3. LATTICES AND BOOLEAN ALGEBRAS
3.1. Lattices and semilattices
Let A = <A,C> be a partial order. Let X ¢ A

The supremum of X, UX, is the unique element of A such that:
1. forevery x e X: X E UX
2.foreverya e A:ifforeveryx e X:xEathenuXEa

The infimum of X, X, is the unique element of A such that:
1. forevery x € X: NX E X
2. foreverya e A:if forevery x e X:aE xthena & nX

Leta,be A
The join of aand b, a U b, is LU{a,b}
The meet of aand b, a n b, is n{a,b}

Hence:

The join of aand b, a U b, is the unique element of A such that:
l.aCaubandbZaub
2. foreveryx e AiifaE xandbE xthenau b E X

The meet of aand b, a 1 b, is the unique element of A such that:
l.anb=aandanbtEhb
2.foreveryx e ArifxCaandxEbthenxESanb

The way | use terminology here, join and meet are two-place partial operations on partial
orders, and supremum and infimum are infinitary partial operations on partial orders.

I will not distinguish the two notationally (often one uses a bigger variant of LI and n for the
complete operations, but I won’t here.

A join-semilattice is a partial order A = <A, => which is closed under join:
foreveryabe Aiaube A

A meet-semilattice is a partial order A = <A, &> which is closed under meet:
foreveryabe Acanbe A

A lattice is a partial order A = <A, E> which is closed under join and meet:
foreveryabe Aiaube  AandanbeA

A complete lattice is a partial order A = <A, E> which is closed under the complete
operations of supremum and infimum: forevery Xc A: uX e Aand nX € A

A complete*-lattice is a partial order A = <A,=> which is closed under the complete
operations of supremum and infimum for non-empty subsets of A:
for every non-empty X c A: UX e AandnX € A



So, as partial orders, lattices are closed under two-place join and meet, which complete
lattices are closed under compete join and meet.

Fact: A is a lattice iff for every finite subset X < A: U(X) e Aand N(X) € A

Proof:

1. If every finite subset of A has a supremum and infimum, then so does every two-element
subset, hence A is a lattice.

2. Let A be a lattice and let {xa,...xn} < A. Take (((x1 U X2) U X3)...) U Xn) and

(((x1 1 X2) M X3)...) M Xn)

You can prove that (((X1 L X2) U X3)...xn) = U{X4,...xn} and

(((x1 M x2) M X3)...) M1 Xn) = N{X1,...Xn}

We will not do that here, because it will follow from the algebraic properties of lattices
discussed shortly.

Duality of partial orders:

If A=<A, C>isapartial order then A=t = <A, =—1> (= <A, =>) is also a partial order, we
call it the dual of A.

Intuitively, the dual of partial order A is the result of turning the partial order upside down:
A od a b A-L

c c
0 b d
Obviously, when a partial order is dualized, several other notions dualize with it: minimal
elements are turned into maximal elements (a,b are minimal elements in A and maximal in
A-1) and maximuns into minimums (d is maximum in A, and a minimum in A-1), joins are
turned into meets (c = a La b, but ¢ = a Ma~! b), and meets into joins, etc...
We see that partial orders are closed under duals.
Many subclasses of partial orders are themselves closed under duals (meaning that the dual of
a partial order in class K is itself a partial order in class K.
And duality extends to the notions that dualize with the order.

Thus, the class of lattices is closed under duals in the sense that:

The dual of lattice A = <A,Ma,Ua> is lattice A-1 = <A, Ma—1, Ua—1> where:
Ma—1= Uaand Ua~1= Ma

Here the lattice operations are paired by duality.
Later we will see more general structions like Boolean algebras that are also closed
under duals:

A = <A Ej —a, Ma, La, 04, 14>

where in the dual structure:



A1= <A Cpr 1, —a1 Ma-t,uat 04t 141>
=<A, Ja, —a Ua, Ma 1a 04 >

where the dual of the order is the partial order inverse, meet and join are each other's dual as
in lattices, mimum 0 and 1 are reversed (i.e. in the dual structure the 14 is the minimum), and
the operation of complementation — to be introduced below — is self dual.
Classes of structures that are closed under duals satisfy the principle of duality:
Duality:
Let K be a class of structures that is closed under duals and let =1,...E, be the
relations, and Og,...Om the operations and s:...sk the special elements that have
duals in K.

Let @ be a formula possibly containing expressions in: Ei,...En, Ox,...0m, S1...8k

Let ¢! be the result of replacing every occurrence of any such symbol by its
dual.

Duality: If ¢ is true on every structure in K, then ¢ is also true on every
structure in X

Many of the structures we are concerned are closed under duals and hence satisfy duality.

This is extremely useful, because it reduces the number of proofs to be given in half.

For instance, suppose we manage to prove that the following formula is true on all lattices:
vavbvc[@aEcabEc)—> (aUubEc)]

Then, by duality, the following formula is also true on all lattices:

vavbvc[(cEaancEb) > (cEanb)

Thus when we prove a fact about LI, we don't have to prove the dual fact about M: its
truth follows from duality.

I mention the formulas in the examples expicitly, because you use these over and over in
making proofs:

Factl:ifacExandbE xthenalu b E x
Fact2:ifxCaandxE bthenxZanhb

These are actually just consequences of the definition of join and meet.

We have defined lattices as partial orders. We now give a second definition of lattices as
algebras:



A lattice is a an algebra A = <A, n, U > where 1 and U are two-place operations satisfying:
1. Idempotency (ana)=a
(aua)=a
2. Commutativity (anb)=(bna)
(@ub)y=(bua)
3. Associativity @n@nc)=((anb)nc)
(@u((uc)=(aub)uc)
4. Absorption (@an(aub))=a
(@u(@anhb))=a

Theorem: The two concepts of lattices coincide
A. If <AE > is a lattice then <A, M, U> is a lattice, where n and U are the meet and
join operations defined for =
B. If <A, n, U>isa lattice, then <A, £ > is a lattice, where C is defined as:
aCbiff(anb)=a
C. If <A,E > is a lattice, and we form <A, 11, U> by taking join and meet in E as
lattice operations, and from <A, M, U> we form <A, £’ > by defining
aC’biff (anb) =a, then <A, C’>=<A, C>
Similarly, if <A, n, U> is a lattice, and we form <A, E > by defining C as
aC biff (an b) =a, and we form <A, 1’, LU’> where M’ and U’ are meet and join
in <A, E >, then <A,’,I"> = <A,M,U>,

Proof of A.

Let <A,=> be a lattice.

Idempotency: a U a is the smallest element such that a = a and a = a, which is obviously a
Commutativity: a U b is the smallest element such thata = a L b and b = a U b, which is
obviously also the smallest element suchthatb TauU bandaZ a U b.

Associativity: (au (buc))=((aub)uc)

Weshow: (aU (buc))E((aub)uc)and ((@au b)uc)= (au (b uc)). Associativity will
follow from antisymmetry.

1. Look at ((a L b) U c).
aubC(@ub)uc)andcE((aub)uc)anda=au bandbC au b, hence by
transitivity: aC (aub)uc)andbE ((au b) U c)and c E ((a L b) U c).

Then by definition of join (b U ¢) E ((a L b) U ¢), and once again by definition of join:
(@u(buc))=((@aub)uc).

-The argument for the other side goes in the same way, and the argument for meet follows
from duality.

Absorption:au(bma)=a

Obviously, a= a U (b 1 a), so we only need to show thata LI (b 1 a) E a.

This is the case becausea = aand b nmac a.

-The other absorption law is done in the same way.

O



Before continuing we prove two lemmas:

Lemma 1: anb=aiffaub=b
Proof (algebraic)

1) anb=a Assumption

(2 bu(bna)=b Absorption

3 (bnma)yub=hb From (2) by commutativity

4) (@nb)yub=b From (3) by commutativity

(5) alub=b Use (1) to substitute a fora n b in (4).

The other side goes similarly, with the other absorption law.

Lemma2: Define:aEbiffanb=biffaub=>b (justified by Lemma 1) Then:
(1)zEanbiffz=aandzEb
(2QJaubEziffaczandbEz

Proof of 2.1. (algebraic)

(1)z=aandzC b Assumption
(2)zma=zandzn b=z Definition =
3)z=znNz Idempotency

4)z=(znan((@znh) From (2) and (3)
B)z=(@znz)n(anb) From (4) by associativity and commutativity

6)z=(@nb)ynz From (5) by idempotency and commutativity
(Mz=Eanb Definition = (and commutativity)
(Dz=anb Assumption

(2)(zu(anb))=(amnb) From the definition of =
3)(zu(anb))ua=(anb)ua Logic:ifx=ythenxUa=yUa

(4) (zu(anb))ua=a From (3) and absorption
(5 (zu ((amb)ua))=a From (4) and associativity
(6)zua=a From (5) and absorption
(7)zEa From the definition of =

We prove similarly thatzE b

2.2 goes by a similar argument.

O

Proof of B
Assume that <A, M, U>isalattice and defineaE biffanb=aiffaub=Dh.
1. = is reflexive.

()anma=a Idempotency

(2)aca Definition =

2. C is transitive.

l.aEbandbCcc Assumption

2.anb=aandbnc=b  Definition =

3.an(bnc)=a From (2) by substituting b 1 ¢ for b
4.(anmb)nc=a From (3) with associativity

5,anc=a From (2) and (4) by substitutingaforanb
6.aCcCc By definition of =



3. C is antisymmetric
l.acbandbCa Assumption
2.anb=aandbmna=b  Definition =
3.anb=aandanmb=b  From (2) by commutativity
4.a=b From (3) by substitutingaforanb

4.amMbismeetinE and a U bisjoinin E
41.anbEaandanbChb
(HD@nb)ua=a Absorption
(2)anbca Definition =
SimilarlyanbEb
42.ifzcaandzEbthenzCanb
That was lemma 2.
The proof that a L b is join in E is similar.
Hence a M b is meet in C.
D

Proof of C

Let <A, => be a lattice and form <A,MN,U> by taking meet and join as operations.
By definition of meetand joininE,aEbiffanb=aiffaub=n

albLC. Sowhen next we define E’ as (a =’ b) iffan b =a, it will follow that
aC’biffac b, henceC =",

A similar argument shows the other side.

m

For join and meet semilatiices we have a similar result.
Algebraically we have a semilattive:

A semilattice is an algebra A = <A, 0> where O is a two place operation on A such that:

1. Idempotency abDa=a
2. Commutativity aOb=bnDa
3. Associativity ab(boc)=(@nb)oc

Theorem: The two concepts of semilattices coincide
A. If <A, C > is ajoin (meet)-semilattice then <A, O> is a semilattice, where O is the
join (meet) operation defined for C

B. If <A, O> is a semilattice, then <A, C > is a join (meet)-semilattice, where C is
defined as: aE biff (au b) =b (aE biff (an b) =a).

C. If <A,C > is ajoin (meet) semilattice, and we form <A, O> by taking join (meet)
in E as semilattice operation, and from <A, 0> we form <A, =’ > by defining
at’biff(aub)=b(a=’biff (anb)=a),then <A, C’>=<A, C>
Similarly, if <A, O> is a semilattice, and we form <A, = > by defining E as
aCbiff(aub)=a(ac biff (anb)=a), and we form <A, 0’> where O’ is join
(meet) in <A, E >, then <A,0’> = <A, O>.

Proof: exercise.



The correspondence results are very important. As partial orders the axioms that define
latttices are not positive formulas (for instance, transitivity and antisymmetry are not positive
formulas, because they are defined with —, and hence with —, if — is defined in terms of —).
But the algebraix axioms are identity statements, so they are positive formulas.

This means that the lattice axioms are preserved under homomorphisms. They are in fact
preserved under homomorphisms, substructures and direct products. This means that the
class of lattices is an equational class of algebras.

And this means that if you have homomorphism from a lattice to another algebra of the same
type, it follows that this other structure is not just any algebra of the same type, but in fact a
lattice itself. The same for substructures: lattices have only substructures that are themselves
lattices.

For lattices as partial orders you do not get these results, the notion of homomaorphic image is
not constrained the way the algebraic notion is. Since we think of these structures as two
sides of the same coin, we will often consider the lattice as an algebra for the same of
homomorphisms.



3.2 Bounds and atoms
If (semi) lattice A has a minimum we call that Oa, if A has a maximum, we call it 1a.
A bounded lattice is a lattice A = <A, E> that has both a minimum 0 and a maximum 1.

