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2.1. TENSE LOGIC AND BRANCHING TIME 

 

2.1.1. Basic Tense Logic 

 

In Priorian Tense Logic we have a language LT built from atomic formulas with , , , → 

and the tense operators   

P it is true at some point in the past that   

H it is true at every point in the past that 

F it is true at some point in the future that 

G it is true at every point in the future that 

 

A frame for LT is a pair T = <T, < > where < is a binary relation on non-empty set T. 

A model for LT is a pair M = <T, F> where T  is a frame for LT and  

F: ATFORM  T → {0,1} is an interpretation function. 

 

We define ⟦φ⟧M,t the truth value of φ in M at point of time t. 

 1. If φ  ATFORM then ⟦φ⟧M,t = Ft(φ) 

 2. ⟦φ⟧M,t = 1 iff ⟦φ⟧M,t = 0, etc. 

 3. ⟦Pφ⟧M,t = 1 iff for some t’ < t: ⟦φ⟧M,t’ = 1 

4. ⟦Hφ⟧M,t = 1 iff for every t’ < t: ⟦φ⟧M,t’ = 1 

5. ⟦Fφ⟧M,t = 1 iff for some t’ > t: ⟦φ⟧M,t’ = 1 

  6. ⟦Gφ⟧M,t = 1 iff for every t’ > t: ⟦φ⟧M,t’ = 1 

  

We define: 

 ⟦φ⟧M = 1 iff for every t  T: ⟦φ⟧M,t = 1 truth in model M 

  ⟦φ⟧T = 1 iff for every F: ⟦φ⟧<T,F> = 1   truth on frame T  

 

Let F be a class of frames 

⟦φ⟧F = 1 iff for every T  F: ⟦φ⟧T,t = 1 truth in  a class of frames 

 

Logical validity is truth in the class of all frames. 

 

Propositional logic 

Definition schemas: (φ  ψ) =df (φ → ψ) 

                          (φ  ψ) =df (φ  ψ) 

Modus Ponens: From φ and (φ → ψ) derive ψ 

Axiom Schemas: (φ → (ψ → φ)) 

   ((φ → (ψ → χ)) → ((φ → ψ) → (φ → χ))) 

   ((ψ → φ) → (φ → ψ)) 

 

Minimal Tense Logic  

Propositional logic + 

Definition schemas:  Hφ =df Pφ 

   Gφ =df  Fφ 

Generalization: If you can derive φ you can derive Gφ and you can derive Hφ 

Axiom schemas: G(φ → ψ) → (Gφ → Gψ) 

H(φ → ψ) → (Hφ → Hψ) 

φ → HFφ 

φ → GPφ 
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Fact 1: Minimal tense logic is complete:  an inference is tense logically valid iff it is  

             derivable in minimal tense logic. 

Fact 2:  Irreflexivity and asymmetry of < are not tense logically definable. 

Fact 3: A tense logical inference is valid on the class of all frames  iff it is valid on the class  

             of all asymmetric frames.  

 

With this we restrict ourselves to asymmtric frames. 

 

Tense logical formula φ expresses that the order has property P iff  

φ is true on all frames where <T has property P, and 

false on all frames where <T doesn’t have property P. 

 

Fact 4:  Gφ → GGφ  (or equivalently PPφ → Pφ) expresses that the order is transitive 

Fact 5: Fφ → G(Fφ  φ  Pφ) expresses that the order is right linear 

 Pφ → H(Fφ  φ  Pφ) expresses that the order is left linear 

 

Linear Tense Logic: 

Minimal tense logic + 

  Gφ → GGφ 

Fφ → G(Fφ  φ  Pφ)  

 Pφ → H(Fφ  φ  Pφ) 

 

Fact 6:  Linear orders and non-branching orders are tense-logically indistinguishable.  

 

Fact 7  Gφ → Fφ expresses that the order is right continuing 

 Hφ → Pφ expresses that the order is left continuing 

 Fφ → FFφ expresses that the order is dense. 

Fact 8 Within the class of linear orders: 

 (P(φ  φ)  HFφ) → (φ  Fφ) expresses left discreteness 

 (F(φ  φ)  GPφ) → (φ  Pφ) expresses right discreteness 

 H(Hφ → φ) → Hφ expresses wellfoundedness 

Fact 9 (Pφ  PHφ) → P(GPφ  Hφ) expresses left continuity  

(Fφ  FGφ) → F(HFφ  Gφ) expresses right continuity  

 

Example: Fact 8: 

P(φ  φ) expresses at t that t has a predecessor. 

HFφ says at t that for every predecesser of t, Fφ is true.  If, t has predecessors, but not a direct 

predecessor, then you can satisfy this, while making φ true at t and all t's sucessors. 

If t does have a direct predecessor t−1, then Fφ is onlt true at t−1 if φ  Fφ is true there. 

 

Example: Fact 9: 

The principles express the existence of bounds. 

Thus if in the past φ starts out false, but is true somewhere, then there is a past point t where 

φ is first true:  φ is true at t, but false at all predecessors of t:  Hφ says that φ is false at all 

redecessors of t, and GPφ says that Pφ is true in t all successors of t. 
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2.1.2. Modal Logic 

In Modal logic we have a language LM built from atomic formulas with , , , → and the 

modal operators   

⧠ it is necessarily true that   

 it is possibly true that 

 

A frame for L< is a pair W = <W, R > where R is a binary relation on  non-empty set W. 

A model for TL is a pair M = <W, F> where W  is a frame for TM and  

F: ATFORM  W → {0,1} is an interpretation function. 

 

We define ⟦φ⟧M,w the truth value of φ in M in possible world w. 

 1. If φ  ATFORM then ⟦φ⟧M,w = Fw(φ) 

 2. ⟦φ⟧M,w = 1 iff ⟦φ⟧M,w = 0, etc. 

 3. ⟦φ⟧M,w = 1 iff for some v: R(w,v) and ⟦φ⟧M,v = 1 

4. ⟦⧠φ⟧M,w = 1 iff for every v: if R(w,v) then ⟦φ⟧M,v = 1 

 

We define: 

 ⟦φ⟧M = 1 iff for every w  W: ⟦φ⟧M,w = 1 truth in model M 

  ⟦φ⟧W = 1 iff for every F: ⟦φ⟧<W,F> = 1  truth on frame W  

 

Let F be a class of frames 

⟦φ⟧F = 1 iff for every W  F: ⟦φ⟧W,t = 1 truth in  a class of frames 

 

Logical validity is truth in the class of all frames. 

 

Mimimal modal logic: K 

Propositional logic + 

Definition schemas:  ⧠φ =df φ 

Generalization: If you can derive φ you can derive ⧠φ 

Axiom schemas: ⧠(φ → ψ) → (⧠φ → ⧠ψ) 

 

Fact 1: ⧠φ → φ expresses that R is reflexive 

 T = K + ⧠φ → φ 

 

Fact 2: ⧠φ → ⧠⧠φ expresses that R is transitive 

 S4 = T +  ⧠φ → ⧠⧠φ 

 

Fact 3: ⧠φ →φ expresses that R is symmetric 

 S5 = S4 +  ⧠φ →φ 

 

Hence:  S5 characterizes the class of all frames where R is an equivalence relation. 
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2.1.3. Time-dependent modality. 

 

In temporal-modal logic we have language LMT with operators P, H, F, G, ⧠, . 

We will talk about branching time in the next subsection.  In the present setting, time is 

linear time, 

 

A frame for LM+T is a structure TW = <T,< , W, R> where 

 <T,< > is a linear frame for LT, W is a non-empty set of worlds, and  

for every t  T: <W,Rt> is a frame for LM 

 

A model for LM+T is a pair < TW,F> with TW a frame for LM+T and  

F: ATFORM  W  T → {0,1} an interpretation function. 

 

We define ⟦φ⟧M,w,t the truth value of φ in M in possible world w at time t. 

 1. If φ  ATFORM then ⟦φ⟧M,w,t = Fw,t(φ) 

 2. ⟦φ⟧M,w,t = 1 iff ⟦φ⟧M,w,t = 0, etc. 

 3. ⟦Pφ⟧M,w,t = 1 iff for some t’ < t: ⟦φ⟧M,w,t’ = 1 

 4. ⟦Hφ⟧M,w,t = 1 iff for every t’ < t: ⟦φ⟧M,w,t’ = 1 

 5. ⟦Fφ⟧M,w,t = 1 iff for some t’ > t: ⟦φ⟧M,w,t’ = 1 

 6. ⟦Gφ⟧M,w,t = 1 iff for every t’ > t: ⟦φ⟧M,w,t’ = 1 

 7. ⟦⧠φ⟧M,w,t = 1 iff for every v  W: if Rt(w,v) then ⟦φ⟧M,v,t = 1 

8. ⟦φ⟧M,w,t = 1 iff for some v  W:  Rt(w,v) and ⟦φ⟧M,v,t = 1 

 

 

We define: 

 ⟦φ⟧M = 1 iff for every w  W for every t  T: ⟦φ⟧M,w,t = 1 truth in model M 

  ⟦φ⟧TW = 1 iff for every F: ⟦φ⟧<TW,F> = 1    truth on frame TW  

 

Let F be a class of frames 

⟦φ⟧F = 1 iff for every W  F: ⟦φ⟧W,t = 1   truth in  a class of frames 

 

Logical validity is truth in the class of all frames. 

  

The modal operators ⧠ and  can model a variety of time dependent modal notions, as in: 

 

 (1) a. Last year,  it was not possible to publish this book, but this year it is possible. 
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Tenses, temporal framing adverbs and Partee's Problem  

 

Partee's Problem 

Let O be the proposition that I turned off the stove. 

I turned off the stove → P(O)   

P(O) is true at t iff t'[t'  < t  O is true at t'] 

 

Problem: I didn't turn off the stove 

Possibility 1:  P(O)   t'[t' < t  O is false at t']   

Problem: this is trivially true. 

 

Possibility 2: P(O)  t'[t' <t  O is true at t'] 

Problem: this is too strong:  it means:  I never ever turned off the stove. 

 

Events versus states: 

States:  live in Amsterdam 

(1) I lived in Amsterdam in 1992  Compatible with: I still do.  

      I lived in Amsterdam in 1992 and, in fact, I never left, I still live there.   

Events:  write a book 

(2) I wrote a book in 1992   Not compatible with: I am still writing it. 

       #I wrote a book in 1992, and, in fact, I never finished it, I am still writing it. 

Progressive is stative: 

(2) I was writing a book in 1992 

       I was writing a book in 1992, and, in fact, I never finished it, I am still writing it. 

 

The past (-ed) and perfect (have –ed) interact differently with states and event (Hinrichs 

1984) 

If P is a stative property PAST(P) says:   

there is a P-state s and a past interval i such that the running time of s overlaps i. 

If s is a state of me living in Amsterdam, then (1) expresses that the running time of this state 

overlaps a past interval.  This is compatible with that state still going on. 

 

If P is an eventive property PAST(P) says:   

there is a P-event e and a past interval i such that the running time of e is included in 

i. 

If e is a book writing event with me as agent, then (1) expresses that the running time of this 

event is included in a past interval.  But e is not an event of me being engaged in book 

writing (a progressive event), e is an event in which I write a book, so at the end of the event, 

there is a book. This means that by the end of the past interval the bookwriting event e is 

over, so it no longer continues beyond that interval. 
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We now give a semantics for tense and temporal location adverbs.  

