

 

s(ab
n
cd

m 
(n,m>0)) =  

{John, Bill, Mary}  {and John, and Bill, and Mary}
+
  {walk, talk, sing}  {and 

walk, and talk, and sing}
+
. 

 

which contains any string, starting with either John or with Bill or with Mary, 

followed by one or more occurrences of strings in {and John, and Bill, and Mary}, 

followed by one of the items walk or talk or sing, ending with one or more of the 

items in {and walk, and talk, and sing}.   

 

 

Theorem: If L is a regular language in alphabet A and s is a substitution from A* into  

      pow(B*), that maps every symbol in A onto a regular subset of B*,  

     then s(L) is a regular language in alphabet B.  

 

Proof: 

Let L be a regular language in A. 

This means that L is derived with , ×, * from finite languages L1,…,.Ln 

 

1. If a  A then s(a) is a regular language. 

    If α  A*, α = a1….an, then s(α) = s(a1)×…×s(an).  Since for each i  n: s(ai) is 

    regular, α is regular. 

    

      If L is finite,  L = {α1,…,αn}. 

    s(L) = s({α1,…αn}) = s({α1})  …  s({αn}). 

    Since for each i  n: s({αi}) is regular, s({α1})  …  s({αn}) is regular.  

    Hence s(L) is regular. 

2. Assume L = L1  L2, with L1 and L2, s(L1) and s(L2) regular. 
s(L1  L2) = s(L1)  s(L2), hence s(L1  L2) is also regular, so s(L) is regular.     

3. Assume L = L1 × L2, with L1 and L2, s(L1) and s(L2) regular. 
s(L1 × L2) = s(L1) × s(L2), hence s(L1 × L2) is also regular, so s(L) is regular.     

4. Assume L = L1*, with L1 and s(L1) is regular. 
s(L1*) = s(L1)*, hence s(L1*) is also regular, so s(L) is regular.     
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Corrollary: 

If L is a regular language in alphabet A and h is a homomorphism from A* into B* 

then s(L) is a regular language. 

 

Proof: 

Instead of h(α)=β, we can write h(α)={β}, without loosing any information.  This 

means that homomorphisms are a special case of substitutions, with the values 

singleton sets, hence finite, hence regular.  This means that the above theorem applies 

to them. 

 

With the theorem, we don't have to prove separately that this language is a regular 

language, that follows from the theorem. 

 

We see that, with the notions of homomorphism, inverse homomorphism, 

substitutions, we can extend our theorems from languages that look like toy languages 

(with little a's and b's) to languages that look suspiciously like natural languages. 

 

We use the fact that the intersection of regular languages is regular and the fact that 

regular languages are closed under homomorphisms to prove that the natural language 

English is not a regular language: 

 

 

Theorem:  English is not a regular language. 

 

Proof: 

Let the set of grammatical strings of English be E. 

I specify a sequence of strings α1,α2,....  

 

α1 = the fact that Fred was clever was surprising 

α2 = the fact that the fact that Fred was clever was surprising was surprising 

α3= the fact that the fact that the fact that Fred was clever was surprising was  

       surprising was surprising 

.... 

and we set: L = {α1,α2,α3,...} 

 

We are dealing with the following structure: 

 

                                        IP  

 

          DP                                                  I' 

 

D             NP                                    I                PRED 

 

the      N          CP                         was            surprising 

 

         fact    C                    IP 

  

                 that 

 

         Fred was clever 
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The idea is, of course, that we expand the tree by looping the bit between the IP 

nodes: 

 

                                        IP  

 

          DP                                                  I' 

 

D             NP                                    I                PRED 

 

the      N          CP                         was            surprising 

 

         fact    C                    IP 

  

                 that                                         

 

          DP                                                  I' 

 

D             NP                                    I                PRED 

 

the      N          CP                         was            surprising 

 

         fact    C                    IP 

  

                 that 

 

         Fred was clever 

  

And L is:  

 

L = the fact that
n
 Fred is clever was surprising

n
, (n>0) 

 

 

Choose the following homomorphism: 

h(the fact that)=a, h(Fred is clever)=c, h(was surprising)=b..   

Then the homomorphic image of L is a
n
cb

n
 which we showed to be not regular.  

Consequently:  L is not a regular language. 

 

Now we look at a bit wider language, L': 

 

L' =  the fact that
n
 Fred is clever was surprising

m
, (n,m>0) 

 

We chose a homomorphism such that: 

h(a) =the fact that, h(c)=Fred is clever,  h(b)=was surprising.  

L' is the homomorphic image of a
n
ca

m
(n,m>0), which we showed earlier to be regular.  

Hence:  L' is regular.  
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Now we observe the empirical fact about English: 

 

Empirical Fact:  E  L' = L 

 

The only strings of L' that are grammatical in English are the strings sentences in L. 

 

So we have three facts: 

 1. L is not regular. 

 2. L' is regular. 

 3. L = L'  E. 

 

Suppose English were a regular language.  Then both E and L' would be regular. 

The intersection of two regular languages is regular, hence L would be regular. 

But L is not regular.  Since L' is regular, it follows that E is not regular. 

This completes the proof. 

   

Other example: 

 

The man who 
n
 sincerely 

n
 believes that he is crazy, is indeed crazy  n  0 

 = the man who 

 = believes that he is crazy  