A bounded lattice is a lattice A = <A, M, U> such that:
Laws of 0 and 1: ano=0
aul=1

Since every complete lattice is bounded and every finite lattice is complete, only infinite
lattices can be unbounded.

Example 1: A lattice that has a 0 but not a 1:

Let F = {X < N: Xis finite}. The set of all finite subsets of the natural numbers.

Look at F = <F, n, U >.

F is a lattice under the operations m and U (the intersection and union of two finite sets is a
finite set). F hasa0, namely @. But F does not have a 1, since there is no largest finite set.
F is, of course, not complete.

Let S = {{n}: n € N}, the set of all singletons of natural numbers.

ScF. butuS ¢ F, because US = N, which is infinite.

Example 2: A lattice that has neither a 0 nor a 1:

Let o be the set of non-singleton intervals in R which are bounded in R and which contain 0.
Let lo =<lp, N, U >

Ifi, j € lo, then i and j overlap and then i U j is an interval, namely the interval that starts with
whichever lower bound is leftmost and ends with whichever upper bound is right most.

i M jis non-empty, since 0 € i N j, and, in fact, since i and j are not singleton and R is dense,
i M j is a non-singleton interval containing 0, soi N j € lo.

Since R is dense, for any interval i € lo there is a proper subinterval j of i such that j e lo.
Hence, lo does not contain a minumum.

Since all the intervals in lp are bounded in R, none of them is bounded by —oo or oo, but that
means that for any interval i € lo there is a proper superinterval j of i such that j € lo. Hence
lo does not contain a maximum.

Again, lo is not complete: Nlp = {0}, so Nlo ¢ lo; Ulo=R, R & o



Some observations about completeness:

Lemma: If Ud e Athen U@ =0a
If N@ € Athen N@ =1a

Proof:
Let LD € A.

U@ is the unique element of A such that:
1.foreveryx e @: x = LD
2.foreverya e A:ifforeveryx e @: x Cathen UJ C a

The italicized statements are trivially true, since @ doesn’t have elements. This means that:

U@ is the unique element of A such that for every a € A: U@ C a, i.e. the minimum of A, Oa
The argument that M@ = 1a goes by a mirror argument.
O

This means that you have to be careful in defining the notions you want, because:

Lemma: If A =<A, £>is a partial order which is closed under complete join, then A is a
complete lattice.

Proof

Let A be a partial order closed under complete join and let X < A.

Define: LB(X) ={a € A: forevery x € X:aCE x}

Then LB(X) < A. Since A is closed under complete join, it follows that LU(LB(X)) € A.

But, of course, U(LB(X)) = nX, hence NX € A, and A is closed under complete meet.

O

This is what the notion complete* is about. A complete™ join semilattive is closed under join
for every non-empty subset. This means that L@ is not required to be in A.

Structures can be complete* join semilattices without being complete lattices. For instance,
the following structure is a complete™ join semilattice:



It will be useful here to already introduce two notions that are discussed in a more general
setting later.

Let A=<A, C >bealatticeand leta € A
The ideal generated by a, (a], is the set of a’s =-parts:
@={beA:bca}
The filter generated by a, [a), is the set of elements that a is =-part of:
[a) ={b e A:aC b}

Note that (a] and [a) are convex sets in A.

I will define the following notions for lattices with 0 and 1. they can be generalized to other
structures (lattices with only 0, with only 1, without 0 and 1, etc.):

Let A =<A, C > be a lattice with 0 and 1
Leta € A—{0}:
aisan atom in A iff foreveryb e AifbE athenb=aorb=0
Leta e A—{1}:
aisadual atomin Aiff foreveryb e A:ifac bthenb=aorb=1
A is atomic iff for every b € A—{0}: thereisanatoma e A:aC b

ATOMa = {a € A: aisan atom in A}
Ais atomless iff ATOMa =0

Letb € A: ATy, the set of atomic parts of b, is:
ATy, = (b] n ATOMa
So ATp={a € ATOMa: aC b}

Atoms are ‘minimal non-0 parts’, elements that have only themselves and 0 as parts.

10



Let A = <A, E > be a complete lattice.
A is atomistic iff forevery b € A: b= LUATb
A and B below are atomic lattices, where B is not atomistic, while A is atomistic:

ATOMa = {a,b,c}
AT1= {ab,c}and 1 =0{ab,c}

ATg={ab}and d=aub e=auc f=buc
AT.={a}and a=aUa b=bub c=cuc

ATo=@and U@ =0

ATOMs = {a,b,c}

u{ab,ct =g
None of the elements of {h,i,j,k,I,m,1} are joins of atoms

Let A be a lattice and x € A and X < A.

X is atomistic, atomistic(x) iff x = LATx
X is atomistic, atomistic(X) iff every x e X is atomistic.

11



3.3. Modular and distributive lattices

Fact 1: (1) (2) (3) and (4) are true on all lattices
The distributive inequalities:
1) @nbyu@nc)=an(buc)
(2 al(ncE(@ub)n(auc)
3) @nbyu(ncu@nc)E(@ub)n(buc)n(auc)
The modular inequality:
4 @nb)u@nc)=an(bu(anc))

Proofof Fact1.1: (anb)u(@anc)=an(buc)

[1] anbCaandancEa

[2] (@nb)u(@nc)Ea From 1

[3] anbEb henceanmbEbuc
anccc,henceanctEhbhuc

[4] @nbyu@nc)=E(buc) From 3

[5] @nbyu@nc=an(buc) From 2 and 4

Proof of Fact1.2: au(bnc)E(aub)n(auc)

[1] aCalUbandaCaUc

[2] aC(aub)n(auc) From 1

[3] bcaubhencebnc=aub
cCauUchencebncEauUc

[4] bnc=(@ub)n(auc) From 3

[5] al(bncE(@ub)n(auc)

Proofof Fact1.3: (@anb)u(bncyu(@anc)=(@ub)n(puc)n(@auc)
[llanbEaub andanmbEbCEbuUc andanMmbEaEalc
[2lanbE E(@ub)n(buc)n(auc) Froml

[B]bncEb=aub andbncEbuc andbncEcEalUc
[4]bncE(@ub)n(uc)n(auc) From 3

[FlancEacauUb andanc EcCbhuc andanctalc
[(lancE(@ub)n(buc)n(auc) From 5
[fl@nb)u(bncu@nc)=@ub)n(buc)n(auc) From 2,4 and 6
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Proofof Fact1.4: (@anb)u(@nc)Ean(bu (amnc))
[l]lambEa andancEa

[2l(@nb)u(anc)Ea From 1
[BlanbED

[4lanbEbu(anc) From 3
[(lancEanc

[6(lancEbu(anc) From 4

[7fl@nb)u(@anc)=an(bu(@anc) From4and6
[Bl@nb)u(@anc)=an(bu(anc)) From2and7
|

Fact 2: Modularity: (5) and (6) are equivalent within the class of all lattices:
BG)@nb)u(anc)=an(bu(anc))
(6)ifccathen an(buc)=cu(anhb)

A lattice A = <A, => is modular iff one of the modular laws (5) or (6) holds.

Proof of Fact 2:

(5) entails (6)

Assume ¢ E aand assume (5). cEameansarmnc=c

[1] @nbyu@nc)=an(bu(anc))

[2] @nb)u ¢ =an(bu c ) Substituting ¢ foran cin [1]

(6) entails (5)
Assume (6): ifcSathenan(buc)=cu(anhb)

ancEa,sofilling in (a 1 ¢) for ¢ in the consequent of (6), we have:

[1] an(pu(@nc)=(@nc)u(anhb)

]

Fact 3: Distributivity (7), (8) (9) are equivalent within the class of all lattices.
(7 an(puc)=(@nb)u(@nc)
(8) al(nc=(@ub)n(auc)
9) cn(@aub)=au(bnc)

A lattice A = <A, > is distributive iff one of the distributive laws (7), (8) or (9) holds.

13



Proof of fact 3.

(7) entails (8)
Assume (7):an(buc)=(@anb)u(anc)
We prove (8) by the following list of equivalences:

[1J]@ub)n(auc)
[2l(@n(@uc)u(bn(auc)) Distribute a LI ¢ with (7) overaand b

[Blau (bn(auc)) Absorption of (an (a U ¢))
[4lau ((bmna)u(brmc)) Distribute b with (7) over aand ¢
[(](@u(bmna)) unec) Reorder with associativity
[6]au (bmic)) Absorption of a U (b 1 a))

(8) entails (7)
Mirror image argument.

(7) entails (9)
[1] anctacal(bnec)
[2] brnccEau(bnc)
[3] @ncudnczau(bnc)
[4] cn(aub)Eau(bnc) By (7)

(9) entails (8)
Assume (9). By fact 1.2 we only need to show that:

(@ub)yn(@auc)=au(bnc))

Because the other half holds in all lattices.

Here goes.
[1] z nixuy)eExuyn z ) This is (9)
[2] (@ucn(aub)=au(bn(auc) This is an instance of (9)
[2] (aucyn(aub)sau(bn(auc)
zMN(xUy))ExU(zNy) Another instance of (9)
au(bnc))
[3] @ub)n(@auc)=au(au(bnc) Apply (9) on the bold face in [2]
[4] (@ub)n(@auc)=au(bmnc)) Associativity and ldempotency

A is distributive iff forall a, b, c € A
ifccaubthencEaorcEbordciEadc,Eb:c=ciUC

aub| a b

c=ciulc

14



Fact 4: Every distributive lattice is modular.

Proof:
Let A be a distributive lattice, let a,b,c € A and letc E a.

an(uc=@nb)u@nc)=(@nb)uc,sincearnc=c.

i
The pentagon: The diamond:
01 01
0 Z X oy )0z
0 X 00
00

Fact 5: The pentagon is not modular.
Namely: xEzbut xuU(ynz)=x
zn(xuy)=z

Fact 6: The diamond is modular, but not distributive.
That the diamond is modular follows from the theorem below (but can, of course, also be

checked).
The diamond is not distributive because:
yuxnz=y

(yux)yn(yuz)=1

15



Theorem (Birkhoff):
1. A lattice A is modular iff the pentagon cannot be embedded in A
2. A modular lattice A is distributive iff the diamind cannot be embedded in A.

Hence lattice A is distributive iff neither the pentagon nor the diamond can be embedded in
A.

PROOF:
la. If the pentagon can be embedded in a lattice, that lattice is not modular.
2a. If the diamond can be embedded in a lattice, that lattice is not distributive.

Proof of 1a: We have seen that the pentagon is not modular:
Xy but xu(ynz=x

ynxuz=y
So, with (6), indeed the pentagon is not modular.

The class of modular lattices is defined by identity (5), hence it is closed under sublattices: every
sublattice of a modular lattice is itself a modular lattice.
If the pentagon can be embedded in lattice A, it is isomorphic to a sublattice of A, and hence A has a

non-modular sublattice. But then A is not modular.
Proof of 1a: similar.

Proof of 1b: If a lattice is not modular, the pentagon can be embedded in it

Let A be a lattice which is not modular.
This means that for some a,b,c: aS bandau(bnc)=bn(auc)

Now, we proved above fact 1.2 for all lattices (which is 1-below) and argue:

Daunc=E(@ub)n(auc) [factl.2]

(2)acb [assumption]
(3)aub=b [def on 2]
4dau(nc=Ebn(@uc) [substitute b fora L b in 1]

Sinceau (bnc)y+=bn(auc)andau (bnc)=bn(au c) it follows that:
au(bnc)=bn(auc)
Factl: ac b:

Namely: ifa=Db,thenau (bnc)=au(@nb)=a
andbn(auc)=an(auc)=a. This contradicts the assumption.

Fact2: —(cEa),—(a=c),~(cEhb),~(bEc)

IfccathencEband au(bnc)=auc=a
and b (auc)=bna=a. This contradicts the assumption.

Ifacc,thenbn(auc)=bnec.
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IfaccthenaCbncand au (b nc)=bnc. Thiscontradicts the assumption.

IfbEc,thenau(bnc)=a ub=>b
IfbCc,thena=cand b 1 (auc)=bnc=hb. This contradicts the assumption.

IfcEhb,thenau(brnc) =auc.
Ifccbthen aucEbandbmn (auc)=(auc). Thiscontradicts the assumption.