(the form is derived from Condaravdi 2002, but simplified a bit.)  

 

W is the set of worlds. 

I is the set of time intervals. 

EV = E  S, where E  S = Ø.  EV is the set of eventualities (term coined by Emmon Bach) 

E is the set of events. 

S is the set of states. 

 

τ: EV × W → I is a partial function, the temporal trace function (Link 1986)  
τw(e) is the running time of e in w, the interval at which e goes on in w. 

 

(Extensional) properties:  sets of entities 

P  EV: eventuality property 

P  E: eventive property 

P  S: stative property  

P  I:  temporal property 

 

Eventuality semantics:   

- VPs are interpreted as eventuality properties, eventive or stative. 

-Temporal operators (eg. termporal framing adverbs) map these onto temporal properties. 

-Tenses map eventuality or temporal properties onto truth values. 

 

[More precisely:  intensional version of this:  

Intensional properties are functions from worlds into sets of entities. 

-VPs: intensional eventuality properties 

-Temporal operators: are functions from intensional intensionality properties to intensional 

temporal properties. 

-Tenses map intensional properties onto propositions, functions from worlds to truth values, 

ie. sets of worlds. 

-proposition p is true in w iff w  p ]  

 

Neo Davidsion semantics:  (Davidson 1967, Parson 1990, Landman 2000) 

Eventuality semantics + thematic roles: 

Thematic roles, like Ag (agent), Th (theme) are partial functions from eventualities to entities 

(like individuals):  Ag: E → D.  Thematic roles specify the participants of events. 

If e is a singing event then Ag(e) is the person who sings, and Th(e) is what is sung. 

 

Semantic representations of VPs (including, for simplicity, the subject): 

Fred write a book  → λe.writew(e)  Ag(e)=Fred  bookw(Th(e)) 

The set of events that are (in w) writing events, whose agent is Fred and whose theme is 

(what is in w) a book. 

 

Fred live in Amsterdam → λs.livew(e)  Th(e)=Fred  In(s) ⊑space Amsterdam 

The set of strates that are (in w) states of living, of which the theme is Fred and of which the 

location is spatially part of Amsterdam. 
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Temporal semantics following Condarovdi. 

Condarovdi defines relation ATw[P,i] property P goes on in w at i:  

In AT we include the aspectual differences between states and events: 

 

  e[e  P  τw(e)  i]  if P is eventive 

ATw[P,i] =   s[s  P  τw(s) O i]  if P is stative 

  i  P    if P is temporal 

 

PRES = λP.ATw[P,now] 

PAST = λP.j[j < now  ATw[P,j]] 

 

PRES and PAST take properties and map them onto truth values. 

 

We impose a chronology of days on time, and we assume that yesterday denotes the interval 

yesterday which is daynow − 1, which means that yesterday < now. 

 

We interpret the temporal adverb yesterday  as YESTERDAY:  

 

   λPλi.ATw[P,i  yesterday]  if P is a non-temporal property 

YESTERDAY =   

      ⊥     otherwise 

 

YESTERDAY maps a set of eventualities (events or states) P onto the set of intervals i such 

that P goes on in w at i  yesterday.  

 

YESTERDAY maps non-temporal properties onto temporal properties.   

YESTERDAY does not accept propositions as input. 

 

We see how it works: 

 

 (1) Yesterday I was in Amsterdam 

 

A is a stative property, the set of states of me being in Amsterdam. 

 

We argue: The semantics is built from three ingredients:  ,  

 

Yesterday            I be+past in Amsterdam 

YESTERDAY             PAST  A  

 

There are potentially two orders of application: 

(1) YESTERDAY(PAST(A)) 

(2) PAST(YESTERDAY(A)) 

 

But order (1) is impossible: 

PAST(A) is a truth value, not a property 

YESTERDAY must apply to a property, 
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hence (1) YESTERDAY(PAST(A)) is not defined. 

 

So only derivation (2) is possible: 

 

Yesterday I was in Amsterdam  → PAST[YESTERDAY[A]] 

 

And this is possible because:  

-A is a stative property 

-YESTERDAY[A] is a temporal property 

-PAST[YESTERDAY[A]] is a truth value  

  

We work out the semantics: 

 

YESTERDAY(A)  =   

λi. ATw[A, i  yesterday] =  

λi.s[s  A  τw(s) O (i  yesterday)]  =  

 

We apply PAST to this and get: 

 

j[j < now  ATw[λi.s[s  A  τw(s) O (i  yesterday)],j] ] = 

 

j[j < now  j  λi.s[s  A  τw(s) O (i  yesterday)]]  = 

 

j[j < now  s[s  A  τw(s) O (j  yesterday)]] = 

 

Given that yesterday < now we simplify this to: 

 

s[s  Aw  τw(s) O yesterday] 

 

Yesterday I was in Amsterdam → s[s  A  τw(s) O yesterday] 

 There is a state of me being in Amsterdam located in w at an interval that overlaps 

 yesterday.  

 

This is compatible with that state continuing to hold. 

 

(2) Yesterday  I wasn't in Amsterdam  

 

We assume that negation is just truth conditional negation:  

not →  

 

Then negation must apply at the level where we have derived a truth value, and hence we 

have for (2) only the derivation: 

 

Yesterday I wasn't in Amsterdam → not(PAST[YESTERDAY[A]]) 
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Yesterday I wasn't in Amsterdam  → s[s  A  τw(s) O yesterday] 

  There is no state of me being in Amsterdam located in w whose running time in w 

             overlaps with yesterday.  

 

This is the correct result. 

 

 

 

(3)  a. I turned off the stove yesterday. 

       b. I didn't turn off the stove yesterday. 

 

I turned off the stove yesterday  → PAST(YESTERDAY(O)) 

 

YESTERDAY(O) = λi.e[e  O  τw(e)  (i  yesterday)]  =  

 

PAST(YESTERDAY(O)) = j[j < now  e[e  O  τw(e)  (j  yesterday)]] 

 

I turned off the stove yesterday → e[e  Ow  τw(e)  yesterday)] 

There is an event of me turning off the stove whose running time is a subinterval of 

yesterday. 

 

Since the turning off the stove event is temporally included in a past interval, it can't continue 

to the present. 

 

I didn't turned off the stove yesterday → e[e  Ow  τw(e)  yesterday)] 

There isn't an event of me turning off the stove whose running time is a subinterval of 

yesterday. 

 

In both cases, we get the right results. 

 

 

Partee's puzzle 

I turned off the stove:  PAST(O) 

 

PAST(O) = j[j < now  ATw[O,j]] = 

j[j < now  e[e  O  τw(e)  j]] 

 

I turned off the stove → j[j < now  e[e  O  τw(e)  j]] 

There is an interval j before now that temporally includes an event of me turning off  

the stove. 

 

This is just the same as P(O), with P the priorian operator.  So, not surprisingly we get: 

 

I didn't turn off the stove → j[j < now  e[e  O  τw(e)  j]] 

0There is no interval j before now that temporally includes an event of me turning off 

 the stove. 

 

And I didn't turn off the stove  gets a meaning that is too strong:  I never turned off the stove. 
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Diagnosis and solution strategy:   

We want to assign the correct meaning to I didn't turn off the stove 

and we want to block assigning the incorrect meaning to I didn't turn off the stove. 

 

[We assume that I didn't turn off the stove doesn't semantically mean I never turned off the 

stove. 

Of course, pragmatically there may well be situations where it is understood to mean the 

0latter.   

Thus if the accused says to the judge under oath:  I didn't break into this appartment, he may 

hope that the judge takes this as a statement meaning I never broke into this appartment, 

rather than what he literally says: I didn't break into this appartment at the time that you are 

asking me about [since I did a week earlier…].      

 

We take as our lead three observations: 

1. There are no problems when the temporal framing adverbial yesterday is there. 

2. In the derivation with yesterday  PAST applies to a temporal property rather than an 

eventuality property. 

3. In the derivation with the never reading, PAST applies directly to an eventuality property. 

 

Idea:  -Block the derivation under observation 3. 

          -Replace this by a derivation modelled on the derivation in observation 1. 

 

 

 

Step 1: Tenses operate on temporal properties only 

 

PRES = λP. now  P   P a variable over temporal properties 

PAST = λP.j[j < now  j  P] P a variable over temporal properties 

 

This makes no difference for PAST[YESTERDAY[O]], 

but it does make a difference for PAST[O], which is no longer well defined, because  O is not 

a temporal property. 

 

This means that we have a type mismatch in the derivation of I turned off the stove: 

Without further assumptions, the grammar cannot assign a felicitous meaning to I turned off 

the stove: PAST + O cannot be resolved. 

 

Step 2: we resolve the mismatch by assuming and implicit operation C which maps 

eventuality properties onto temporal properties and interpreting as follows: 

 

I turned off the stove → PAST(C(O))  

   

For the semantics of of C, we take YESTERDAY as our model. 

 

We assume a contextually given interval c.  Intuitively, c is the reference interval of the 

conversation: it is the time interval that is big enough to include the events we are talking 

about.   

The dynamics of conversation may shift what interval is relevant.   

Pragmatically, we assume that c is flexible enough that it gets updated if there is a semantic 

conflict.  That is, a present tense statement may require that c includes now.   
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If it didn't so far, then we tacitly accommodate it, so as to make the current assertion 

pragmatically felicitous. 

 

In the new semantics we don't really need the AT relation, so we incorporate this directly in 

the semantics of framing adverb interpretation YESTERDAY and implicit operation C: 

 

Let P be a variable over eventuality properties. 

 

      λi.e[e  P  τw(e)  (i  yesterday)]  if P  E 

YESTERDAY = λP.  

         λi.e[e  P  τw(e) O (i  yesterday)]  if P  S 

 

   

      λi.e[e  P  τw(e)  (i  c)]   if P  E 

                      C = λP.  

         λi.e[e  P  τw(e) O (i  c)]   if P  S 

 

   

In the new theory, derivation PAST(O) is no longer available, hence we will not derive the 

never-interpretation, unless we can derive it via C (we can't). 

 

 

(1) I turned off the stove → PAST(C(O)) 

 

C(O) = λi.e[e  P  τw(e)  (i  c)] 

PAST(C(O)) = j[j < now  e[e  P  τw(e)  (j  c)]]  = 

                  i[i  c   i < now  e[e  P  τw(e)  i]] 

 

I turned off the stove → i[i  c   i < now  e[e  P  τw(e)  i]] 

Contextual interval c includes a past interval that includes the running time of some 

event of me turning off the stove. 

 

 

I didn't turn off the stove → i[i  c   i < now  e[e  P  τw(e)  i]] 

Contextual interval c includes no past interval that includes the running time of some 

event of me turning off the stove:  turning off the stove events are absent of the past 

stretch of contectual interval c. 

 

Both of these are the correct readings.  So we now derive the correct reading for I didn't turn 

off the stove, and we no longer derive the never reading. 
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Discourse theory of reference intervals.  The relevant intervals are often given by discourse. 