It follows straightforwardly from thisthatc —a U ¢, thatbncc=c,thatb=b U ¢, and thatanc = a.
Andalsothatbn(auc)zauUcandthatbnc=au (b nc)

For instance, if b mc=au (b nc), thena = b N c and then a = ¢, contradicting the assumption.
Now we can draw a picture of all the relevant elements of A and what we have established:

In the picture, thick lines mean =, thin lines (dotted or not) mean C:

obUc

aflc

Homomorphisms can contract thin lines, but not thick lines. This means that A contains by necessity
the pentagon as a substructure.
O
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Proof of 2b: If a lattice is not distributive, the diamond can be embedded in it
Proof omitted, but the gist is this:

2b If a modular lattice is not distributive, the diamond can be embedded in it.

Proof sketch:

The proof goes in the same way as that of 1b, but it is (not surprisingly) much more involved.
What we show is that if A is modular, but not distributive, the following substructure can be
constructed:

Here too we check which relations are = , and hence can, in principle be contracted, and
which are = (following from the requirement that the structure be non-distributive). = is

indicated in the picture by the thick lines. Itit is easy to see that the diamond in the middle
cannot be contracted and is the minimal structure left after all contractions.

O
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We make this structure distributive by contracting the diamond in the middle to a single
point: this gives the following distributive lattice:

Here point u is the contraction point for the diamond.
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3.4. Complements
let A = <A, &> be a bounded lattice and a,b € A
bisacomplementofaiffanmb=0andaub=1

You cannot have bounded lattices in which no element has a complement, because 0 and 1
obviously are each other’s complement.

In general, in a lattice there may be elements that have more than one complement:

For instance in the pentagon, y has two complements: x and z: x and z each have only one
compleement, y.

In the diamond. all the middle elements X, y and z have two complements.

01l ol
0 Z X oy )0z
0 X 00

00

Fact: If A isabounded distributive lattice, every element has at most one complement.
Proof:

Let b1 and b2 be complements of a:
anbi=anhb2=0
albi=auby=1

bimb, = binb;

Ou(inb) =0 U (b1 1 b2)
(brma)u (bambz) = (b2ma)u (bamby)
bim(@ub) = b2 (au by By distributivity
bimn1l = b1l
b1 = b

The lattice below is a distributive lattice:

1 and 0 are each other’s complement
c and e are each other’s compement
none of the other elements has a complement.
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Ifa € A has a unique complement we write the complement of a as —a.
Fact: If A is a bounded distributive lattice and a, —a € Athen —a=u{b € A:amn b =0}

A bounded lattice A is complemented if for every a € A: —a € A (i.e. every element a has
exactly one complement)

A Boolean lattice is a complemented distributive lattice.

A Boolean algebra is a structure B=<B, &, —, n,u, 0, 1> where:
1. <B, =>is a Boolean lattice
2. — is the one place operation that maps every element b € B onto its complement—b
3. M and U are the two place operations of join and meet
4.0 and 1 are the minimum and maximum

Purely algebraically a Boolean algebra is a structure B = <B, —, 1, U, 0, 1> where
1. <B, n, U> satisfies idempotency, commutativity, associativity, absorption,
the laws of 0 and 1 and distributivity
2. Complementation: alu—-a=1
an—-a=0

It is quite common, in the semantic literature, to actually replace the binary operations 1 and
U by the complete operations on subsets. In need of a term, I will call such Boolean algebras
c-Boolean algebra. c-Boolean algebras are, of course, complete, but should be distinguished
from complete Boolean algebras (which have the binary operations M and U as operations).
Unless explicitly states results for complete structures mentioned refer to Boolean algebras
and not necessarily to c-Boolean algebras. Thus, distributivity does not automatically
generalize to the complete operations of join and meet and the homomorphism requirement
to preserve binary join and meet is not the same as preserving complete join and meet.
has the operations of complete join and complete meet as the operations of the algebra.

Boolean algebras with complements indicated:
1
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For complete distributive lattices a weaker notion of complementation suffices to define
complete Boolean lattices:

Let A = <A, C > be a complete distributive lattice.
A is witnessed iff for every a;,b e A—{0}:
ifai = bthenthereisaa e A—~{0}:a2Ebandaina=0

When we use bounded structures to model a natural part-of relation, there is a discrepancy
between the intuitive notion of part and the formal notion. Formally O is part of everything,
but that is usually not the way the informal notion of part is used.

So when we talk about naturalistic parts, we mean non-zero parts; when we talk about proper
parts, we mean non-zero proper parts, etc.

This shows too in the informal notions of disjointness and overlap, which we will define in
terms of non-zero parts:

aand b overlap overlap(a,b) iffanmb=0
aand b are disjoint disjoint(a,b) iffanmb=0
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Thus, for a and b to overlap they have to have a non-zero part in common.
The weakened condition for complementation says: if a; is a proper part of b, then there is
some other part a; of b which doesn’t overlap a.
This is a very intuitive notion: if you take something, but not everything away, there is
something left, and what is left doesn’t overlap what you took away.
Fact: Every witnessed complete distributive lattice is a complete Boolean lattice.
Proof:
Let A be a lattice with O and a € A.
a* is a pseudocomplement of aiffa* € Aanda* = u{b € A:an b =0}

The pseudocomplement of a is the join of all the elements of A that are disjoint from a.

Fact: If A is abounded distributive lattice and a* A then a* = —a.
This was mentioned above.

In general, in a Boolean algebra it is not guaranteed that every element has a pseudo-
complement. But this is guaranteed if A is a witnessed complete distributive lattice.
We don't need to worry about 0 and 1, so leta € A —{0,1}. Since A is witnessed,

{b € A—{0,1}: an b =0} is not empty. Since A is complete Li{b € A—{0,1}: a N b = 0}.
This is, of course, the same as LI{b € A: a b =0}, which is a*. Hence a* € A. By the
above fact if a* € A, a* = —a, hence A is complemented.

Relative complements

Let A be a lattice with 0 and a,b,c e AandaE b
cis arelative complementofainbiffauc=bandanc=0

—b(a) is the unique relative complement of a in b (if there is a unique one).
A is relatively complemented iff for every a,b € AsuchthataS b: —pa € A
Fact: If A is a Boolean algebra then A is relatively complemented and —ba=—anb

Proof: We assume thata = b.

We need to prove thata U (—amnmb)=bandan (—anb)=0
-an(-anb)=(@n—-anb=0nb=0
-al(—anb)=(au—-a)n(@ub)=1n(aub)=aub=Db(because a = b)

Note that the ideal generated b, (b] is a convex set in A.

ForaCE b, a € (b] and —»a € (a]. We can fruitfully regard —a as the complement of a
within convex set (b]. The fact, then, that Boolean algebras are relatively complemented
means that each element a has a complement within every convex set (b] with a = b:
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3.4. Appendix: Heyting algebras and de Morgan lattices
Heyting algebras.

Above we introduced the notion of a pseudo complement.
| introduce them here again, but in a bit different way:

Let A be a lattice with 0 and a € A.

a* is a pseudocomplement of a iffa* € Aanda na* =0 and
foreveryb e Arifanb=0thenb E a*.

An element can have at most one pseudocomplement: if b and c are both
pseudocomplements of a, thenamb=0andamn c=0and hence b = c (sincecisa
pseudocomplement of a) and ¢ = b (since b is too). Hence b =c.

Fact:ifa* €e Athena*=u{b e A:anb=0}
A is pseudocomplemented iff every element of A has a pseudocomplement.

Fact0:0*=1and 1*=0
Proof: u{b e A:0nb=0}=uA=1
U{beA:1nb=0}=u{0}=0

Fact1l:arC a**
Proof: a** is the peudocomplement of a*. Hence for every b € A suchthatb maa* =0
bCa** Sinceamna*=0,aLCc a**.

Fact 2: ifaC b then b* C a*
Proof: Leta= bh. Thenamnmb=a.
brnb*=0. Hencean b n b*=0, hence a nm b*=0. Hence b* = a*

Fact 3: a* = a***

Proof: with fact 1 and 2: a*** E a*.
With fact 1: a* £ a***

Hence: a* = a***

Fact 4: If A is a witnessed bounded lattice then 1 is the only element x € A such that x* =0
Proof: Note that 0* = 0 (since 0 #1). Suppose a # 1 and a=0. Thena 1.

Then, by the witness constraint, for some b € A—{0}:anb=0

Then{b e A:anb=0}=@and{b € A:anb=0}={0}

But then Li{b € A:amn b =0} #0. Hence a* = 0.
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Fact 5: If A is a witnessed complete distributive lattice then A is a complete Boolean lattice.
Proof: We provethataua*=1andamna*=0

l.aua*=1. Weprove that (a LU a*)*=0.

(1) (auar* =
2 U{beA:(@aua*)nb=0} =
3) u{b e A:(@anb)u(@a*nb)=0} By distributivity =
4) U{be Aranb=0anda*nb=0} Since the join can’t be 0 otherwise

Nowifamb=0,b e {b:anb=0}, henceb = a*, hencea*mb=0iffb=0,s0 (4) is
identical to (5):

B)u{be A:b=0}=

(6) u{0}

(Mo

So(aua*)*=0

Then, by fact4,aua*=1

2.amna*=0

1) ana* =
2 anu{be A:anb=0} =
3) u{anb:anb=0} By complete distributivity: a nm uX = u{anx: x e X} =
(4) u{0}

4 0

Above we defined the notion of complement —a and then went on to relativize that notion to
the notion of relative complement by resetting the top element 1 to b: —pa.

In Heyting algebras we do something similar with the notion of pseudocomplement, except
that we reset not the top element 1 to b but the bottom element 0 to b:

a* = Uu{ce C:anc=0}
if b C athen:
a—>b = u{ceC:anc=>n}

Let A be a bounded lattice.

A is relatively pseudocomplemented if every element has a relative
pseudocomplement.

Relatively pseudocomplemented lattices satisfy the Modus Ponens identity:
Modus Ponens identity: (a—b)ma=hb

Fact: In arelatively pseudocomplemented lattice the pseudocomplement is defined by:
a*=a—>0
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A Heyting algebra is a distributive relatively pseudocomplemented lattice.

Just as Boolean algebras are the natural structures associated with Classical Logic,
Heyting algebras are the natural structures associated with Intuitionistic Logic.

Example: Look at the following ‘chess-board’ and elements b, a and —a.

0 1

0
The elements a, —a, are the four elements that have complements.

We will look at the relative pseudcomplements o — b, where b £ a:
We distinguish four regions in the set [b): sets 1, b, a, ¢

Example:
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The following facts can be checked:

ifoel thena—>b=Db (inlogic: (1 —>b)=Db i.e. T — ¢ is equivalent to @)
ifoeb, thena—>b=1 (inlogic: (b —>b)=1, i.e. @ — @ is a tautology)
ifoea, thena—>b=c

ifa e c,thena—b=a

The fact that 1, b, a, ¢ has four such regions, ordered as indicated, is neither insignificant
nor arbitrary.

Distributive lattice D3 is pseudocomplemented:

0* =17 8% = 11* = 12* = 13* = 14* = 156* = 16* = 17* = 0
1* =10 6*=10*=1
2% =9 5% = Q% =2
3*=7 4x=7*=3
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The pseudocomplements are, of course, also the relative pseudocomplemens o — 0.

The set of pseudocomplements form a Boolean algebra, but not a sublattice of Ds: while
meets are preserved, joins are not:

Fact 1: Every Heyting algebra is pseudocomplemented

Fact 2: Every complete distributive lattice is a Heyting algebra.
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(Complete) distributive lattice — Heyting Algebra — represents the logical structure of
Intuitionistic Logic.

The pseudo complements are indicated as suns.
The circled elements have the same pseudo complement:

o* = 1
lo*=1a*=1p*=1c*=1g* = 1le* = 1¢* = 1* = 0
a* = f

fo* = f*= a

b* = e

eo* = e* = a

c* = d

do* = d* = c

You can verify in the picture that: a & a**, but that not always: a** E a:
For instance: fo* =aand a*=f hence fo*" =f, and fo = f butfo# f.