 

The difference between states and events shows up in (1) 

 

(1) a.  I was asleep when Jane knocked. Overlap 

      b.  I woke up when Jane knocked  After 

 

(2) a. I wasn't asleep.    Requires contextually given reference interval 

     b. I wasn't asleep when Jane knocked Reference interval fixed in discourse 

 

See the volume on tense and aspect of Linguistics and Philosophy 1984.  
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2.1.4. Branching Time and historical necessity 

 

Thomason, Richmond, 1984, ‘Combinations of Tense and Modality,’ in: Guenthner and 

Gabbay (eds) Handbook of Philosophical Logic, Kluwer, Dordrecht. 

von Kutchera, Franz, 1997, ‘T  W Completeness,’ in Journal of Philosophical Logic 26 

Condoravdi, Cleo, 2002, ‘Temporal interpretation of modals,’ in Beaver et. al. (eds) The 

Thomason, Richmond and Anil Gupta, 1980, ‘A theory of conditionals in the context of  

 branching time,’ in Philosophical Review 89.  

Zanardo, Alberto, 2006, ‘Quantification over sets of possible worlds in branching time 

 semantics,’ in Studia Logica 82 

 

Thomason builds on unpulished work by Hans Kamp (Kamp ms. 'Historical necessity') 

 

Historical necessity is concerned with the interpretation of the the future tense will and its 

relation to determinism. 

 

Aristotle's sea battle:Determinism: 

 

 (1) Either a sea batlle will take place or it won't take place tomorrow. 

 (2) If a sea battle will take place tomorrow it is now already true that it will. 

 (3) If a sea battle won't take place tomorrow it is now already true that it won't. 

 (4) Hence the future is already determined. 

 

Gilbert Ryle:  A soldier standing straight up in the trenches, arguing to his mates: 

 (1) Either there is a bullet in the enemy's gun with my name on it, or there isn't. 

 (2) If there is, it will get me whether or not I duck. 

 (3) If there isn't it won't get me whether or not I duch. 

 (4) Hence I can just as well stay standing up.  

 

If we take the principles of Priorian tense logic, we see that one of the axioms of minimal 

tense logic is: 

 

 φ → HFφ 

 

φ itself can be a modal formula, so we have: 

 

 Fφ → HFFφ 

 

Assuming transitivity, we can conclude: 

 

 Fφ → HFφ 

 If φ is going to be true, then it was always true that φ was going to be true. 

 

This seems to go rather a long way towards justifying the premises of determinism that make 

Aristotle's argument go through. 
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Branching time:  the future is open. 

Ockhamist branching time:  the future tense is a temporal-modal operator 

 

An Ockhamist frame for branching time is a structure TW = <T, WT > where 

 1. T = <T,< > is a left-linear partial order 

 2. WT, the set of worlds, complete possible histories, is the set of all branches in T. 

  

Worlds, then, are maximal chains in T.  The set of worlds running through point t, Wt is the 

set of branches b such that t  b. 

 

We will here consider only what is called the Peircean variant of Ockhamist branching time 

models.  The only relevant clause is that for Fφ: 

 

 ⟦Fφ⟧M,t = 1 iff for every w  Wt: there is a t'w: t' > t and ⟦φ⟧M,t’ = 1  

 

Fφ is true at t iff for every world, every branch running through t, at some point φ is true. 

 

(1) a. I will go to Innisfree. 

      b. I will go to Innistree next week. 

 

Thus, (1a) is true at t iff every world through t contains a point later than t where I go to 

Innisfree.   

(1b) is true at t iff every world through t contains a point in the interval next-week where I go 

to Innisfree.   

 

In branching time the past and present are settled, the future is open. 

The futurate modal operator will (F) expresses that certain statements can be settled even 

though they are futurate.   Thus, (1a), on this analysis expresses that it is already settled at a 

point of time in the future, I go to Innisfree (meaning that I am ignoring possible futures 

where I don't go as not accessible).   

The idea about the sea battle is that we do not accept that there will be a sea battle is settled, 

some future worlds have a sea battle in them, some don't.  Look at a world that has a sea 

battled in at at t' > t.  Is it true at every moment in the past of t' that Fφ holds there?  

No, because Fφ actually doesn't hold at t.   

So the principle of minimal tense logic we accepted before, we don't accept now.  

 

From a semantic perspective there is a rather serious compositionality problem with Peirciean 

Ockhamist semantics.  We accept the insights of the semantics for (1a,b), but are now 

concerned with the proper semantics for (2a,b): 

 

(1) a. I will go to Innisfree.   Fφ 

      b. I will go to Innistree next week. Fnext week(φ) 

(2) a. I won't go to Innisfree. 

      b. I won't go to Innistree next week. 

 

What should the meaning of (2a,b) be? 

 

Fφ  Some world through φ has no future moment where I go to Innisfree 

Fnext week(φ) Some world through φ has no moment in its interval next week where I go to 

Innisfree 
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The problem is that these clauses are too weak.  The modal Fφ expresses at t that it is settled 

at t that φ happens at a future moment.  With that, Fφ expresses at to that it is not yet settled 

that φ happens at a future moment.  But (2a) doesn't naturally express that, it makes a much 

stronger claim.    

 

The alternative would be to interpret (2a,b) as: 

 

Fφ  Every world through t has a future point where φ is true 

Fnext week(φ) Every world through t has a point in its interval next week where φ is true 

 

The problem is that these formulas are so weak as to be practically tautologies:  nobody was 

suggesting that it was going to be sea battle from now to Eternity, so anybody would accept 

Fφ, the same with Fnext week(φ), the issue is not that its sea battle all next week.  So 

certainly Fφ is not what (2a,b) should express.   

Of course, we know what we want (2a,b) to express in this framework: 

 

Gφ  No world through t has a future point where φ is true 

Gnext week(φ) No world through t has a point in the interval next week where φ is true 

 

The problem is a compositionality problem:  we don't want won't and will not to be 

independent lexical items.  we want to build their meaning with will and not.   But that seems 

impossible. 

 

The logic of Historical Necessity takes a different view.  It assumes that the future tense is 

itself not a modal operator but a tense operator, and, for us, just the Priorian operator. 

This means that the principle of minimal tense logic φ → HFφ is accepted.  Even worse, we 

just assume linear time here.  So obviously, we seem to want to accept that principle.  

Clearly, we must be trying to solve the determinism problem in a different way.  And we are. 

 

If the future tense is not itself a modal, we will need to make assumptions about how modal 

interpretations come about.  For this to be expressible, we introduce the modal operator of 

Historical necessity.  We come back to the present discussion later.    

 

 

Historical necessity 

 

For technical reasons in formulating the axioms we introduce unrestricted logical necessity, 

and use the closed box for it.  The open box we use for the necessity that we are interested in 

here, historical necessity: 

 
⧠: it is historically necessary that 

∎: it is logically necessary that 

 

In branching time the past and present are settled, the future is open. 

Historical necessity is a very local notion of necessity, it is concerned with what is, at a 

certain point of time, already settled and what is still open.   

Historical necessity in this sense is not an epistemic modality, although it can, at times, be 

hard to distinguish the two, see Condoravdi’s excellent discussion. 
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Historical necessity is a form of metaphysical modality (possibilities about what the world is 

like, could be like, could have been like), but a very local form.  If p has happened in w at t, p 

is a metaphycal reality, but not necessarily a metaphysical necessity.  But p is settled at t, and 

hence an historical necessity: the past and present are settled, the future is open.  Some 

aspects of the future at t may already be settled at t as well, even though they haven’t 

happened yet:  what is metaphysically possible at t in combination with what has happened so 

far determines what is and is not open at t.  For instance, let c be a normal coin, with an edge 

that is too narrow to stand on, and let c be spinning in the air at t.  Then  

Flands-heads(c) and Flands-tails(c) are open at t, since we can assume that it isn’t yet settled 

at t that the coin will land heads at some future time or tails at some future time, but we can 

assume that F(lands-heads(c)  lands-tails(c)) is settled at t:  a coin that is spinning in the air 

at t, must come down at some point. 

This means that at t the following is true: 

Flands-heads(c)   Flands-tails(c)  ⧠F(lands-heads(c)  lands-tails(c))    

 

Thus: 

φ is historically necessary at t if φ is true at t regardless of what the future is like. 

 

Since the past is settled and, as time passes, more and more issues get settled, and what is 

settled does not get unsettled, the issues that are open decrease monotonically with time.  

And this means that, for historical necessity, the accessible worlds decrease monotonically 

with time.  

 

Frames for Historical necessity are T×W frames we introduced for time-dependent modality 

above, but with modal accessiblity relation t: 

 

A branching time frame for L is a structure TW = <T,< , W, R> where 

 <T,< > is a linear time frame and for every t  T: <W,t> is a modal frame with t a 

 right monotone decreasing equivalence relation on W   

 

v t w means: v and w share the same modal past at t:  what was true and possible in v at 

moments of time before t is the same as what was true and possible in w at moments of time 

before t. 

 

for world w and time t: [w]~t
 is the set of worlds accessible to w that have the same past as w 

                                      up to t.   

 

 is right monotone decreasing iff for every t1, t2  T for every w  W: 

     if t1 < t2 then [w]~t2
  [w]~t1

 

 

equivalently: for every t1, t2  T for every v  W: if t1 < t2 and v t2
w then v t1

 w 

 

 

In the context of branching time, we think of worlds as complete possible histories. 

In the T  W approach to branching time, it is not the time itself that branches (T is a linear 

order): the branching is encoded in the structure of .  
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A branching time model is a structure M = <TW, i> where 

 1. TW is a branching time frame 

 2. i:  ATFORM  W  T → {0,1} such that: 

    for every   ATFORM,w,v  W t1, t2  T:  

   if w t2
 v and t1  t2 then  iw,t1

(φ) = iv,1(φ) 

 

If you have two histories wt and vt and you look at the same past moment t1 from t2, then the 

same basic facts hold at t1 in histories wt and vt 

 

 
  w           
  
           t1 

    v 
 
. 

The constraint on atomic formulas enforces the principles of branching time.   

Let φ  ATFORM, t2 be the present time and w the real world. 

We look first at the past. 

Assume that t1 < t2 and iw,t1
(φ)=1.  This means that φ is true in this world at some past time. 

Then for all v  [w]~t1
: iv,t1

(φ)=1, by the constraint.  

Since [w]~t2
  [w]~t1

, this means that in all worlds v that are accessible from w at the 

present time t2, φ is true in v at past time t1. 

 

Now we look at the future. 

Assume that t3 > t2 and that iw,t2
(φ)=1 

Assume that w t2
 v and that iv,t3

(φ)= 0 

This is perfectly possible, because it is not required that w t3
 v.  Precisely not: as time 

passes the set of alternatives shrinks, and if φ becomes true in the real world at t3, then at that 

time, world v fails to be an alternative for w. 

 
 
 
⟦φ⟧M,w,t = 1 

 

1. If φ  ATFORM then: ⟦φ⟧M,w,t = iw,t(φ) 

2. ⟦φ⟧M,w,t = 1 iff ⟦φ⟧M,w,t = 0, etc. for , , → 

3. ⟦Pφ⟧M,w,t = for some t’ < t: ⟦φ⟧M,w,t’ = 1 

4. ⟦Fφ⟧M,w,t = for some t’ > t: ⟦φ⟧M,w,t’ = 1 

5. ⟦⧠φ⟧M,w,t = for all v  W: if v t w then ⟦φ⟧M,v,t = 1 

6. ⟦∎φ⟧M,w,t = for all v  W: ⟦φ⟧M,v,t = 1 

 

Truth in M is true in M at every w and t. 