This is precisly where intuitionistic negation differs from classical negation:
¢ and ——¢ are classically equivalent, but ——¢ does not entail ¢ in intuitionistic logic.
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De Morgan Lattices

Let W be a set of worlds.
We define the following set of propositions:

Pw={<p*,p~>: p",p-<cWandp"np- =0}

In classical logic we think of the proposition expressed by ¢, [¢] as the set of worlds where
@ is true. This gives:

[o] ={w e W: [@]w =1}

Pw= <pow(P),—,u,N, W, @3>

So  [-¢] =W-[¢]
[o AT = [o] N [v]
[o v vl =[e] v vl

[ov—@] =W

In strong Kleene three valued setting, ¢ can be undefined in worlds. Here we think of the
proposition expressed by ¢ as a pair of sets of worlds:

[e] = <[@]*[e]>
[o]+={w e W: [@]w=1}
[o]~={w e W: [o]w =0}

Thus, a proposition p is pair p = <p*,p—> where:

p* is the set of worlds where p is true
p~ is the set of worlds where p is false

Weset: pt=W-(p"up)
p- is the set of worlds where p is undefined

Example: LetW ={ab,c}

Then the total propositions are:

<{a,b,c},?>

<{a,b}.{c}> <{ac}{b}> <{b.c}{a}>

<{a}{b.c}> <{b}.{a,.c}> <{c}{ab}>
<@,{ab,c}>

these are defined in every world.
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p = <{a},{b}> and q = <{a},@> are partial propositions: p is true in world a, false in b, and
undefined in c. qis a partial tautology: true in a, undefined in b and c, but false in no world.

Note the element <@,@>, the totally partial proposition, true in no world, false in no world.
We form the structure:

Ma =<Ma, E,~ N, 4,0,1>
with:

<ptp>cC<q,g>iffp'cqgrandg-cp-

~(<p".p=>) = <p~,p*>

<p*.p~>n<g.g>=<p'ng’, g ug>

<p".p~>u<gg>=<p'uq,g Ng>

1=<A@> 0= <@gA>

This notion of complementation is called de Morgan-complementation and the structure is
called a (complete) de Morgan lattice:
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Note that, unlike pseudo-complementation, de Morgan lattices satisfy the laws of double
negation and the de Morgan laws:

~~p=p
~(pug)=~(~pn-~q)
~pnqg)=~(~pu-~q)

But de-Morgan complements are not complements, what they don't necessarily satisfy is
either of the complement laws:

pu~p=1
prn~p=0

Instead, we can define:

12 ={p € Ma: p =<p*,@ > for some p* < A}
0a={p € Ma: p=<@, p—> for some p— c A}

And the the laws that do hold are:

pu~peia
pr~pe0a

The idea is: if p is undefined in world c, then so is ~p, and also p U ~p.

To give a concrete example. Assume that there are three worlds, a,b and ¢ and there is a
unique president in world a and in world b, but not in world ¢, and the president is smart in
world a, and dumb in world b.

Then:

[smart(c(president))] = <[smart(c(president))]+, [smart(c(president))]-> = <{a},{b}>
[smart(c(president) v —smart(c(president) J* =

{w: [[smart(c(president) v —smart(c(president) Jw =1} =

{w: [smart(c(president)w = 1} U {w: [ =smart(c(president) Jw = 1} =

{w: [smart(c(president)w = 1} U {w: [smart(c(president) Jw = 0} = {a,b}

[smart(c(president) v —smart(c(president) J- =
{w: [smart(c(president) v —smart(c(president) Jw =0} =@

So, indeed,

[smart(c(president) v —smart(o(president) | = <{a,b},0>
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3.5 Boolean algebras

Lemma 1: In a distributive lattice an element can have at most one complement.
Proof:
We proved this above.

Lemma 2: In a Boolean lattice: a = — —a

Proof:

Both a and — —a are the complement of —a, hence, by lemma 1,a=——a
O

Lemma 3: In a Boolean lattice: —(a N b) = —a U —b
Proof:
The following equivalences hold:
(@anb)u(—au—b)
(@nb)u—-au-b Getting rid of some brackets
(a@u —a)n (b u —a)) U —b Distributivity on (a nb) L —a
(1 n(bu—-a))u-—b
bu—-a u-b
il

(@nb) N (—au —=b)
@nbn—a)u(@nbmn—b)
0 U 0
0

Hence —(a M b) and —a U —b are both the complement of a 1 b,
hence —(a nm b) = —a U —b.
m

Lemma 4: In a Boolean lattice: a E b iff —=b E —a.

Proof:
The following equivalences hold:
acb
anb = a
—(anb) = —a
—al-b = —a
—bC —a

Lemma 5: In a Boolean lattice:anmb=0iffac —b

Proof:

Assumea = —b. Thenan—-b=a,and(an—-b)mb=anb,henceanb=0
Assume an b =0.

We argue that a LI —b is the complement of b

(@u—-b)ub=1

(@u—=b)ynb =@nNb)u(-bnb)=0u0=0

Hencea LUl —b=—b,and a = —b
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Lemma 6: If a is an atom in a Boolean lattice B, then for every b € B—{0}:
aC boraE —b, not both.
Proof:
Let a be an atom and let b € B — {0}, and assume a Z b.
Thenanb=a.
Since, a M b E a, this means that a M b =0, since a is an atom.
Hence, with lemma 5, a E —b.
Not both, because then a E b and a E —b, and hence a E b 1 —b, and a = 0 and not an atom.

Lemma 7: If ais an atom in Boolean lattice B and b,c € B,
thenaEbuciffaEboratEc.

Proof:

LetabeanatominBandleta= b U candletaZ b.

Then, with lemma 6, a E —b, and, with lemma5,an b =0.

SinceaEbuc, an(buc)=a.

With distributivity, this means that (a m b) U (a nc) = a.

ThusO U (amc)=a,andthus a=anc, henceacc.

(The other side is trivial: ifa=bthenaS b LU candifa=cthenaE=b U c)

m]

We repeat:
ATx={a e ATOMg: aC x})
B isatomic iff forevery b € B—{0}: ATo= @
B is atomistic iff for every b € B: b = U (ATp)

Lemma 8: Let B be a complete Boolean lattice. Let A < ATOMg.
Then A=ATua

Proof:

-Leta € A. Thena e ATOMg and a = LIA. Hencea € ATua

SoAc ATua

-Leta € ATua. Thena e ATOMg and a E LA.

Assume a ¢ A.

Then for every a1 € A:anmai =0, since ATua U {a} c ATOMs.

Then for every a; € A: a1 E —a (by lemma 5).

Hence LA E —a.

Since a E UA, it follows that a E —a.

Henceamn —a=a,i.e.a=0. Buta e ATOMg

Contradiction,soa € A. O

Corrollary 9: Let B be a complete Boolean lattice and let A;, A2 c ATOMg.
Then A1 = A2 iff UAL = UAS.

Proof:

-If A1 = A, then obviously LA; = UA.

-If UAL = UA,, then ATuar = ATua2. Then, by lemma 9, A1 = A,
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Corrollary 10: Let B be a complete Boolean lattice.
Then: {ATp: b € B} = pow(ATOMg).

Proof:

-Obviously {ATy: b € B} < pow(ATOMg).

-Let Ac ATOM.

Since B is complete, LA € B.

By lemma 8, A= ATua

Hence A € {ATy: b € B}

Theorem 11: Let B be a complete Boolean lattice.
Then B is atomic iff B is atomistic.

1. If B is atomistic, B is obviously atomic.

2. Assume B is atomic. Let x € B —{0}.

U(ATx) E x, by definition of U.

We want to show: x E LI(ATx).

Assume that this doesn't hold. Then LI(ATx) = Xx.

Then for somey E x,y # 0 and U(ATx) My =0, by the witness postulate.

Since B is atomic, ATy = @.

Hence, for some a € ATOMy: UATxMa=0

aCyandyLC x,soa e ATx. Butthen UATx M a = 0, which means that UATx = 0.
But that can only be if ATx = @. But we know that ATx # @, because B is atomic.
Contradiction.
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Theorem 12: Let B be a complete atomic Boolean algebra.
Then B is isomorphic to pow(ATOMs)
Proof:
Let h: B — pow(ATOMBg) be the function such that for every b € B: h(b) = ATb.
We prove that h is an isomorphism.

1. h is one-one.

Let h(@) = h(b). Then ATa= AT, Then L(ATza) = LU(ATy).

B is atomic, hence, by theorem 11, atomistic. This means that
a=U(ATa) and b = U(ATy). Hencea=h.

2. h is onto.
Let A € pow(ATOMg). Then, by corrollary 10, A € {ATy: b € B}.
Hence for some b € B: A = ATy,. This means that for some b € B: A = h(b).

3. Leta E b. Since B is atomistic, then L(ATa) E LI(ATb).

Then for every ¢c € ATa: ¢ & U(ATb).

Hence, again by atomicity, for every ¢ € ATa: ¢ E b, hence ¢ € ATy.
So ATa c ATy, and hence h(a) < h(b).

3. h(—a) = AT-a={c € ATOMg: c E —a} = [by lemma 6] ATOMg — ATa = ATOMg — h(a).

4.h(anb)=ATanp={c € ATOMg:cEanb} ={c e ATOMg:cEaandcC b} =
{c e ATOMg: c E a} n {c € ATOMsg: ¢ E b} = ATan ATb = h(a) m h(b).

5.h(aub)=ATaub={c € ATOMz: c E a U b} = [by lemma 7]
{ce ATOMg:cEaorcEb}={c e ATOMg:cEa}u{c € ATOMg:cC b} =
ATa U ATy = h(a) U h(b).

6.h(0)= ATo=@
h(1) = AT: = ATOMs.

Corrollary 13: The complete atomic Boolean algebras are up to isomorphism
the powerset Boolean algebras.
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3.6 Some constructions

3.6.1. Product Boolean algebras

Let A and B be Boolean algebras.

The product of A and B, A x B, is given by:
Ax B = <Bx,Ex, —x, Mx, LUx, O, 1> where:

1.Bx=AxB

2. <ai1,b1> Ex <ap,by> iff a1 Ea a2 and by Eg by
3. —x(<a,b>) = <—pa, —b>

4. <a1,b1> Mx <az,by> = <a; Ma az, by M b>
5.<a1,b1> Ux <ap,b2> = <a; Ua a2, by U b2>
6. 0x = <0a,08>

7. 1x =<1a,15>

Fact: A x B is a Boolean algebra.

Proof:

1. Exis a partial order.

-C is reflexive:

Since foreverya € A:aEaaand foreveryb € B: b Cg b,
for every <a,b> € A x B: <a,b> =4 <a,b>.

-Cx is antisymmetric:

Assume <ai,b1> Ex <az,b2> and <az,bz> Ex <ai,bz>.
Then a1 Ea a2 and b1 Eg b, and a2 Ea a1 and bz Eg bs,
hence a1 = a2 and b1 = by, hence <ai,b> = <ap,b>>

-E. is transitive:

Let <a1,b1> Ex <ap,b> and <az,b> Ex <asz,bsz>.

Then a; Ea a2 and by Eg bz and a2 Ea az and bz Eg bs,
hence a1 Ea a3z and b1 Eg bs, hence <aj,b1> Ex <as,bz>

2. Mxis meet;
-<ay,b1> Mx <ap,b> = <a; Na az,by Mg by>

arNaa2Eaar and a1 MNa a2 Ea a2

b1 Mg b2 Eg b1 and b1 Mg b2 Eg by,

hence

<a1,b1> Mx <az,b> Ex <ai,bi1> and <ai,b1> Mx <az,b> Ex <ap,b>.

-Let <a,b> Cx <aj,b1> and <a,b> =« <ap,bo>.
ThenaEaaiand b Eg biand a Ea a2 and b Sg by,
hence a Ea a1 Ma a2z and b Eg by Mg by,

hence <a,b> Cx <aj,b1> N« <az,bz>.
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3. We show that Lix is join in Ex by a similar argument.

4, 0x = <0a,08>.

Since for every a € A 0a Eaaand for every b € B Og Eg b,
for every <a,b> € A x B <0a,08> Cx <a,b>.

Hence 0« is the minumum under E..

Similarly 1« is the maximum under Ea
So A x B is a bounded lattice.

5. Distributivity:

<ay,bi> Nx (<az,b2> Ux <az,bs>) =

<a1 Na (a2 Ua a3),b1 Mg (b2 Ug b3)> =

<(a1 Ma a2) Ua (a1 Ma a3),(b1 Mg b2) Ug (b1 Mg b3)>=
(<ar Ma az,b1 Me b2> Lk <a; Ma az,br Me b3>=
(<a1,b1> Mx <ap,bz>) Ux (<a1,b1> My <az,bz>)

6. Complementation:
<a,b> Nx —x(<a,b>) =
<a,b> Mx <—paa,—8b> =
<a Ma —ad,b Mg —sb>=
<0a,0g> = Ox.

<a,b> Lx —x(<a,b>) =
<a,b> Ux <—paa,—8b> =
<a Ua —ad,b Ug —gb>=
<1a,1g> = 1..