Validity is truth in M for all models M 
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Branching time logic 

Linear time + S5 for ⧠ and for ∎ + 

 

Axiom schemas: ∎φ → ⧠φ  Logical necessity entails historical necessity 

 

P⧠φ → ⧠Pφ Historical necessity is right monotone decreasing  

 

   P∎φ → ∎Pφ    
F∎φ → ∎Fφ Logical necessity is temporally constant  

 

Gabbay irreflexivity: From ∎(φ  G(φ)) → ψ derive ψ, if φ is an atomic formula that does 

                                    not occur in φ   

 

Kamp’s axiom: ⧠φ  ⧠φ if φ is an atomic formula 

von Kutchera shows that the above logic (without Kamp’s axiom) is complete with respect to 

the class of branching time frames (without the restriction on the interpretation function to 

atomic formulas). 

 

Fact:  P⧠φ → ⧠Pφ is true at a frame iff  is right monotonically decreasing 

Proof: 

  

1. if  is right monotonically decreasing P⧠φ → ⧠Pφ is true on the frame. 

   

Assume: ⟦P⧠φ⟧w,t2
 = 1 

Then for some t1: t1 < t2 and ⟦⧠φ⟧w,t1
  = 1 

Then for some t1: t1 < t2 and for all v  [w]t1: ⟦φ⟧v,t1
  = 1  

Since [w]~t2
  [w]~t1

, it follows that: 

                      for all v  [w]~t2
: ⟦φ⟧v,t1

 = 1 

Hence for all v  [w]~t2
: ⟦Pφ⟧v,t2

 = 1 

Hence ⟦⧠Pφ⟧w,t2
 = 1    

(The accessible worlds at t1 are accessible pasts at t2) 

 

If  is not right monotonically decreasing, we can make a counterexample to  

P⧠φ → ⧠Pφ. 

let t1 < t2 and z  [w]~t2
 but z  [w]~t1

 

 

Make φ true at t1 in every world v  [w]~t1
 and false at every other moment of time (for 

every world).  Clearly, P⧠φ is true in w at t2.   

But for world z there is no time in the past of t2 such that φ is true, so Pφ is false in z at t2. 

Hence ⧠Pφ is false in w at t. 
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The sea battle in Historical Necessity 

 

Aristotle's sea battle: 

 

 (1) Either a sea batlle will take place or it won't take place tomorrow. 

 (2) If a sea battle will take place tomorrow it is now already true that it will. 

 (3) If a sea battle won't take place tomorrow it is now already true that it won't. 

 (4) Hence the future is already determined. 

 

 φ = A sea battle takes place  

 We assume: φ  ATFORM 

 

- ⧠Fφ  A sea battle is unavoidable 

 

 ⟦⧠Fφ⟧w,t = 1 iff v t w t' > t: ⟦φ⟧v,t' = 1 

 

We assume that in our world w at the present time t this is false, because there is an 

accessible world v with the same past at t as w in which at no time t' in the future of t 

⟦φ⟧v,t'=1. 

 

- ⧠Gφ  A sea battle will not happen 

 ⟦⧠Fφ⟧w,t = 1 iff v t w t' > t: ⟦φ⟧v,t' = 0 

This too we assume to be false in w at t, because there also is an accessible world z with the 

same past at t as w in which at some time t' in the future of t ⟦φ⟧v,t'=1. 

 

- ⧠(Fφ  Fφ) A sea battle will happen or won't happen 

 

⟦⧠(Fφ  Fφ)⟧w,t = 1 iff v t w[  t' > t: ⟦φ⟧v,t' = 1 or t' > t: ⟦φ⟧v,t' = 0] 

 

This is perfectly true.   

 

What is not true is the reasonable expression of Aristotle's conditional: 

 

- Fφ → ⧠Fφ 

 If a sea battle will happen it is now already true that it will happen. 

 

 

We interpret this as: 

 

 If a sea battle will happen, it is unavoidable. 

  

⟦Fφ → ⧠Fφ⟧w,t = 1 iff either t' >t: ⟦φ⟧w,t' = 1 or v t w t' > t: ⟦φ⟧v,t' = 1 

 

This is not true, because it may well be that t'>t and ⟦φ⟧w,t' = 1, but for some  v t w:  

t' > t: ⟦φ⟧v,t' = 1 

 

So the argument for determinism doesn't hold in branching time (well, not surprisingly, 

because it's why we assume branching time in the first place). 

 



20 

 

The negation problem. 

 

(1) a. I will go to Innisfree.   Fφ 

      b. I will go to Innistree next week. Fnext week(φ) 

(2) a. I won't go to Innisfree.   Fφ 

      b. I won't go to Innistree next week.  Fnext week(φ) 

 

We assume the future tense is not a modal operator but a tense operator.  This has the big 

advantage that the examples in (2) have unproblemantically the correct temporal meaning: 

 

(1a) is true in w at t if at some point t' in the future of t I go to Innisfree at t' in w. 

(2a) is true in w at t if that is not the case, i..e. if at no point t' in the future of t I go to 

Innisfree at t' i n w. 

 

(1b) is true in w at t if at some point t' in the interval next week I go to Innisfree at t' in w. 

(2a) is true in w at t if that is not the case, i..e. if at no point t' in the interval next week I go to 

Innisfree at t' i n w. 

 

To which we can add unproplematically the tense relation presented earlier (see Condaravdi). 

 

 

 

What about the modal interpretations? 

 

The set of alternatives [w]t tells you what is settled at t and what is not.  We can think of this 

set of alternatives as being determined by a set of reasons: I go to Amsterdam this week 

because I have a ticket a seat reservation a reason to go there and nothing holding me, etc… 

 The fact that w is included in [w]t tells us that these reasons are de facto sound reasons.   

Pragmatically, this may be a bit too strong.  I try to deduce my claims about the future from 

sound reasons, but ultimately I cannot be guaranteed that my reasons are really correct. 

For this reason it may be too strong to require that w be one of the worlds in the set of 

alternatives.  For this reason we introduce a slightly weaker notion that is not committed to 

the real world being in the set of alternatives.  

  

We introduce a function S (for settledness) which maps every time t onto a relation S 

between worlds. We let St,w = {v  W: St(w,v)}.  We define St,w in terms of [w]~t
 by: 

 

 For every t  T, w  W:  St,w = [w]~t
 or St,w = [w]~t

 − {w} 

 

Thus, S differs from  in that it is open whether w is accessible or not: in some worlds the 

evidence is sufficient to include w, in others you don't, in general you're not sure. 

We introduce a third universal modal operator ⊠ to correspond to S: 

 

⟦⊠φ⟧M,w,t = 1 iff for every v  Sw,t: ⟦φ⟧M,v,t = 1 

 

The modal operator ⊠ makes a claim about the alternatives for w, but not about w itself.  

Hence, ⊠ is weaker than □, and that is pragmatically useful.   

Thus, when I assert ⊠φ, I am saying that, according to the generalizations encoded in the 

accessibility relation, φ is settled.  But I am not saying that this means that φ actually happens 
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in w, because, the generalizations encoded in the accessibility relation may turn out to be  

wrong after all.  So, ⊠ is a pragmatically reasonable variant of □.   
 

With this we assume a principle of pragmatic modal weakening of the future tense: 

 

 Pragmatic modal weakening of the future tense:  Interpret Fφ as ⊠Fφ 

 

Instead of taking our futurate statement to be a claim that a future fact holds (which we don't 

really have access too), we can weaken it to a claim that this future  fact follows – as far as 

we can tell - from present concerns (encoded in the accessibility relation) about what  we 

regard as settled.    

 

For (1a) and (1b) this means that we can reformulate the claim made at t that at t' in the future 

( or in the interval next week) I actually go to Innisfree, to the claim that in every accessible 

world in Sw,t I go to Innisfree at some point in the future (or at some point in the interval next 

week): according to the accessibility relation, my going to Innisfree in the future is already 

predetermined. 

 

The important difference with Ockhamist time is that we can assume exactly the same 

pragmatic account of the cases in (2): 

 

We can reformulate the claim made at t that at no point t' in the future ( or in the interval next 

week) I actually go to Innisfree to the claim that in no accessible world in Sw,t I go to 

Innisfree at any point in the future (or at any point in the interval next week): according to the 

accessibility relation, my not going to Innisfree in the future is already predetermined. 

 

This means that the future is a tense and  not a modal, but we have a general pragmatic 

principle that gives us modal interpretations of the future tense, and in fact, the correct modal 

interpretations.  I think that this is an important semantic insight, and that it supports the 

division of labour that the logic of Historical Necessity proposes.   

 

 

Branching time:  Counterfactuals 

 

The semantic of branching time and historical necessity is relevant for the semantics of 

counterfactuals.   

 

 (2) If she hadn’t left me I wouldn‘t be so miserable now. 

 

Stalnaker 1968, Stalnaker and Thomason 1968  and Lewis 1974 give a modal semantics for 

counterfactuals as variably strict conditionals. 

In the simplest possible terms, Stalnaker assumes the following semantics for counterfactuals: 

Let φ ⪧ ψ be a counterfactual conditional. 

 

 ⟦φ ⪧ ψ⟧M,w = 1 iff ⟦ψ⟧M,select(φ,w) = 1 

 

Here select is a function that maps w and φ onto the closest world to w where φ is true. 

(within a contextually given set of alternatives).  

This, of course, requires an ordering of worlds in terms of closeness.  Lewis 1975 assumes an 

ordering of overall similarity. 
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The variable strictness of the semantics avoids inferences like the following: 

 

(3) a. If Mozart hadn’t died at 35 he would have written many more operas 

      b. If Mozart hadn’t died at 35, but at 36, he would have written many more operas. 

 

Intuitively, the inference from (3a) to (3b) is invalid, which is predicted by variable strict 

semantics. Let’s assume that the closest world where Mozart didn’t die at 35 is one where he 

didn’t catch the infection at the masoric meeting that killed him three weeks later, and in this 

world, Mozart lived on and wrote many more operas.  (3a) is true.  This does not entail that in 

the closest world where he didn’t die at 35 but at 36 he lived on and wrote many more operas. 

 

Thomason and Gupta point out that branching time and historical necessity is the natural 

setting for counterfactuals.  While Stalnaker’s account is fully modal, the counterfactuals are 

mixed temporal-modal and are concerned with what is settled and what is not. 

 

We can draw the following picture: 

 

   o o   o   o    o     T 

              i        35  36       65    now 

   
                  r i p  
  o    |                w0  
          r i p 
              o      o   |              w1  
             r i p 
         o   |           w2  

 

In w0, the real world, Mozart dies when he does at 35. 

Point of time i is the point at the masoric meeting where person x hasn’t yet coughed in his 

direction.  at this point worlds w0, w1 and w2 are still open.  So w0, w1, w2  [w0]i 

The counterfactual φ ⪧ ψ tells us to go back to the point where φ (Mozart dies at 35) 

was still open, i.e. to point i.  The worlds where Mozart doesn’t die at 35 that are open at i are 

worlds w1 and w2.  We assume that the Stalnaker selection function must select a world 

within this set as the closest, and we assume that the function selects world w1.   

Then, as before, we block the unwanted inference.  