O

Example

1a 0.< 1a,1>
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3.6.2. Function space Boolean algebras:
(A — B) is the set of all functions from A into B.
Let A be a set and B = <B, Csg, —, M5, Ls, 08, 18> a Boolean algebra.
We define:
(A—>B) = <(A—>B),E,—, N, u,0,1>where:
1. fC g iff for every x € A: f(x) Eg g(X)
2. —|f = Ax e A —|B(X)
3.fng= XxeA:f(x) Nsg(x)
4.fug= Ax e A:f(x) Usg(x)

5.0 Ax € A: Og
6.1 Ax e Al lg

Fact 1: (A — B) is a Boolean algebra.
LetFc (A—B

NF=2x € A: Ne({f(x): f € F}
UF =ix e A: Us({f(x): f € F}

Fact 2: (A —> B) is complete iff B is complete.
Fact 3: (A — B) is atomless iff B is atomless.
Fact 4: (A — B) is atomic iff B is atomic.

Proof: Similar to the proof for products

uX ={<a, Us{f(a): f e X}:a € A}
nX ={<a, Ne{f(a): f € X}: a € A}

Fact 2: If uX € (A — B), then uX is the supremum of X under .
Similarly, nXis the infimum of X if it exists.
Proof: Similar to the clauses for binary mn and U

Fact 3: (A —» B) is complete iff B is complete.
Proof:

1. Assume B is complete.

Let X < (A— B).

Then for every a € A: Ug{f(a): f € X} € B.
Hence uX € (A — B).

2. Assume (A — B) is complete.

Let X< B

Look at {{<a,x>:a € A}: x € X}.

Since (A — B) is complete, LU{{<a,x>:a € A}: x € X} € (A —> B).
U{{<ax>:ae A} xe X}={<a, Us{x:x e X}>:aec A} =

{<a, UgX>:a € A}. Hence UgX € B.
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A similar argument shows the same for ngX.
O

Letae Aandb e B.
Aap = {<a,b>} U {<x, 0s>: X € A— {a}}

Fact 4: A,p Ef iff b g f(a)

Proof:

Let Asp E .

Then for every x € A: Aap(X) Eg f(X).
Then Aqp(a) Eg f(a), hence b =g f(a).

Letfe (A—>B),ac A beB,andb g f(a).

Then for every x € A: Aap(X) Eg f(X).

Namely: either x = a, and then Aqp(a) = b, and b Eg f(X).
Or x # a, and then A,p(X) = 0g and Og C; f(X).

O

Theorem 5: ATae)={Aap: @ € Aand b € ATOMg}.
Proof:

Leta e A, b € ATOMs. Since b #0g, Agp =0

Assume g C Aap.

Then for every x € A: g(X) Eg Aan(X).

For every x € A: Aap(X) = 0s or Aap(X) = b.

Sinceb € ATOMg only Og Eg and b =g b.

Hence, for every x € A: g(x) = 0s or g(x) = b.

This means that g =0 or g = Aap.

Hence Aa,b € ATOM(AQ B)-

Letf e ATOM S B).

Then f = 0. This means that for some a € A, f(a) = Og,

in other words, for some a € A, for some b € B— {0g}: f(a) = b.
Look at Aap.

Aap(a) = b and for every x € A — {a}: Aap(X) = Os.

So: Aa,b #0.

Aap(a) = f(a) and for every x € A — {a}: Aap(X) Es f(X).

Hence A.p E f.

Since f is an atom in (A — B), this means that f = Aap.

Suppose that b ¢ ATOMg. Then for somey: Os Cg y =g b.

Then 0 = Aay = Aap, hence, again f is not an atom in (A — B). Contradiction.
Hence b € ATOMg.

m
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Corrollary 6: (A — B) is atomless iff B is atomless.
Proof:

{Asp:ace Aandb € ATOMg} =@ iff ATOMg = @. O
Fact 7: (A — B) is atomic iff B is atomic.

Proof:

Let B be atomic.

Letf € (A—> B)—{0}.

Then for some a € A: f(a) # Os.

Since B is atomic, then for some b € ATOMzg: b Cg f(a).
Hence A E f. Since Aup € ATOM(a - ), (A — B) is atomic.

Let (A —> B) be atomic. Lety € B

Leta € A and look at A.y € (A — B).

Since (A — B) is atomic, for some f € ATa ). T E5 Aay.
Hence for every x € A: f(X) Sg Aay(X).

Since for every x € A — {a}: Aay(X) = Og, this means that
for every x € A — {a}: f(x) = Og.

Since f € ATOMa -, B), this means that f(a) € ATOMg.
Since f(a) Cg Y, it follows that B is atomic.

m

3.6.3. Generated ideal Boolean algebras
Let B = <B,=,—,M,u,0,1> be a Boolean algebra and ¢ € B.
The ideal generated by c, (c], is:
(c]={beB:b=c}
The filter generated by c, [c), is:
[c)={beB:cEhb}

The ideal-relativization of c, (c], is the structure:
(c] = <(c.E @~ @M @Y @01, 1c>, where:

1. Eq=E(c]

3. —(c] = e —|(c](a) =Ccll—a
4. N = Nl

5. U = Ul

6.0¢=0

7.1 =cC

Fact 1a If ¢ =0, then (c] is a Boolean algebra.

Proof:

(c] has minimum 0 and maximum c and is closed under M and U.

We saw above that (c] is closed under relative complement: —ca =—anc
i

42



As Boolean algebras, (c] is not a sub-Boolean algebra of B, because 1 is not preserved. Itis a
Boolean algebra on a subset of B.

Of course, this theorem dualizes to [c), the filter-relativization of c this too forms a Boolean
algebra with maximum 1 and minumum c, and the operation of complementation.
appropriately dualized. We will actually be interested in [—c) as a Boolean algebra, so
directly define that:

The filter-relativization of —c, [=C), is the structure:
[—€) = <[C),E-¢),— [, =01, L [-¢),0-¢), L[>, Where:

1. Ef¢ = El[-0)

3.4l === —ro@=-cUa
4. M-¢) = Ml

5. U = Ul

6. O[—c) = —C

7.1-q=1

Fact 1b: If —c # 1 then (—c] is a Boolean algebra.

Let B = <B,E,—,M,u,0,1> be a Boolean algebra and ¢ € B — {0}.
Theorem 2: (c] and [—c) are isomorphic.

Proof:

If ¢ =1, then (c] = [-c) = B. So clearly they are isomorphic.
Soletc=1.

We define: h: (c] - [—c) by:
for every x e (c]: h(x) =x U —c.

1. For every x e (c]: —¢ E x U ¢ (because this holds in B generally).
Hence every x € (c]: h(x) € [-c). So his a function from (c] into [—c).

2.Lety € [-€). Then —c Ey. Then —y C ¢, hence -y e (c].

Take the relative complement of —y in (c]: —c¢(—y)=——y nc=ync.

Hencey nc e (c].
We calculate: h(y nc)=(ync)u—-c =(yu—-c)n(cu—-c)=(yu—-cynl=yu-c=y.
Hence h is onto.

3. Let h(x1) = h(x2).

Then x1 U —C =Xz U —C. Then —(X1 U —€) = —( X2 U —C). Then —x1 M ¢ = —x2 M C.
Since these are the relative complements of x1 and X2 in Boolean algebra (c],

it follows that x; = x2. Hence h is one-one.
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4.h(0)=0U —c=—c.
h(c)=cu—-c=1
h@nb)=(@nb)u—-c=(@u-c)n (bu-—c)=nh()n h(b)
h@ub)=(@ub)u—-c=(@U-=c)u (bu—c)=h(a)u h(b)
h(—(@)) =h(-anc)=(—-anc) U —-c=—(@auU —c) U —C=—[(al —C) = —=c(h()).
D

Fact3:Ifc=1then(c]n[-c)=0
Proof:

Letx € (c] " [—c). Thenx E cand —c E x. Then x E c and and —x E c.
Then x U —Xx E ¢, hence ¢ = 1.
m

Fact 4: Ifais an atom in B, then (—a] U [a) = B.

Proof:

We proved that if a is an atom in B then for every b € B—{0}: a= b or a E —b.
Leta €« ATOMgand letb e Band b ¢ [a).

ThenaZ b. ThenaE —b. We proved that then b = —a, hence b € (—a].

O

With this, we have proved a decomposition theorem:

Decomposition Theorem:
If B is a Boolean algebra with atom a € B, then B can be partitioned into two
non-overlapping isomorphic Boolean algebras (—a] and [a).
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The other way round we have a composition theorem.

Let A and B be non-overlappping isomorphic Boolean algebras and let h be an isomorphism
between them.
We define:

The product of A and B under h, BMa+s:

Bha+g = < B"ass, &, —, 1M, U, 0, 1> where:
1.B"ae=AUB
2.C =CauCpu {<ab>: h(a) Eg b}
3. — is defined by:
—B(h(x)) ifxeB
Forall x € AuB;—.x:{
-a(h7'(x)) ifxeA
4. N is defined by:
XMay ifxyeA
Forallxy e B:xny= {xrlsy ifx,y e B
xnah™l(y) ifx e Aandy € B
5. U is defined by:
Xuay ifxyeA
Forallxy e B:xuy= {xuay ifx,y e B
h(x)usy ifxeAandyeB

Construction Theorem: B"a+s is a Boolean algebra.

Proof: Similar to the proof for the product.
We show here only that B"a+s is complemented.

-If a € Athen
an—-a=anah™(—a)=anah ! (—g(h(@))) =anah™(h(—sa)) =amNa—aa=0a=0
al —a=h() ug—a=h(a) ug—e(h(@)=1s=1.

-If a € Bthen

an—-a=h"'(a) Ma—a=h"'@) Na—-a™'(@)=0a=0
all —a=auph(—a) =a U h(-a(h™'(a)) = a ug —s(h(h™'(a)) =a Ug —sa = 1g = 1.
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In a picture:

Note that the construction turns Ogs into a new atom, to which, of course, the decomposition
applies.

We already know that the complete atomic Boolean algebras are, up to isomorphism the
powerset Boolean algebras. Since all finite Boolean algebras are complete and atomic, the
finite Boolean algebras are exactly the powerset Boolean algebras.

The construction theorem gives us an algorithm for constructing them:

Take two finite non-overlapping Boolean algebras A and B of cardinality 2".

They are isomorphic. Take isomorphism h.

Then B"as is the Boolean algebra of cardinality 2™,
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3.6. Atomless Boolean algebras 1: Boolean algebras +generated by chains
Let B = <B,=> be a partial order and a,b € B
acoversbiffac bandthereisnoce B:acc cbh.

Example: 0 covers every atom, and every dual atom covers 1.

The symmetric difference of aand b, a + b, is:
atb=(a nN—=b)U(—anb)

Fact1: IfaCc bthena+b=—p(a)

Proof:

atb = (wanb)u(=bna)

Ifac bthen-brna=0.
Thus,a+b=(-anb)u0=—-anhb=-—p@)
m]

Let B be a Boolean algebra, leta,o € Band a C b.

Lemma 2: acoversbiffa+b € ATOMs

Proof:

1. Letacoverb.

This means that a is a dual atom in (b].

But that means that —(a) is an atom in (b].

Since ATOMq] = ATOMg n (b], it follows that —n(a) € ATOMg.
SinceaC b,a+b=—p(a), hencea+b € ATOMg.

2.Leta+b € ATOMg.
SinceaE b, a+ b =-p(a). Hence —n(a) € ATOMs.
Since —n(a) = —a M b, —(a) € (b], hence —n(a) € AT ).
Then —p(—b(2)) is a dual atom in (b], which means that —»(—n(a)) covers b.
But  —n(-n(a)) =

—b(—amnb) =

—(-anb)ynb =

(—au—=b)nb =

@u—=b)ynb =

@nb)yu(=bnb) =

@nb)yuo =

anhb.
SinceaCc bh,anb=a.

Hence —n(—n(a)) = a.

Hence a covers b.
O
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Corrollary 3:

If B is an atomless Boolean algebra,

then every maximal chain in B is a dense linear order with endpoints.
Proof:
If B is atomless, then for no a,b € B: acovers b (else a+b € ATOMg).
Hence indeed every maximal chain is dense.
The endpoints of any maximal chain are, of course, 0 and 1.
i

Let B be a Boolean algebra and let C — B be a chain in B with 0 € C.