 

A bit more discussion 

 
⟦φ ⪧ ψ⟧M,w,t = 1  

 1. Go back in w to t1 where  is not yet settled. 

2. In the closest world v where ⟦⟧v,t1
 = 1 also ⟦ψ⟧v,t1

  

 

But note: there is possible ambiguity about what  is! 

 

(3) a. If Mozart hadn’t died at 35 he would have written many more operas 

 

A:  = If Mozart hadn't DIED at 35  

     Instruction: go back to t1 where he didn't get the virus 

B:  = If Mozart hadn't died AT 35  
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     Instruction: go back to t2 < t where the effect is slower and carries him over his birthday 

Not settled in A: Mozart is about to die 

Not settled in B: Mozart will die before his birthday 

 

In A: the closest world could well eb one in which he wrote more operas 

In B: he doesn't write more operas in the closest world 

 

So:  Suppose Mozart hadn't died and Suppose Mozart hadn't died at 25 are in the context 

different propositions, and the antecedent can be read as either. 

 

This means that variable strictness of the conditional comes in (in part) via contextual 

selection of what proposition to regard as unsettled at a reasonable contextual past time. 

 

 

Past predominence 

 

Thomason and Gupta point out that closeness is not just a modal notion, but is itself a modal-

temporal notion that depends on the notion of historical necessity (i.e. on issues of 

settledness).   

They propose a principle of past predominence: 

  

 Past predominence:  

In determining how close <t1,w1> and <t2,w2> are , past closeness predominates over 

future closeness. 

 

Thomason and Gupta discuss the following case. 

Look at conditional (4): 

 

(4) If this button had been pushed, there would have been a nuclear holocaust. 

 

We go back to the time where it was still open whether or not the button would have been 

pushed.  We compare worlds where the button is pushed at a later time. 

Let us assume that the relevant worlds are two worlds, w1 where the disconnection team 

manages to disconnect the button in time, and w2 where they don’t.   

The truth of (1) depends on which of these worlds is the closest to w0, the real world.   

Now, if you compare these worlds in terms of overall similarity to w0 then, since a nuclear 

holocaust has not taken place, clearly we should decide that w2 is closer to our world than w1.   

But that seems incorrect: 

   

What is relevant is not the overall similarity of the worlds, but which initial stretch is 

 more similar to w0:  the stretch of w1 up to the pressing of the button, or the stretch of 

 w2 up to the pressing of the button.   

 

The semantics of counterfactuals brings you back to a branching point, where the antecedent 

is still an option, , say, the point where the finger was hovering over the button, or any of the 

points in recent history, when there was a political crisis.     In in left-linear models the past 

up to that evaluation point is fixed.  This means that if at that point the button was connected 

to the Device – and we assume it was -  you cannot at that point go to a world where it 

actually isn't connected at that time.  
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This means that the only worlds that you can consider in which the button is pressed and the 

nuclear holocaust doesn't happen are worlds in which there pops up just before the pressing a 

deus-ex-machina cord-cutter who snaps the cord just before pressing:  the button is pressed, 

and nothing happens.  Such world we can call an opera seria world.  The opera seria world is 

overall closest to our current world.  But the deus-ex-machina device that makes this world 

possible, the cord-cutting event, is extremely unlikely at the branching point.   

 

Dowty 1979, following work by Hans Kamp introduces a notion of an inertia world, a world 

in which nothing unexpected happens.  A version of this may well be useful here.  We 

determine a branching point:  the finger hovering over the button.  At this point we restrict 

ourselves to worlds where the antecedent event – the button pressing is going to happen.   But 

we want to restrict ourselves to worlds that are, apart from the fact that something happens 

that actually didn't happen, are inertia worlds wrt. the real world in that all the independent 

events that were already set in motion at that time continued to develop the way they did 

before, and no independent events suddenly popped out of nowhere. 

Thus, we imagine the finger hovering over the butten in indecision, and it went the other way 

from the way it actually went.  The worlds in which that happened (plus all the events that 

made it possible, like the correct muscle actions neuron actions, etc.) and everything else 

stayed the same are the alternatives to be considered.  This will exclude opera seria worlds as 

alternatives, unless there is direct reason to assume them (as there would be, of course, in 

Holywood scenarios, where the Team-that-is-to-save-the-world was already working 

relentlessly to have a cord-cutter on the scene).   

 

 

 

2.1.5. Lettting the time branch 

 

The TW frames discussed above have a single linear time-axis, the branching effects of time 

are achieved via the worlds and the equivalence relation on the worlds. 

There is quite a lot of study in the philosophical literature of structures where worlds are not 

required to have the same time axis and even structures in which worlds are defined in a 

branching time frame. 

 

A Kamp frame for branching time is a structure T  W = <T, W,  > where: 

 1. W is a non-empty set of worlds, complete possible histories. 

 2. T is a function from worlds to temporal orders such that; 

     for every w  W, Tw = <Tw, <w>, a linear order. 

3. For every t  {Tw: w  W}, Wt = {w: t  Tw} 

     For every t  {Tw: w  W}: t is an equivalence relation on Wt 

4. If w1 t w2 then {t’  Tw1: t’ <w1
 t} = {t’  Tw2: t’ <w2

 t} 

5. If w1 t w2  and t’ <w1
 t then w1 t’ w2     

 

⟦φ⟧M,w,t as above with the restriction that w  Wt 

 

In a Kamp frame worlds the past is linear, and worlds that are temporal alternatives at t 

necessarily share the same past, but not the same future.   
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A Bundle frame for branching time is a structure TW = <T, WT > where 

 1. T = <T,< > is a left-linear partial order 

 2. WT, the set of worlds, complete possible histories, is a subset of the set of all 

                 branches in T. 

 3. For every t  T there is a w  WT: t  w 

 

Obviously, TW frames are a special kind of Kamp-frames.    
Obviously Ockamist frames are a special kind of Bundle frames. 

Zanardo shows that also Kamp-frames are a special kind of Bundle frames, so this may be the 

most general useful notion. 

 

Thomason expresses that the TW model with its fixed linear time axis goes against his 

philophical intuitions.  The model doesn’t allow the structure of time to vary across possible 

worlds.  So, for instance, if we assume that time is not right-continuing, then there are no 

worlds in which time is right-continuing and time will inevitably come to an end.  Kamp’s 

model allows this to vary: in some worlds time may end, while in others it continues. 

There is an intermediate position: 

 

A liberated branching time frame is a branching time frame <T, <, W,  > where 

 1. for each w  W: Tw = <Tw,<w>  is the restriction of T to an initial segment of T. 

 2. restriction on w1 t w2: t  Tw1
   Tw2

 

 

Here we still have one linear order, but it may stop earlier in some worlds than in others. 

 

This would presumably still go against Thomason’s philosophical intuitions, because it 

doesn’t allow time to have fundamentally different structures in different worlds. 

For instance, if the issue is open whether time is discrete or dense, then maybe we want it to 

be discrete in some worlds and dense in others.   

I am not so sympathetic to that, unless we were to find that in the past time has been 

alternatingly dense and discrete.  In that case we may have to prepare for the possibilty of a 

discrete stage happening in the near future. 

 

Still, this stays playing around with philosophical intuitions, which is perfectly legitimate for 

philosophy, but in semantics we have other constraints.  The question is whether such 

differences in the structure of time are detectable in natural language semantics, or whether 

the assumptions of natural language metaphysics favor a principle of homogeneity:   

 

 Modal homogeneity:  

 The structure of time looks the same wherever you stand in time. 

 For every w1, w2  W <{t’  T: t’ ≤w1
 t},≤ > ≃ <{t’  T: t’ ≤w2

 t},< > and 

           <{t’  T: t’ w1
 t1},≤ > ≃ <{t’  T: t’ w2

 t2},> >   

 

 Temporal homogeneity: (discussed in van Benthem 1984 The Logic of Time) 

 The structure of time looks the same wherever you stand in time. 

 For every t1, t2  T <{t’  T: t’ ≤ t1},≤ > ≃ <{t’  T: t’ ≤ t2},< > and 

           <{t’  T: t’  t1},≤ > ≃ <{t’  T: t’  t2},> >   

 

Empirically, the issue of a common structure of time versus branches should show up in 

counterfactuals, but it is very hard to construct covincing arguments here. 
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The reason is that there is interference with other notions that clearly are modally variable, 

 

So, if I say on the 24th of February (5): 

 

 (5) If today had been the 28th of October it would have been my birthday. 

 

we are instructed to go to a point where it is not yet fixed that today is not the 28th of October. 

(It is actually not so clear how you can do that.) 

But we are playing here with the difference between what McTaggert called the A-series and 

the B-series:  in the B-series time passes through dates (the 28th of October) and is ordered 

‘objectively’ by <, while in the A-series time passes from past to present to future (from 

yesterday to today to tomorrow), and is contextually focussed on the present.  Obviously, the 

tagging of the two series onto each other is open for modal variation:  the truth of (5) does not 

require us to go to a point where the 24th of Februari is the 28th of October.   

And even when I say (6) 

 

 (6) If today had been yesterday, I would have been in Amsterdam. 

 

we can use the tagging of the A-series onto the B-series:  an A-series concept like yesterday 

denotes, with respect to the B-series, a function from contexts to intervals of time (i.e. a 

temporal individual concept), mapping the present speech context onto the intervals of time 

that corresponds to the day before the present day.   

As always for individual concepts there is an ambiguity between the expression yesterday 

denoting the function or denoting the value of the function.  The intended reading of (6) can 

be paraphrased as: 

 

 (7) If we were to switch from contect c0, where today(c0) = 24th of February, to a 

context c1 where today(c1) = yesterday(c0), I would have been in Amsterdam at    

today(c1). 

 

This does not seem to require changing the order of time at all.  Most temporal examples that 

I can think of can be analyzed away along these lines.  You have to go to examples like (8) to 

get in the ball park of changing temporal orders: 

 

 (8) If today were stil today and yesterday had been yesterday a year ago, then I would  

                  be a year younger than I am now.  

 

But my native speaker at home is very uncomfortable about (8) (and so am I) and regards it 

as a stretching play with the temporal expressions (and with stretchmarks), rather than a 

statement that is within the normal range of meaning of these expressions.  (8) requires today 

and yesterday to be fixed to, say, the 24th and  23rd of Februari 2012 and going to a world 

where between these two dates a whole year is fitted in.   Clearly, this requires the temporal 

order to vary from world to world. 

 

It seems to me that if the evidence for temporal variation is at best of this nature, we better 

stay with one order, and think of the philosophical discussion as stretching the semantics.  

 

There are good practical reasons to stay with one order for semantical applications.  

Temporal adverbials of the A-series and the B-series pick out intervals in past, present, and 

future, and require a metric comparability of the branches anyway:  that is, future branches 
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must pick out a region of future time which counts as today in two weeks or 2017. That is, if 

we allow time to branch, we must impose a metric which makes future stretches of time on 

different branches comparable, so that our temporal adverbials can pick out a region of time 

on different branches.   

 This can be done, of course, but it can also be avoided, by using one fixed temporal 

order  (or initial segments of one and the same order) for different worlds. 

 

Even though the logics involved are called tense logics they are not really about natural 

language tenses.  For illuminating discussion of natural language tenses and their relation to 

modality, see Condoravdi. 

  

 

 

2.1.6 Intervals and Aspect:  Landman and Rothstein, summary of basic notions. 

 

Eventualities. 

Eventualities are states or events. 

Frames:  E = <E,,IT,<,,W,τ,D,TR> with: 

 <E,> is a set of eventualities ordered by equivalence relation  (cross-temporal 

 identity)  

 <IT,<,> is the interval structure based on linear order <T,<T > 

 W is a set of possible worlds 

 τ, the temporal trace function is a partial function: τ: E×W → IT 

 D is the domain of individuals 

 TR, is the set of thematic roles, Agent, Theme.,… which are partial functions from 

  events to event participants:  Agent: E → D 

   

τ(e,w) is the running time interval of event e in world w if e goes on in w  

Eventualities are temporal particulars that go on at one interval in a world. 

 

Verbs, verb phrases, sentences:  event types = sets of eventualities. 

 

eat: λe.EAT(e) The set of eating events 

eat a mango:  

λe.EAT(e)  MANGO(Theme(e)) = 

 λe.EAT(e)  Agent(e)  D  MANGO(Theme(e))  

 The set of events whose agent is an individual and whose theme is a mango 

Fred eat a mango 

λe.EAT(e)  Agent(e) = Fred  MANGO(Theme(e))  

 The set of events whose agent is Fred and whose theme is a mango 

Fred ate a mango 

λe.EAT(e)  Agent(e) = Fred  MANGO(Theme(e))  τ(e,w0) < now 

 The set of events whose agent is Fred and whose theme is a mango and that are 

located in this world in the past of now.  

 

Cross-temporal identity 

e1  e2 if e1 and e2 count as one and the same eventuality, even if their running time is not the 

same. 
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(1)  Fred was in Amsterdam once last month, from Sunday to Friday. 

        s1, s2, s3  λs. LOCATE(s,Fred)  Location(s)⊑Amsterdam 

τ(s3,w0) = Sunday to Friday 

τ(s1,w0) = Sunday  

τ(s2,w0) = Friday 

s1  s2  s3 

 

-identity postulate:  if e1  e2 and τ(e1,w)=τ(e2,w) then e1=e2 

 

(2) Fred ate an artichoke once last week. 

 e1,…e31  EAT 
 e1:  Fred eats the flesh off the first leave 

 e2 = Fred eats the flesh off the first leave and then off the second leave  

 e3= e2+ and then off the third leave 

 …e30 = e29+Fred eats half of the heart 

 e31 = e30+Fred eats the other half of the heart 

 

e1  e2  e3  ….  e30  e31 

 

i ≼ j: i is an initial subinterval of j 

 

e1 ≼ e2:  e1 is an initial stage of e2 

 

e1 ≼ e2 iff for every world w  W: if τ(e2,w)≠⊥ then τ(e1,w) ≼ τ(e2,w)  e1  e2 

 

Events have onsets, states hold at points. 

 

VP with event type α 

Vα is the event type of the verbal head of VP. 

 

eat a mango α   = λe.EAT(e)  MANGO(Theme(e)) 

  Vα = λe.EAT(e) 

 

e  α has a Vα-onset iff there is an event o(e,Vα)  Vα such that: 

 1. O(e,Vα) ≼ e 

 2. For every w  W: if τ(O(e,Vα),w)≠⊥ the τ(O(e,Vα),w) is not a point. 

 3. if e' ≺ O(e,Vα) then e'  Vα   

 

Onset constraint:  If VP is an eventive predicate with event type α based on Vα then every 

        event e in α has a Vα-onset. 

 

Intuition:  The eat-onset of an event of eating a mango is the first bit of activity that counts 

                  itself as eating and that will develop into the eating of that mango. 

 

Activities:  if e  α then O(e,Vα)  α  (the first bit of waltzing counts as waltzing) 

Accomplishments:  if e  α then O(e,Vα)  Vα, but not necessarily O(e,Vα)  α 

 (the first bit of eating a mango counts as eating, but not itself as eating a mango). 
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 States:    Fred was in Amsterdam, the Garbage stank. 

Activities:  Fred waltzed, Fred pushed a cart 

Accomplishments:  Fred ate a mango, Fred wrote a book 

Achievements: Fred arrives at the station, Fred was born. 

 

 

Stative homogeneity (subvinterval property) 

 

Lexical requirement: Stative event types are homogenous: 

 

stative event type α is homogenous iff every state in α is homogenous with respect to α 

 

Let s be a state and α a stative event type and s  α: 

s is homogenous with respect to α iff for every world w  W: if τ(s,w)≠⊥ then: 

  i   τ(s,w): s'  α:  s'  s and τ(s',w)=i 

 

The set of states α of Fred being in Amsterdam is homogenous, because every state in it is 

(postulated to be) homogenous with respect to α:  if s is such a state that goes on in this 

world, then a state of Fred being in Amsterdam, cross-temporally identical to s goes on at 

every subinterval of the running time of s, including the points in that interval. 

States go on at points. 

 

Incremental homogeneity  

 

Lexical requirement: Activity event types (like the event type of eat) are homogenous: 

 

eventive event type α is homogenous iff every event in α is homogenous with respect to α 

 and Vα 

 

Let α be an event type and let e  α 

Let Vα be the corresponding verbal event type and let O(e,Vα)  Vα, the onset of e. 

 

e is homogenous with respect to α and Vα  iff for every w  W: if τ(s,w)≠⊥ then: 

  i[if  τ(O(e,Vα),w)≼ i ≺ τ(e,w) then e'  α:  e'  e and τ(e',w)=i 

 

e is homogenous wrt to α and Vα iff  the onset of e is in α and for every intitial subinterval i 

of τ(e,w), which extends the time of the onset, there is an initial stage e' of e with i as running 

time such that e'  α.   

 

Fact:   Activity event types are homogenous, activity events are incrementally homogenous 

 (for eat α = Vα).   

Accomplishment event types are not homogenous, accomplishment events are not 

 incrementally homogenous.  

 

for an hour:  modifier of event types (maps event types onto event types): 

 

for an hourw(α) = λe  α: durationhour(τ(e,w))=1 
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Presuppositional semantics of for an hour: 

 

for an hour: 

 

 for an hourw(α) if for an hourw(α) is (non-trivially) homogenous. 

λα. 

  ⊥ otherwise 

 

 

Landman and Rothstein 2012, part 1 and 2 
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2.2. VAGUENESS AND COMPARATIVES 

 

Kamp 1975: Two theories about adjectives, in: Keenan (ed) Semantics for Natural Language 

Fine 1975: Truth, vagueness and logic, in: Synthese 30  

Kamp 1981: The paradox of the heap, in: Monnich (ed), Aspects of Philosophical Logic 

Klein 1980: A semantics for positive and comparative adjectives, in: Linguistics and 

Philosophy 4 

Kamp and Partee 1995: Prototype theory and compositionality, in: Cognition 57 

Galit Sassoon 2007: Vagueness, Gradability and Typicality, Diss. TAU 

Papers by Sassoon on her webpage. 

Robert van Rooy, papers on vagueness on his webpage. 

 

Vagueness and many valued logic  (discussion in Kamp 1975) 

 

We are interested in borderline vaguenss between  and , so not between blue and red, but 

between red and not red.  In three valued semantics we assume that predicates have a positive 

extension ⟦red⟧+, the objects that are unproblematically red and ⟦red⟧−, the objects that are 

unproblematically not-red. 

So: 

 ⟦red⟧+  ⟦red⟧−  D 

 ⟦red⟧+  ⟦red⟧− = Ø 

 

In three valued semantics with three values 1,0 ⊥ (undefined) there are two options for the 

connectives: Weak Kleene, in which undefined wins out, and Strong Kleene, in which it 

undefined is a remainder value. 

 

 Weak Kleene    Strong Kleene 

   1     0     ⊥     1     0     ⊥  

 

1    1   0 ⊥  1    1 0 ⊥ 

0    0    0   ⊥  0    0 0 0 

⊥ ⊥ ⊥ ⊥  ⊥ ⊥ 0 ⊥ 

 

 

 Weak Kleene    Strong Kleene 

   1     0     ⊥     1     0     ⊥  

 

1    1    1 ⊥  1    1    1 1 

0    1    0   ⊥  0    1   0 ⊥ 

⊥ ⊥ ⊥ ⊥  ⊥ 1 ⊥ ⊥ 

 

 

 Weak Kleene    Strong Kleene 

→   1     0     ⊥  →    1     0     ⊥  

 

1    1   0 ⊥  1    1    0 ⊥ 

0   1    1   ⊥  0    1   1 1 

⊥ ⊥ ⊥ ⊥  ⊥ 1 ⊥ ⊥ 

 Weak Kleene    Strong Kleene 
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   1     0     ⊥    1     0     ⊥ 

  

0    1    ⊥   0    1    ⊥ 

 

Weak Kleene is used for sortal incorrectness: the idea being that the conjunction or 

disjunction of  with a sortally incorrect statement is itself sortally incorrect. 

(as in:  and/or I drank seventeen evil, (where evil is an abstract mass noun). 

Strong Kleeine is used for presuppositions. 

 

Consequence: 

 

If x is borderline bald then all of the following are undefined.     

 

BALD(x)  BALD(x) 

BALD(x)  BALD(x) 

BALD(x) → BALD(x) 

 

And if  Buck and Chuck are both borderline bald, then the following is also undefined, even 

if Chuck is a bit more hairy than Buck: 

  

 BALD(Buck) → BALD(Chuck) 

  

This is unsatisfactory. 

 

Is Fuzzy Logic a solution? 

 

Fuzzy Logic: 

 

⟦⟧  [0,1]   (the real interval [0,1]) 

⟦⟧ = 1 − ⟦⟧ 
⟦  ψ⟧ = min[⟦⟧,⟦ψ⟧] 
⟦  ψ⟧ = max[⟦⟧,⟦ψ⟧] 
Suggestion: 

⟦ → ψ⟧ = 1 iff ⟦⟧  ⟦ψ⟧ 

 

If Buck is exactly on the border of bald and not bald, this gives for the tautologies and 

contradictions: 

 

⟦BALD(x)  BALD(x)⟧ = 1/2 

⟦BALD(x)  BALD(x)⟧ = 1/2 

 

Which is unsatisfactory. 

 

 For condionals look at: 

⟦BALD(Buck)⟧ = 1/2 

⟦SMART(Chuck)⟧ = 2/3 

hence: 

 

⟦BALD(Buck) → SMART(Chuck)⟧ = 1 
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Which is, obviously crazy.  But if we define → in terms of  and  in the usual way, we get 

that  

BALD(Buck) → BALD(Chuck) 

 doesn't come out as true, even if Chuck is more hairy than Buck. 

 

Kamp's diagnosis:  Three valued logic and Fuzzy Logic fail to deal with the compositional 

Boolean structure of the connectives. 

Solution:  Supervaluations (van Fraasen 1968).   

Main idea:  borderline vagueness in conditionals is similar to modality in conditionals. 

 

Intuition: vagueness and precisification 

     is vague if there are still different different ways of making  precise.   