C +generates B iff
for every b e B: there are some Ci,...,Cn € C such that: b = ¢+ ... + cn.

So chain C +generates B iff every element of B can be generated as the symmetric difference
of (finitely many) elements of C.

Theorem 4: If By is +-generated by C; and B is +-generated by C, and C; and C; are
isomorphic, then By and B; are isomorphic.

i.e. Boolean algebras +-generated by isomorphic chains are isomorphic.
Theorem 5: Every countable Boolean algebra is +generated by a maximal chain.
Corrollary 6: Up to isomorphism there is exactly one countable atomless Boolean algebra.
Proof: Let B1 and B2 be countable atomless Boolean algebra. Each of them is generated by a
maximal chain, by theorem 5. By corrollary 3, any such maximal chain is a dense linear
order with end points 0 and 1. By Cantor's theorem, all such maximal chains are isomorphic.
Hence by theorem 4, B1 and B2 are isomorphic.
Let B be a Boolean algebra.

B is homogenous iff for every b € B—{0}: B is isomorphic to (b].
Corrollary 7: The countable atomless Boolean algebra is homogenous.
Proof:
Let B be the countable atomless Boolean algebra, and let b € B.
Then (b] is also a countable atomless Boolean algebra (namely, any atom in (b] is also an

atom in B), and by Corrollary 6, (b] and B are isomorphic.
m
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3.6. Atomless Boolean algebras 2: Agebras of regular open sets

| will define here the countable atomless Boolean algebra and what can be called the standard
model for complete atomless Boolean algebras. It will be defined in terms of intervals of real
numbers.

Let Ir be the set of all intervals in R.
We assume all the notions we have defined before, plus:

Leti,] € Ir.
i and j are apart iff either vi < Aj or vj < Aji

Intervals that are not apart overlap or are separated by a single point:
e.g. the intervals (0,7) (={r € R: 0 <r <xn}) and (n,4) (={r € R: n <r < 4}) are not apart,
since v(0,n) = A(m,4):

o€ ) )4
Note that intervals in R that are apart are separated by uncountably many points.

Following Givant and Halmos 2009, | will call a single point separating two intervals
a crack in the union of those two intervals. Letx < R.

The set My of maximal subintervals of X, is the set:
My={ielr: icxandVjelr:ifjcxandicjthenj=i}

X is an open set iff every i € My is an open interval.
x is a regular set iff for every i, j € My if i #j then i and j are apart.

RO is the set of all regular open sets in R.
[Note for the specialists: the standard definition of regular open set is topological: sets that
are identical to the interior of their closure. On the interval structures given here those are

precisely the open regular sets as defined here.]

Letx € RO
x is a finite regular open set iff My is finite.

Finite regular open sets are regular open sets that have only finitely many maximal
subintervals.

FRO is the set of all finite regular open sets.
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We define the following operation ~ on subsets x — R:
~X=(Rix)i;{reR: 3ieMgr;gp:r=naiorr=vi}

~ does the following:
1. ~ takes the set-theoretic complement of x in R: R ; X
2. ~ deletes any number from R—x which is either the lower bound of a maximal
subinterval of R—x or the upper bound of a maximal subinterval of R—x.

Example:

X 0¢ )n A )10

R-x —oo(—0] [t———H4] [10————— )+
~X —oo(—0) (m——H4) (10— )+

The picture shows that if x is a regular open set, so is ~X. Moreover, by reading the picture
bottom up, it is easy to see that ~~x = Xx.

~~X IS a crack-repairing operation: it turns an open set that contains cracks into a regular
open set by filling in the cracks:

Example:

X Y i S— L

~X —oo(——0) (F————)+x
(single point closed interval [x] gets eliminated by ~)

~~X 0¢ )4

We notice that @, R are themselves regular open set.

Leta € {RO, FRO}
We define the following relation and operations for s,t € a and X c a:

1.sEqt iff sct
2.00=0;1a=R
3. —aS=-~S
4.sMNat=snNt
5.5Uet=~~(sUT)
6. Mg X = ~~nX

7. Ug X = ~~UX

Theorem 1: <a, Sa, —a, Ma, Ua, Oq, 1o > is a an atomless Boolean algebra.
Theorem 2a: if a = FRO: then o is not complete and countable, hence the countable
atomless Boolean algebra.

Theorem 2b: RO is complete: RO is the completion of FRO, the smallest complete
atomless Boolean algebra containing FRO (RO has the cardinality of R).
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The facts about cardinality follow from the construction.

If X € RO,Mx is countable, because between any two intervals in My there is a rational
number, because the rational numbers lie dense in the real numbers. Each interval in My can
be seen as a pair of two real numbers, and real numbers can be constructed as countable sets
of rationational numbers. This means de facto that RO has the same cardinality as the set of
all countable subsets of a countable set, which is 2%, the cardinality of R.

By the same argument FRO corresponds to the set of all finite subsets of a countable set, and
that set can be proved to be countable.

Proof of Theorem 1.
Step 1: =, is a partial order on a, 0, and 1, € o and o is closed under —q, My and Ug.
That =, is a partial order is trivial because c is. @, R € FRO, and hence in RO

2. a is closed under —

Look at the picture:

S.

0 60— 60— 6—oO0
R;s:

———e ———e ——o o—
—S.

c——0 o——0 0 0] G

-Lets € RO. The intervals in Ms are open and apart.

Consequently, the intervals in R ; s are closed (or half-closed with an open bound not in R).
and apart.

Removing the bounds gives a set —s such that in M- the intervals are open and apart,

hence —s € RO.

-Let s € FRO. |M-g is the same as the number of maximal gaps between the intervals in Ms.
This means that [M—s| is one less, the same, or one more than |Ms|, hence —s € FRO.

3. a is closed under .

-Assume s, t € RO.

We want to prove that s Mro t € RO. So, we need to prove that any two intervals in Ms -t
are open and apart.

-s M t introduces no new bounds in Ms ~t with respect to the bounds in Ms U M. any new
bound that wasn't in s, was in t and vice versa. So all bounds in Ms~t are open.

Similarly, since the intervals in Ms nt are gotten by nibbling away parts of intervals in Ms and
parts of intervals in M, and the intervals in Ms and M. were already apart, the intervals in

Ms n¢ are as apart or more apart.

-Lets, t € FRO. Obviously |Msnt <|Ms|and |Msn¢ <|Mt],sosMnt e FRO.

4. o is closed under Us.
SUat=~~(sU)

s U t at most takes away bounds from s and from t, hence the remaining bounds ins U t are
open. Similarly, ~~ at most takes away bounds, so the bounds in ~~(s U t) are open.
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~~ is there to deal with apartness.
Given the argument for openness: if s, t € RO, and all intervals in Ms o are apart, then
suteRO. Nowif inj=d,theni ¢ Msutand j ¢ Msut, because there is a maximal
subinterval that contains both. This means that the only case we need to be concerned with is
the case where s, t e RO and s U t ¢ RO because for some i,j € Msut: i and j are a single
point apart:
i j
o 0 0

Look at what ~~(s U t) does with i and j:

~(sut):
Step 1: take complements:
— e [ ] —

Step 2: remove bounds:

) | o0——
~~(S1 U $2):
Step 3: take complement:

[ 4 ([ ]

Step 4: remove bounds:
0 0

As Givant and Halmos express it: the intuition about solids, regular open sets, is that they
don’t have cracks in them.

A crack in a set is a single point missing (i.e. open bounds touching): fill in all the cracks in
the set, and you get an interval.

S1 U S2 may have such cracks.

They are removed in ~~( 1 U $2).

So clearly, ~~(s1 U s2) € RO.

-For FRO the situation is similar to the case before: if s and t are finite regular open sets , so
is~~(sut).

In a picture: (¥ indicates a crack in s U t)

s d i
0 o0——0 ——0 0—0
t o 0 o—o0 0 0o o 0o
sut
0 0—o0 0 0 0
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The definitions of the complete operations require a comment:

7.nX
8. uX

~~MX
~~UX

The definition (8) is not surprising, since it generalizes definition (4).
In (7), we see an asymmetry with the finite operation rn: while 1 is just intersection, the
complete meet operation takes the interior of the closure of the intersection.

The reason is that, while the intersection of two open sets will be an open set, the complete
intersection of a set op open sets is not necessarily an open set.

Think about the construction of real numbers through infinite sets of nested intervals of
rational numbers: if we define a single real number this way, then obviously, when we take
the intersection of an infinite set of nested intervals within the real numbers, we get the
singleton set containing the number these intervals approximate:

ie. N{(1/2,11/2).(2/3,11/3), (3/4, 1 1/4), (4/5,1 1/5),...} = {1}

In general, if X is a set of open intervals, M~x is going to be a set of open intervals and single
isolated points (i.e. intervals [r,r] for r € R).
~~ removes these single isolated points and hence ~~nX is an open set.

As expressed above 11 is the generalization of binary 1, because on solids, the operation
( 1) and ~~( 1) are the same operation.

Fact: RO is closed under the complete operations 1 and L.

The arguments are the same as in the binary case.

Note: FRO is not closed under the complete operations rn and U (this follows from general
concerns below).

We have shown that a is closed under the Boolean operations. We still need to show that the
operations are indeed the Boolean operations.

1. My is meet for E,. This is obvious, because M= Nand E = c.

2. U is join for c.

Letveoa and scvandtcv. Thensutcwv.

But obviously, no superset of s U tis going to be in a, unless you fill up the cracks ins U t.,
the elements that make intervals in Msut not apart.

That meansthatsutcsutcv.

Hence s U t s join for =,.

3. — is complementation.

SMN—=S =sN~s=0

SU =S =~~(SU ~8).

In s U ~s every bound is a crack.
~~ fills in the cracks,

hence ~~(s U ~s) = R.
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In a picture:

S.

0 G 0 0 0
—S: O—© O— G
SU —§:
S L —S:

4. N and U satisfy distributivity.

sutynw
= ~~(sut)nw
(sutu CRACK;sut) nw, where CRACK;ut is the set of cracks insu t
=((snw)u (tnw)) U (CRACKsut W)
=((snw)u (tnw)) U CRACK(s ~w)u t ~w))
=~~((snw) U (tnw))
=(smw)u(tnw)

The central step in this argument is:
CRACKsutnw = CRACK((smw)u(tmw))
1. 1If re CRACKsutand r e wthenr e CRACK(s~w)u (t ~w))

This is easily seen in a picture:

(snw) (tnw)

ileergsnwandrgtnw,
hencer ¢ (s Nw) U (tuw),
sor € CRACK(s~w)u tnw))

2. Letr e CRACKEAw) Ut ).

Thenr e wand r e CRACKsut

Namely: ifr ¢ wthen r e CRACKy, but w is a solid, so CRACKw = @.
Hencer e w.

But then r can only be a crack by being a crack ins U t.

D
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Finally we prove: a is atomless

Lets € aand leti € Ms, i is a maximal subinterval in s.

Let j € Ir be a non-empty open proper subinterval of i, i.e. j #@,j € Irand j ci.
Thens—(i—j)csands—(i—j) € a.

Namely: s — (i — j) has the same maximal subintervals as s, except that i is replaced by the
smaller j, which is itself open.

Clearly all maximal subintervals in s — (i — j) are open and apart, so indeed s — (i — j) € o".
What this proves is: Vs e a3t e a: t = s.

Since this holds for all non-empty regular open sets, none of those can be an atom.

The argument of course doesn't depend on whether or not s is finite or not.

We have now proved indeed that FRO is a countable atomless Boolean algebra and that RO
is a complete atonmless Boolean algebra. it follows that:

FRO is the countable atomless Boolean algebra.

Now we can see that FRO is not complete: It is generated by a dense countable order with
end points 0,1. We know that the bit of the chain between 0 and 1 is isomorphic to Q, and
hence to Q1 + Q2 (two copies of Q from bottom to top), But, as we know LI( Q1) does
not exist.

RO is the completion of FRO: the relation between FRO and RO is in a fundamental way
similar to that between Q and R.
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3.7 Filters and ideals, Stone’s Theorems.

Let A be a lattice.

A filter in A is a non-empty subset F — A such that:
l.ifaeFandaEbthenb e F.
2.ifabeFthenanbeF.