 

Buck is bald is true in s iff for every way w of making s precise Buck is bald is true    

Buck is bald is false in s iff for every way w of making s precise Buck is bald is false    

 

 

A vagueness frame is a structure S = <S, ⊑,W, D> where 

 1. S is a set of possible standards of precision 

 2. ⊑ is a relation of sharpening of standards 

 3. W, the set of possible worlds, is the set of all maximal elements in S: W = max(S) 

 4. D is a non-empty domain of individuals. 

 5. Completeability: for every s  S there is a w  W: s ⊑ w 

  

s1 ⊑ s2 means:  s2 is a sharpening of standard of s1, s1 is a relaxation of standard of s2 

Possible worlds are identified with possible totally sharp standards of precisition. 

Every partial standard s can be sharpened to one or more totally sharp standards. 

 

It will be useful to have two sets of operators in the language ⧠,  (quantifying over 

sharpenings) and ⧠,  (quantifying over relaxations).   

With Kamp 1975 we will for simplicity of presentation assume a language LV of predicate 

logic with only variables (i.e. you can add individual constants yourself) and the above 

operators. 

 

A vagueness model is a structure M = <S, F─, F+ > where S is a vagueness frame and  

 F+ and F─ are functions from standards and lexical items to interpretations, with the  

 following constraints: 

 For every n-place predicate P and s,s1,s2  S, w  W:  

1.  Fs
─(P)  Dn and Fs

+(P)  Dn 

2. Fs
─(P)  Fs

+(P) = Ø   (Non-overlap) 

3. if s1 ⊑ s2 then Fs1
─(P)  Fs2

─(P)  

                    and Fs1
+(P)  Fs2

+(P)  (Monotonicity) 

4. Fw
─(P)  Fw

+(P) = Dn   (Totality) 

 

We call Fs
─(P) the negative extension of P in s and Fs

+(P) the positive extension of P in s 

and define:  Fs
⊥(P) = Dn ─  (Fs

─(P)  Fs
+(P)), the gap of P in s. 

 

For one-place predicate P: 
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-Fs
+(P) is the set of individuals that, according to standard of precisition s, definitely count as 

P 

-Fs
─(P) as the set of individuals that, according to standard of precisition s, definitely count as 

not-P 

- Fs
⊥(P) is the set of individuals that, according to standard of precisition s are borderline 

between P and not-P. 

 

Note that the models I discuss here do not deal with higher-order vagueness:   we only have 

three options:  ─, + or ⊥, but the border between ⊥ and + is not treated as vague. 

 

The semantic constraints tell us: 

1. Negative and positive extensions allow for gaps:  we do not require in general that  

  Fs
─(P)  Fs

+(P) = Dn, for s  S.  Hence it is possible that Fs
⊥(P)  Ø. 

2. Negative and positive extensions are consistent: we do not allow Fs
─(P) and Fs

+(P) to  

 overlap, for any s  S. 

3. Negative and positive extensions are monotonic:  sharpening the standard of precision is 

interpreted as sharpening the standard of precisition for Fs
⊥(P):  from s1 to s2 elements 

 may move from Fs1
⊥(P) into Fs2

─(P) or Fs2
+(P).  

4. Extensions are total in worlds. 

 

There is, of course, another sense of sharpening standards of precisition whereby objects that 

at first counted as definite P’s become, on a more precise criterium, borderline, or even non-

P.  This notion too can be studied in this framework. 

Here you may want to introduce relation ≼P
+ (sharpening the criterium for P+ where s1 

≼P
+ s2

  entails that Fs2
+(P)  Fs1

+(P) and Fs1
─(P)  Fs2

─(P) (i.e. in this sense of sharpening, 

restricting the membership of P relaxes the membership of not-P). 

With respect to the relation ⊑, worlds that stand in the ≼-relation move not simply down in 

the relation ⊑, but down with respect to P+ but up with respect to P─. 

See Galit Sassoon’s dissertation and later work for much pertinent discussion, and a 

framework in which criteriums of sharpening are made explicit in the logical theory. 

 

We will assume a semantics that is not innovative with respect to identity and quantification:  

quantification is over possible objects, identity is a total relation;  Semantic complexities are 

hidden in an existence predicate which I will not discuss.  
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The semantics defines two relations simultaneously: 

 

⟦φ⟧M,s,g = 1 and ⟦φ⟧M,s,g = 0 

 

1. ⟦P(x1,...,xn) ⟧M,s,g = 1 iff <g(x1),…,g(xn)>  Fs
+(P)  

     ⟦P(x1,...,xn) ⟧M,s,g = 0 iff <g(x1),…,g(xn)>  Fs
─(P) 

2. ⟦(x1 = x2)⟧M,s,g = 1 iff g(x1) = g(x2) 

     ⟦(x1 = x2)⟧M,s,g = 0 iff g(x1)  g(x2) 

3. ⟦φ⟧M,s,g = 1 iff ⟦φ⟧M,s,g = 0 

     ⟦φ⟧M,s,g = 0 iff ⟦φ⟧M,s,g = 1 

4. ⟦(φ  ψ) ⟧M,s,g = 1 iff ⟦φ⟧M,s,g = 1 and ⟦ψ⟧M,s,g = 1   

     ⟦(φ  ψ) ⟧M,s,g = 0 iff ⟦φ⟧M,s,g = 0 or ⟦ψ⟧M,s,g = 0 

5. ⟦(φ  ψ) ⟧M,s,g = 1 iff ⟦φ⟧M,s,g = 1 or ⟦ψ⟧M,s,g = 1   

     ⟦(φ  ψ) ⟧M,s,g = 0 iff ⟦φ⟧M,s,g = 0 and ⟦ψ⟧M,s,g = 0 

 6. ⟦(φ → ψ) ⟧M,s,g = 1 iff ⟦φ⟧M,s,g = 0 or ⟦ψ⟧M,s,g = 1   

     ⟦(φ → ψ) ⟧M,s,g = 0 iff ⟦φ⟧M,s,g = 1 and ⟦ψ⟧M,s,g = 0 

7. ⟦xφ⟧M,s,g = 1 iff for every d  D: ⟦φ⟧M,s,gx
d = 1 

    ⟦xφ⟧M,s,g = 0 iff for some d  D: ⟦φ⟧M,s,gx
d = 0 

8. ⟦xφ⟧M,s,g = 1 iff for some d  D: ⟦φ⟧M,s,gx
d = 1 

    ⟦xφ⟧M,s,g = 0 iff for every d  D: ⟦φ⟧M,s,gx
d = 0 

9. ⟦⊥φ⟧M,s,g = 1 iff ⟦φ⟧M,s,g  1 and ⟦φ⟧M,s,g  0 

    ⟦⊥φ⟧M,s,g = 0 iff ⟦φ⟧M,s,g = 1 or ⟦φ⟧M,s,g = 0 

 

10. ⟦⧠φ⟧M,s,g = 1 iff for every s’  S: if s ⊑ s’ then ⟦φ⟧M,s’,g = 1 

       ⟦⧠φ⟧M,s,g = 0 iff for some s’  S: s ⊑ s’ and ⟦φ⟧M,s’,g = 1 

 

⧠φ is true in s iff φ is true in every sharpening of s 

 

11. ⟦∎φ⟧M,s,g = 1 iff for no s’  S:  s ⊑ s’ and ⟦φ⟧M,s’,g = 0 

       ⟦∎φ⟧M,s,g = 0 iff for some s’  S: s ⊑ s’ and ⟦φ⟧M,s’,g = 0 

 

∎φ is true if s iff φ is false in no sharpening of s 

 

12. ⟦⧠φ⟧M,s,g = 1 iff for every s’  S: if s’ ⊑ s then ⟦φ⟧M,s’,g = 1 

       ⟦⧠φ⟧M,s,g = 0 iff for some s’  S: s’ ⊑ s and ⟦φ⟧M,s’,g = 1 

 

⧠φ is true in s iff φ is true in every relaxation of s 

 

13. ⟦∎φ⟧M,s,g = 1 iff for no s’  S: s’ ⊑ s and ⟦φ⟧M,s’,g = 0 

       ⟦∎φ⟧M,s,g = 0 iff for some s’  S: s’ ⊑ s and ⟦φ⟧M,s’,g = 0 

 

∎φ is true if s iff φ is false in no relaxation of s 

 
∎φ expresses, in the strong Kleene three-valued semantics that we set up here, that φ 

eventually becomes true (φ is true in every world w such that s  w) 

 

Of course, with this we can introduce conditionals like: 
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 φ  ψ =df ⧠(φ → ψ) in every sharpening where φ is true, ψ is true as well 
 φ ⇨ ψ =df (φ  ψ) in no sharpening φ is true and ψ false. 

 

⟦φ ↣ ψ⟧M,s,g = 1 iff for every s1  S: 

 if s ⊑ s1 and ⟦φ⟧M,s1,g = 1 and for all s2: if s ⊑ s2 ⊑ s1 and ⟦φ⟧M,s2,g = 1 then s2=s1 

 then ⟦ψ⟧M,s1,g = 1 

 

As soon as you sharpen s to make φ true, ψ becomes true as well 

(i.e. ψ is true in every sharpening of s in which φ first becomes true) 

 

And also conditional relaxation relations: 

 

 φ  ψ =df ⧠(φ → ψ)  in every relaxation where φ is true, ψ is true as well 
 φ ⇨ ψ =df (φ  ψ) in no relaxation φ is true and ψ false. 

 

⟦φ ↣ ψ⟧M,s,g = 1 iff for every s1  S: 

 if s1 ⊑ s and ⟦φ⟧M,s1,g = 1 and for all s2: if s1 ⊑ s2 ⊑ s and ⟦φ⟧M,s2,g = 1 then s2=s1 

 then ⟦ψ⟧M,s1,g = 1 

 

As soon as you relax s to make φ true , ψ is true as well: 

(i.e. ψ is true in every relaxation of s in which φ first becomes true.) 

 

This makes it possible to have formulas of the form: 

 

 ⊥(P(x1)  ⊥(P(x2)  (P(x1) ↣ P(x2))  (P(x2) ↣ P(x1)) 

   

P(x1) and P(x2) are undefined on s, but as soon as you make one of them a P, the other 

becomes a P as well. 

 

 P(x1)  P(x2)  (⊥(P(x1)) ↣⊥(P(x2)))  (⊥(P(x2)) ↣⊥(P(x1))) 

 

Both x1 and x2 are P in s, but if you relax s to make one of them undefined, the other becomes 

undefined as well. 