An ideal in A is a non-empty subset | — A such that:
l.ifbelandaCS bthena e |
2.ifab e lthenaubel

We will prove things for filters, but they dualize to ideals, of course.

Lemma 1r: Fisafilter in A iff F is a non-empty subset of A such that:
abeFiffanbekF.

Proof:

Let Fbeafilterandletamb e F. Thenab e FbecauscanmbEZaandanbEDb

Let F be a non-empty set such thata,b e Fiffanmbe F. Letae FandaEb.
Thena=anb,henceanbeF henceabeF. O

Lemma2r: F is a filter in A iff F is a sublattice of A such that:
ifaeFandb e A,thenaub e F.

Proof:

Let F be a filter.

Ifa,b € Fthena n b e F, by definition.

Ifa,b € F,thenau b € F, sincea = a L b. Hence F is a sublattice of A.

Letace Fandb e A. AgainaEauUb,henceaub eF.

Let F be a sublattice of A suchthatifae Fandb € Athenau b e F.
Since FisasublattiCe of A,ifabe FanbeF.
Letace Fanda=bh. ThenaubeF. Sinceb=aub,thenbeF. O

Lemma 3r: Let X be a set of filters in A.
If ~X is not empty, then X is a filter in A.
Proof:
Leta,b e nX. Then for every F € X, a,b € F, hence for every F € X:
anbeF, henceanbennX. Letae nXandaZ b. Then forevery F € X: a € F, hence
foreveryF e X,b e F. Thenb e nX. O

Let X be a non-empty subset of A.
The filter generated by X, [X), is the intersection of all filters extending X
[X)=n{Fc A: Xc Fand Fisafilterin A}

The ideal generated by X, (X], is the intersection of all ideals extending X
X]={lcA: Xclandlisanideal in A}
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In case X = {a}, we write [a) for [{a}).
It is simple to prove that:

[a)={b e A:aCc b}
A filter F is principal iff NF € F.

Obviously, F is principal iff F = [1F).
We call [a) the principal filter generated by a.

Similarly, ideal I is principal iff LUl € I.
(@ ={b e Arac b}.
(@] is the principal ideal generated by a.

Lemma 4r: [X) = {a € A: for some Xu,....Xxn € X: X1 M ... M Xn E a}
Proof:

1. Suppose a € {a € A: for some Xi,....Xn € X: X1 M ... M Xn E a}.
Then for some Xi,....Xn € X: X1 M ... M Xn E a.

Since X < [X) and [X) is a filter, x1 1 ... 1 xn € [X). Hence a € [X).
Hence{a € A: for some X,...,.Xxn € X: X1 M ... M Xn E a} < [X).

2. We will show that {a € A: for some Xi,...,Xxn € X: X1 M ... N Xn E a} is a filter extending X.
a. Letx € X. Sincex =x M x, X € {a € A: for some X1,....Xn € X: X1 M ... M Xn E a}
So X c {a € A: for some Xi,...,.xn € X: X1 M ... M Xn E a}.
b. Suppose for some Xi,....xn € X: X1 M ..M Xn E a
and for someyi,..yme X:y1n..MNymED
Then (X1 M ... M Xn) M (y1 M ... M Yym) E an b, hence:
anb e {aeA:forsome xi,...Xn € X: X1 M ... N Xn E a}.
c. Suppose for some X,...,Xn € X: X1 I ... M Xy E &, and suppose a = b.
Thenxi M ..M xnEDb. Henceb € {a € A: for some X1,....Xn € X: X1 M ... M Xn E a}

So {a € A: for some Xu,...,.xn € X: X1 M ... M Xy E a} is indeed a filter extending X.
This means that [X) < {a € A: for some X,...,.Xxn € X: X1 M ... M X, E a}.
Hence [X) = {a € A: for some Xi,...xn € X: xa M ... O xpn E a}. O

F is a proper filter in A iff Fis afilterin Aand F = A.
| isa properideal in A iff lisanidealin Aand I #A

Let A be a lattice with O.

Fact 5: F is a proper filter in A iff Fis afilterin Aand 0 ¢ F.
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Lemma 6: [X) is proper iff for every Xi,...Xn € X: X¢ M ... M Xn # 0

Proof:

If [X) is not proper, then 0 € [X). Then, by lemma 4,

for some X1,....Xn € X: X1 M ... N Xn E 0.

Hence for some Xy,....Xn € X: X1 M ... N Xn = 0.

If for some Xi,...,.Xn € X: X1 M ... M Xn = 0, then, again by the lemma, 0 € [X),
hence [X) is not proper. O

F is a maximally proper filter in A iff F is a proper filter in A, and the only
two filters in A containing F are F and A.

F is an ultrafilter in A iff F is a proper filter in A and
foreveryae A:ae ForforsomebeF.:brma=0

F is a prime filter in A iff F is a proper filter in A and
foreveryab e Aifaub e Fthenae Forb e F.

Theorem 7: F is a maximally proper filter in A iff F is an ultrafilter in A.

Proof:

Let F be an ultrafilter.

Assume that F is not a maximally proper filter.

Then for some proper filter G:Fc Gand F=G. Say,a ¢ Fanda € G.

Since F is an ultrafilter, forsomeb e F:bna=0.

Since Fc G, b € G.Soa,b € G, hence, since Gis afilter, bmae G. Hence 0 € G.
But G is proper. Contradiction. Hence F is a maximally proper filter.

Let F be a maximally proper filter.

Assume F is not an ultrafilter. Leta ¢ F.

Assume: foreveryb e F:bna=0.

Look at F U {a}. Forevery xi,...xn € F U {a}: x1 M .... N xp # 0.

Namely, if X1, ... Xn € F, then x1 M ... 1 Xn # 0, because F is a proper filter.

If X1,....Xn—1 € Fand xn=a, then X1 M ... M X,—1 € F, since F is a filter, and hence, by
assumption, (X1 M ... M Xp—1) Ma=0. Hence Xy M ... M Xn # 0.

This means that [F U {a}) is a proper filter.

Since F ¢ [F u {a}), this means that F is not a maximally proper filter. Contradiction.
Hence F is an ultrafilter. O

Theorem 8: In a distributive lattice with 0, every ultrafilter is a prime filter.
Proof:

Let A be a distributive lattice, and let U be an ultrafilter in A.

Leta U b e U, and assume a ¢ U.

Since U is an ultrafilter, for some x € U: x na=0.

Since U is afilter,x M (a U b) € U.

Since A is distributive, (x ma) U (x M b) € U. HenceO U (x M b) € U,
hence x M b € U, and, again, because U is a filter, b € U.

So U is a prime filter. O
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Theorem 9: In a Boolean lattice, every prime filter is an ultrafilter.

Proof:

Let A be a Boolean lattice, and let F be a prime filter in A.

This means that F is a proper filter.

Since F is non-empty and a filter, 1 € F.

Foreverya e A: 1=all —a. Hence, foreveryae A:alU —a e F.

Since F is prime, this means that foreverya e Acrae For—a e F

(not both, since F is proper).

Since a N —a = 0, this means that for everya € A:a € For forsomeb e F:amn b =0.
Hence F is an ultrafilter. O

Corrollary 10: In a Boolean lattice, F is a maximally proper filter iff F is an
ultrafilter iff F is a prime filter.

The next theorems require the axiom of choice (AC) of set theory.
We use the following principle which is provably equivalent to the axiom of choice:

The Maximal Chain Principle (= AC):
Every chain in a partial order can be extended to a maximal chain.

Theorem 11 [AC]: (Stone)
Let A be a lattice with 0, F a filter in A and | an ideal in A and assume Fn 1 = @.
F can be extended to a filter Mr, which is maximal in the set of filters extending F
and not overlapping with |I.

Proof:

Let A be a lattice with O, F afilter in A, lanidealin AandFn 1 = @.

LetEr={GcA:FcGand Gisafilterin Aand G n | = @d}.

EF = <Er,c>. What we want to prove is that EF has a maximal element M.

{F} is a chain in Er, hence, by the Maximal Chain Principle, {F} = M, where M is a
maximal chain in Er.

Let Mg=UM.

1. F < UM. This is obvious, since F € M.

Hence F — Mg

2.a. Leta,b € UM. Then for some G1 € M: a € Gi, and for some G2 € M: b € Ga.
Since M is a chain, G1 < G2 or G2 < Gy, say the first. Then a,b € G2, hence, since G, is a
filter,an b € G2. Since G2 € M, thenanb e UM.

2.b.Letae UMandaE b. Then for some G € M: a € G, hence, since G is a filter,

b e G. SinceG € M, thenb € UM.

Hence, Mk is a filter.

3. Assume UM N | =@, say, x e UM n |. Then x € UM, hence for some G € M,
x € G. Then G n 1= @. Contradiction. Hence UM N 1= @.
Hence MFn | = @.

So Mk € Er.

59



4. Let K € Erand UM c K. Then for every G € M: G ¢ K. Hence M U {K} is a chain.
Since M is a maximal chain, then M U {K} = M. Hence K € M, and thus
KcuM. So K=uUM.

So Mk is a maximal element in Er. O

Stone’s Theorem [AC] 12: Let A be a distributive lattice with 0.
Every proper filter in A disjoint with some ideal | in A can be extended to a prime
filter in A disjoint with 1.

Proof:

Let A be a distributive lattice with 0.

Let F be afilterin A, and I and ideal in A, and letF | = @.

Then, by theorem 12, there is a filter Mr in A extending F, maximally disjoint with | (a
maximal element in EF).

Claim: Mk is a prime filter.

Suppose Mk is not prime.

Since MFn 1 =@, and 0 € |, Mk is a proper filter.

So assume that for some a,b e A:au b € Mg, buta ¢ Mrand b ¢ Mr.
Look at [Mr U {a}) and [Mr U {b}).

Since M is a maximal element in Er, [Mr U {a}) N | = @,

say, [Mru{a}) nl=k.

Hence for some X1,....xn € Mr U {@}, X1 M ... N Xn E k.

Since | is an ideal, and k e |, this means that x1 M ... 1M Xy € |
Since Me N | = @, this means that for some xi,...,Xn—1 € MF:

X1 M..MX—1Ma el. Since Mgis afilter, x1 M ... M Xp—1 € Mr.
So we conclude: forsomep e Mr:pna e |.

Similarly, since [Mr U {b}) n 1 = @.
we conclude: forsomeq e Mrzqnb e I

Sincelisanideal, (prna) u(gnb)el.

Since A is distributive:
(pna)u(@nb)=(prnauagn(penaub)=
(pugn(@ugyn(pub)n(aub).

Now, p,q, (a U b) € Mr.

Hence:puUqe Mr,alqe Mr,pUbe Mralbe Mk
Hence, since Mk is a filter:
(pugn(@ugyn(pub)n(aub) e Mk

Hence Mg N | = @. Contradiction.

Hence Mk is a prime filter. O
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Corrollary 13: Let A be a distributive lattice with 0.
Every proper filter in A can be extended to a prime filter in A.
Proof:
{0} is an ideal in A and for every proper filter Fin A, F ~ {0} = @.
With Stone's theorem, there is a prime filter extending F disjoint with {0}, which is just a
prime filter extending F. O

Corrollary 14: Let A be a distributive lattice with 0. Leta € A.
Every filter not containing a can be extended to a prime filter not containing a.
Proof:
Ifa ¢ F, then (a] is an ideal in A such that F » (a] = @.
With Stone's theorem, there is a prime filter extending F and disjoint with (a].
This is a prime filter extending F not containing a. D

Corrollary 15: Let A be a distributive lattice with 0.
If a,b € Aand a = b, then there is a prime filter in A containing exactly one of a
and b.

Proof:

Ifa=b,thena® borbZa. Say,the first.

Then (b] N [a) = @.

Then, with Stone's theorem, there is a prime filter extending [a), disjoint with (b].

This is a prime filter containing a but not containing b. O

Corrollary 16: Let A be a distributive lattice with 0.
Every filter F in A is the intersection of all prime filters in A extending F.
Proof:
Let F' be the intersection of all prime filters extending F.
F < F, since F is a subset of every prime filter extending F.
Suppose F#F'. Then forsomea e A:a¢ Fanda € F.
Then there is a prime filter P extending F such thata ¢ P. But then —(F' < P). Contradiction.
Hence F=F.DO

Let X be a set.
A ring of sets in pow(X) is a set R < pow(X) which is closed under m and L.

A field of sets in pow(X) is a set F < pow(X), containing @ and 1r c X
which is closed under N, U, and Ax € F.1f —x.

R is a ring of sets in pow(X) iff <R, N, U > is a sublattice of <pow(X), N, U >.

F is a field of sets in pow(X) iff <F, N, U > is a sublattice of <pow(X), N, U >and
<F, ¢, Axe F.1Ir—x,N, U, @, 1> is a Boolean algebra.
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Stone’s Representation Theorem 17:
Every Boolean algebra B is isomorphic to a field of sets in pow(pow(B)).
Proof:

Let B be a Boolean algebra.
Ps ={P < B: Pis a prime filter in B}
Foreveryb € B: P, ={P € Pg: b € P}
ITg = {Pv: b € B}

ITg is a field of sets in pow(pow(B)):
<[1g,N, > is a sublattice of <pow(pow(B)), » ,u>and
Ils = <Ilg, <, Ax € IIs.Pe —x, N, U, @, Ps > is a Boolean algebra.

Claim: B is isomorphic to Ile.
Let h: B — I1g be given by: for every b € B: h(b) = Pp.
1. his onto. By definition.

2. h is one-one.

Leta,b e Banda=b.

Then, by corrollary 15, there is a prime filter containing exactly one of a and b,
say,ae Pandb ¢ P.

Then P € Paand P ¢ Py. Then Pa = Py, hence h(a) = h(b).

3. AssumeaEDb. LetP € Po. Thenb € P, hence P € Py.
So Pa < Po. Hence h(a) < h(b).

4.h(—a) =P, =
{P € Pg: —a e P} = [ultrafilter]
{P ePg:agP}=
Pe—{P ePp:acP}=
Pe—Pa=
Ps —h(a).

5. h(anb)=
Panp=
{P € Ps: an b e P} =[filter]
{PePgacPandb e P}=
{PePr:acP}n{PePr:beP}=
Pan Pp=
h(a) N h(b).
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6.h(aub)=
Paub =
{P € Pg:a U b e P} =[prime filter]
{PePgiacPorbeP}=
{PePeacP}u{PePsibeP}=
PaUPp=
h(a) U h(b).

7.h(0) =
Po =
{P € Pg: 0 € P} = [proper filter]
]

8. h(1) =
P =
{P e Pgs: 1 € P} = [filter]
Ps. O

Corrollary 18:
Every distributive lattice B is isomorphic to a ring of sets in pow(pow(A)).
Proof:
Let B be a distributive lattice.
Ignore clauses 6,7, and 8 in the proof of theorem 17.
The proof provides an isomorphism between B and <Ilg, N, U >. O

This tells us that in a very fundamental sense the pow-power set Boolean algebras are the
most general Boolean algebra: For every Boolean algebra can be embedded (as a lattice) into
a pow-power set Boolean algebra.

Let K be an equational class of lattices.

A lattice A € K that has the property that every lattice of cardinality smaller or equal to that
of A can be embedded in A is called a free lattice in K.

The pow-powerset Boolean algebras are the free Boolean algebras.
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3.8 Generated lattices and free lattices

Let A =<A, M, U > be a lattice and let B be a non-empty set of sublattices of A.
Since NB is closed under M and U, "B is itself a sublattice of A, if it is non-empty.
generated lattices, sets of generators, freely generated lattices.

Let X < A be a non-empty subset of A.

The sublattice of A generated by X is the structure:
[X] = < [X], Mx), U > where:

[X] ={B: B =<B, s, Us> is a sublattice of A and X c B}

Since X is non-empty, [X] is non-empty, and [X] is indeed a sublattice of A.

[X] is the smallest sublattice of A that contains X.

We defined [X] from the outside by closing in on sublattices containing X.

From the inside, in algebra A, [X] is the result of closing X under the operations of A.
-For lattices, you close X under n and U;

-For c-lattices, you close X unde complete LI and complete 7,

-For Boolean algebras, you close X under  and U and —.

etc.

X is a set of generators for lattice A, X generates A iff [X] = A
A set of generators X for A is minimal or independent iff
1L[X]=A
2. Forevery x e A: [X—{x}] c A

Example: Look at the following lattice:

A 0.1
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[{a,b,c}] ={0,a,b,c, e,f,g, k}

O=anb e=aub f=auc g=buc k=euf
{a,b,c,d} is a set of generators for A.

Sets of generators are rarely unique, since if X generates Aand X c Y C A,
then Y generates A

{a,b,c,d} is a set of minimal generators for A (under n and ), and so is
{k,I,m,n}.

If we regard A as a Boolean algebra, matters are different. Now we consider generation
under the operations 1, L and —. We need less elements to generate A.
In fact:

{e,f} generates A
i=—e j=—f
a=enf k=euf
n=-a d=-k

O=en—e l=eU—e
h=aud g=-
b=eng c=fnj
m:—|b = —C

Let K be an equational class of lattices and X a non-empty set.

Fk(X) is a free lattice in K generated by X iff

2. X < Fk(X) and for every x1, X2 € X: X1 & X2 and x2 & X1
3. For any lattice L € K and function f: X — L:
f can be extended to a homomorphism h: Fx(X) — L

Some facts about free lattices without proofs.

Fact: Let Fk(X) be a free lattice in K generated by Xand L e Kand f: X —»> L
Then there is exactly one homomorphism extending f.

Corrollary: If Fk(X) and Fk(X)’ are free lattices in K generated by X
then Fk(X) and Fk(X)’ are isomorphic

The Fundamental Theorem for Free Lattices:
Fk(X) exists iff there is a lattice L in K such that
X c L and for every X1, X2 € X: X1 & X2 and X2 £ X1

Corrollary: For every equational class of lattices K and every n, there is, up to isomorphism,
exactly one free lattice in K with n generators.

The free lattice F on n-generators in equational class K is the most general lattice in K on n

generators, all other lattices in K on n or less generators can be gotten from the free lattice F
by definining a homomorphism on F that contracts elements of F.
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The proof of the Stone representation theory (see chapter 6 and 7)tells us that:

Fact: The free c-Boolean algebras are up to isomorphism the powpower set Boolean
algebras.

Application to functional type theory.
In functional type theory, we have sets of types TYPE and BOOL.:

TYPE is the smallest set such that:
l.ete TYPE
2. 1fa,b € TYPE then <a,b> € TYPE

BOOL is the smallest set such that:
1.t e BOOL
2.1fae TYPEand b € BOOL then <a,b> € TYPE

Given a domain of individuals D, we associate with each type t a domain of type t:
De=D D:={0,1} D<ap> = (Da — Dp)

Fact 1: All Boolean types are complete atomic Boolean algebras

This follows from the lifting theorem.
Hence, all Boolean types are isomorphic to powerset Boolean algebras.
Some connections:

D<= = pow(D)
D<e,<e,t>> ~ pOW(D X D)
D<<et>t> = pow(pow(D))

Since for each cardinality for which there exists a complete atomic Boolean algebra of that
cardinality, there is up to isomorphism, only one complete atomic Boolean algebra, it suffices
to make a cardinality argument:

D<es| =[(D—>{01}) = 2P = [pow(D))|
|D<e,<e,t>>| = |(D —> D<e,t>)| = (2|Dl)|Dl = 2|D|X|D| = |p0W(D X D)
Decersis| = [(D — {0,1}) > {0,1})|=  2C"D = Ipow(pow(D))|

This means that D<<e >t IS the free Boolean algebra on |D| generators.

In type logic we have for each type t a set CON; of constants of type t and a countable set
VAR; of variables of type 1, and the expressions of type logic are defined by:

EXP- is the smallest set such that:
1. CON; U VAR c EXP;
2. Ift=<a,b>and a € EXP.and B € EXP, then (a(p)) € EXPy
3. Ift=<a,b>and x € VARa and B € EXPp then Axp3 € EXP:
4. If a, B € EXP; then (o =) € EXPt

66



A model for type logic is a pair M = <Dw, Fm> where
Dw is a non-empty domain of individuals and
for every type T € TYPE: Fm: CON; — Dwm«

An assignment function on model M is a function g such that
for every type T € TYPE g: VAR: — D

The interpretation of type logic defines [a]mg the interpretation of o in M relative to g:

1. If c € CON; then [[c]m,g = Fm(C)
If X € VAR, then [XJmg = 9(X)
2. If a € EXP<ap>and B € EXPa
then [(a(B)Img = [oflmg ([BIm.g)
3. If X € VARz and B € EXPy
then [(AxPB]m,g = h:Da — Dy such that for all d € Da h(d) = [B]m,gpxd]
where g[x:d] is the assignment function that at most differs from g in that g[x:d](x)=d

In type logic we define a lifting operation which maps expressions of type e onto expressions
of type <<e,t>t>:

LIFT: EXPe —> EXP<<e,t>,t>
For every a € EXPe: LIFT[a] = AP(P(a))

where P € VAR« - and P does not occur in o
Let M be a model for type logic and g an assignment on M.

Fact 2: If g(x1) = g(x2) then [AP(P(x1))]mg # [AP(P(x1))]mg
Proof:
If g(x1) # g(x2) then [Ax.x=x1]mg € [AP(P(x1))Img — [AP(P(x2))Img

Thus, lifting expressions from type e to type <<e,t>t> is interpreted as an injection from Dwm
into powpow(Dw)).

Fact 3: {[AP(P(x))]mgxd: d € Dm} is an independent set of c-generators for D<<e t><t>.
Proof (sketch):

We start with individuals:{[AP(P(x))]mgxd): d € Dm},

for all d the set of properties that d has (= the set of all sets that d is in).

We add their complements: {—[AP(P(X))]mgxd: d € Dm} =
{IMP=(P(x))Imgixd: d € Dm}, for all d the set of properties that d doesn’t have.

Of the resulting set we can take any subset and add its complete join and complete meet.
With this we can define for each X < Dwm:

The set of properties that all x € X have, and all x € Dm—X don’t have.
Arguably this gives us all sets of properties in D<<e > t>.
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In type logic we define a lifting operation which maps expressions of type <e,<e,t>> onto
expressions of type <<<e,t>t><e,t>>: (we can call it O-LIFT, for object lift):

O-LIFT: EXP<e,<e,t>> - EXP<<<e,t>,t>,<e,t>>
For every a € EXPe: O-LIFT[a] = ATAX.(T(Aya(X,y)))

where a(x,y) = (((y))(x)) and x,y € VARe and T € VAR« t> >
and x,y,T do not occur in a

Now [[(X]]M,g (S D<e,<e,t>> and [[O-LIFT((I)]]M,g (S EXP<<<e,t>,t>,<e,t>>
SO [[(X]]M,g: De — D<e,t>
[ O-LIFT(a)]lm,g: D<<e s> — D<et>

We define for R € D<<et>t-: R* as follows:
R* is the function that maps the correlates of individuals inside D<<e >t 0nto properties of
individuals with the following constraint:

R*: {[LIFT(X)]mgixd: d € Dm} = D<e- and

for all d € Dm: R(d) = R*([AP(P(x))]m,g[x:d1)
Obviously, D<e<et>> and {R*: R € D<e<et>>} are in one-one correspondence.
For R € D<e<et>>, R* is a function that maps a subset of D<<e t>t> ONt0 D<e t>.
Since D<<et>t> IS the free Boolean algebra on |D| generators and D<et- is isomorphic to a
subalgebra of D<< >, the facts about free algebras mentioned above tell us that there is a
unique homomorphism from D<<e t><t> iNt0 D<et> extending R*.

Fact: [O-LIFT[a]]mg is the uniqgue homomorpishm extending [o]m,g*
Proof:
1. The following A-conversions are valid:
(O-LIFT[a](A\P(P(x1)) =
(ATAx.(T(Rya(x,y))) (AP(P(x1))) =
Ax.(AP(P(x1))(Aya(x,y))) =
AX(Aya(x,y)(x1)) =
Ax.0(X,X1) =
a(x1)
So indeed [O-LIFT[a]]m,g extends [o]m,g*

2. Itis easy to check that [O-LIFT[a]]m,g IS @ c-homomorphism
Example:

(O-LIFT[a](—|<<e,t>,t>7LP(P(X1)) =

(O-LIFT[a]J(AP—(P(x1)) =

(ATAx.(T(Rya(x,y))) (AP—(P(x1))) =

AX.(AP=(P(x1))(Aya(x,y))) =

AX(=(hya(x,y)(x1))) =

AX.—o(X,X1) =

—|<e,t>(0L(X1))
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