 

We gave the following definition: 

 

11. ⟦∎φ⟧M,s,g = 1 iff for no s’  S:  s ⊑ s’ and ⟦φ⟧M,s’,g = 0 

       ⟦∎φ⟧M,s,g = 0 iff for some s’  S: s ⊑ s’ and ⟦φ⟧M,s’,g = 0 

 

∎φ is true if s iff φ is false in no sharpening of s 

 

An alternative definition is: 

 

11'. ⟦∎φ⟧M,s,g = 1 iff for every s’  S:  s ⊑ s’ then there is an s''  S: s' ⊑ s'' and ⟦φ⟧M,s’,g = 1 

       ⟦∎φ⟧M,s,g = 0 iff for some s’  S:  s ⊑ s’ and for every s''  S: s' ⊑ s'' ⟦φ⟧M,s’,g = 0 

 

∎φ is true if s iff every sharpening of s has a sharpening where φ is true. 
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We define: 

 

φ is monotonic iff s  S: if ⟦φ⟧s = 1 and s ⊑ s' then ⟦φ⟧s' = 1 and 

           if ⟦φ⟧s = 0 and s ⊑ s' then ⟦φ⟧s' = 0 and 

 

Claim:  if  φ is monotonic then:  

 ⟦∎φ⟧M,s,g =[definition 11] 1 iff ⟦∎φ⟧M,s,g =[definition 11'] 1 

 

 

Alternative definitions: 

 

⟦∎1φ⟧M,s,g = 1 iff for no s’  S:  s ⊑ s’ and ⟦φ⟧M,s’,g = 0 

⟦∎1φ⟧M,s,g = 0 iff for some s’  S: s ⊑ s’ and ⟦φ⟧M,s’,g = 0 

 

⟦∎2φ⟧M,s,g = 1 iff for every s’  S:  s ⊑ s’ then there is an s''  S: s' ⊑ s'' and ⟦φ⟧M,s’,g = 1 

⟦∎2φ⟧M,s,g = 0 iff for some s’  S:  s ⊑ s’ and for every s''  S: s' ⊑ s'' ⟦φ⟧M,s’,g = 0 

 

⟦∎3φ⟧M,s,g = 1 iff for every w  W:  if s ⊑ w then ⟦φ⟧M,w,g = 1 

⟦∎3φ⟧M,s,g = 0 iff for some w  W: s ⊑ w and ⟦φ⟧M,w,g = 0 

 

For monotonic sentences, these definitions don't make a difference, but for non-monotonic 

sentences they do.  For instance,  can be false for a while on for every precisification 

branch, but always becoming true at some point.  In that case  ∎1φ would be false, but ∎3φ 

would be true. 

Discussion in the 1985 dissertation by Frank Veltman and in my own 1986 dissertation. 

 

 

Truth-value gaps 

 

Let d  Fs
⊥(P) 

Then ⟦P(x)⟧M,s,gx
d  1 and ⟦P(x)⟧M,s,gx

d  0, hence ⟦P(x)⟧M,s,gx
d  1.   

Hence ⟦P(x)  P(x)⟧M,s,gx
d  0 and ⟦P(x)  P(x)⟧M,s,gx

d  1 

 

It straightforwardly follows from this that: 

Hence ⟦⧠(P(x)  P(x))⟧M,s,gx
d  0 and ⟦⧠(P(x)  P(x))⟧M,s,gx

d   1 

 

But ⟦∎(P(x)  P(x))⟧M,s,gx
d = 0 and ⟦∎(P(x)  P(x))⟧M,s,gx

d = 1 

 

We define: 

 

φ is supertrue relative to M,s,g  iff   ⟦∎(φ)⟧M,s,g = 1  

φ is superfalse relative to M,s,g  iff   ⟦∎(φ)⟧M,s,g = 1 

 

You can, if you want, maintain classical logic for vagueness by defining entailment in terms 

of supertruth.  See Fine, Kamp, van Fraassen. In fact, the logic of the worlds determines the 

super logic. 

 

Of course, we can also define: 
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P is vague relative to M,s,g iff for some d  D: ⟦⧫(P(x))  ⧫(P(x))⟧M,s,gx
d = 1 

A predicate P is vague in s if there are bordeline objects for P in s that can still end up either 

way, in P or in not-P. 

 

 

Kamp and Partee 1995 discuss the interaction between vagueness and conditionals. 

 

(9) a. A boy is a male child. 

     b.  A man is a male adult. 

     

The meaning definitions in (9) impose constraints on our modals: 

 

 For every M, s, d: 

 d  Fs
+(boy) iff d  Fs

+(male) and d  Fs
+(child) 

 d  Fs
─(boy) iff d  Fs

─(male) or d  Fs
─(child) 

 

 d  Fs
+(man) iff d  Fs

+(male) and d  Fs
+(adult) 

 d  Fs
─(man) iff d  Fs

─(male) or d  Fs
─(adult) 

 

We are interested in the following sentences: 

 

(10)  a. Bob is male. 

b. If Bob is a child, then Bob is a boy. 

        c. If Bob is an adult, then Bob is a man. 

 

Intuitively, given the meaning postulates, the above conditionals are true in any state s where 

bob  Fs
+(male): 

 

(11) a. child(bob) → boy(bob) 

        b. adult(bob) → man(bob) 

 

We do not get that result with material implication: 

 

If bob  Fs
⊥(child) and bob  Fs

⊥(adult), then bob  Fs
⊥(boy) and bob  Fs

⊥(man) 

 ⟦child(bob)  boy(bob)⟧M,s,g  1 and ⟦adult(bob)  man(bob)⟧M,s,g  1 

 

But the formulas in (12a) are true on any model M and state s, where bob  Fs
+(male), 

given the meaning postulates in (9): 

 

(12) a. ⧠(child(bob) → boy(bob)) 

        b. ⧠(adult(bob) → man(bob)) 

 

(12a) is true in s iff for every s’: if s ⊑ s’ and bob  Fs’
+(child) then bob  Fs’

+(man). 

Let bob  Fs
+(male), and let s ⊑ s’ and bob  Fs’

+(child). 

Since bob  Fs
+(male), and s ⊑ s’, bob  Fs’

+(male) ( by monotonicity). 

Hence, by the meaning postulate, bob  Fs’
+(boy). 

(12b) is true in s by a similar argument. 

 

Note that this, obviously means that also: 
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(12) a. ∎(child(bob) → boy(bob)) 

        b. ∎(adult(bob) → man(bob)) 

 

because ⧠φ → ∎φ holds.  
 

 

Comparatives. 

 

Let us now define some useful relations. 

Let P be a one-place predicate. 

 

 ⟦x1 ≺P x2⟧M,s,g = 1 iff g(x1)  Fs
─(P) and g(x2)  Fs

─(P); 0 otherwise 

 x1 is in not-P, while x2 is not 

 

 ⟦x1 ≻P x2⟧M,s,g = 1 iff g(x1)  Fs
+(P) and g(x2)  Fs

+(P); 0 otherwise 

 x1 is in P, while x2 is not 

 

 ⟦x1 ─P x2⟧M,s,g = 1 iff g(x1)  Fs
─(P) and g(x2)  Fs

─(P); 0 otherwise 

 x1 and x2 are both in not-P 

 

 ⟦x1 +P
 x2⟧M,s,g = 1 iff g(x1)  Fs

+(P) and g(x2)  Fs
+(P); 0 otherwise 

 x1 and x2 are both in P 

 

 ⟦x1 ⊥P x2⟧M,s,g = 1 iff g(x1)  Fs
⊥(P) and g(x2)  Fs

⊥(P); 0 otherwise 

 x1 and x2 are both in the gap of P 

 

With this we can define: 

 

 x1 P x2  x1 is at least as P as x2  =df 

 [x2 ≺P x1]  [x1≻P x2]  [(x1 ⊥P x2)  ⧠(P(x2) →P(x1))  ⧠(P(x1) →P(x2))]  

  [(x1 ─P x2)  ⧠((⊥(P(x2) → ⊥(P(x1))]  [(x1 +P x2)  ⧠((⊥(P(x1) → ⊥(P(x2))] 

 

x1 is at least as P as x2 is true in s iff one of the following situations obtains: 

1.  [x2 ≺P x1] 
In s, x2 is not-P and x1 isn’t 

2.  [x1≻P x2] 

In s, x1 is P and x2 isn’t  

3. [(x1 ⊥P x2)  ⧠(P(x2) →P(x1))  ⧠(P(x1) →P(x2))] 

      In s, x1 and x2 are in the gap, but in every sharpening where x2 is added to P, x1 is  

 already in P and where x1 is added to not-P, x2 is already in not-P 

4. [(x1 ─P x2)  ⧠((⊥(P(x2) → ⊥(P(x1))] 

     In s, x1 and x2 are not-P, but in every relaxation where x2 is removed from P, x1 was  

             already removed.  

5. [(x1 +P x2)  ⧠((⊥(P(x1) → ⊥(P(x2))] 

In s, x1 and x2 are P, but in every relaxation where x1 is removed from P, x2 was  

            already removed. 
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x1 >P x2  x1 is more P than x2  =df 

 [x2 ≺P x1]  [x1≻P x2]   

[(x1 ⊥P x2)  [⧠(P(x2) →P(x1))  ⧠(P(x1) →P(x2))    

(( x1≻P x2)]  ( x2≺P x1)) ]    

  [(x1 ─P x2)  ⧠((⊥(P(x2) → ⊥(P(x1))  ( x2 ≺P x1)]   

  [(x1 +P x2)  ⧠((⊥(P(x1) → ⊥(P(x2))] ( x1 ≻P x2)] 

 

x1 is more P than x2 is true in s iff one of the following situations obtains: 

1.  [x2 ≺P x1] 
In s, x2 is not-P and x1 isn’t 

2.  [x1≻P x2] 

In s, x1 is P and x2 isn’t  

3. [(x1 ⊥P x2)  [⧠(P(x2) →P(x1))  ⧠(P(x1) →P(x2))  (( x1≻P x2)]  ( x2≺P x1))] 

In s, x1 and x2 are in the gap, but in every sharpening where x2 is added to P, x1 is  

already in P and in every sharpening where x1 is added to not-P, x2 is already in         

 not-P,  and in some sharpening x1 is P and x2 isn’t or in some sharpeing x2 is in  

not-P and x1 isn’t. 

4. [(x1 ─P x2)  ⧠((⊥(P(x2) → ⊥(P(x1))  ( x2 ≺P x1)] 

In s, x1 and x2 are not-P, but in every relaxation where x2 is removed from P, x1 was  

            already removed, and in some relaxation x2 is not-P and x1 isn’t.  

5. [(x1 +P x2)  ⧠((⊥(P(x1) → ⊥(P(x2))] ( x1 ≻P x2)] 

In s, x1 and x2 are P, but in every relaxation where x1 is removed from P, x2 was  

            already removed, and in some relaxation x1 is P and x2 isn’t. 

 

Fact: P is a pre-order 

 

We define the equivalence relation P, is equally P as: 

 

  x1 P
 x2 iff x1 P x2 and x2 P x2  

 

We define: 

 

P is a linear degree predicate iff  P  is P -connected 

 

i.e.: P is a linear degree predicate iff for all x1, x2:  (x1 <P x2) or (x2 <P x1) or (x1 P x2) 

 

We have shown in chapter 1 that for linear degree predicate P the equivalence classes under 

P form a linear order, a scale. 

   

Gradable adjectives that express degrees along a fixed contextual mixture of dimensions are 

typically linear degree predicates (if we abstract away from sortal incorrectness):   

 

tall: either x1 is taller than x2 or x2 is taller than x1 or they are equally tall. 

 

 intelligent: either x1 is more intelligent than x2 or x2 is more intelligent than x1 or x1 

                                             and x2 are equally intelligent 
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If we fix the mixture of dimensions intelligent and keep it constant, arguably intelligent is a 

linear degree predicate.  If we don’t keep it constant, then is more intelligent than is not even 

a partial order, because: 

 

 x1 is more intelligent than x2 (wrt criteria a1…an)  and 

 x2 is more intelligent than x1 (wrt criteria b1…bm) 

 

The contextual dependency of adjective P on a specified of presupposed way of being P is 

similar to the dependency of modals on specified or presupposed modal bases. 

 

(13) a. Ronya is intelligent and she is not intelligent.   

        b. Ronya is intelligent in one way and  not intelligent in another way. 

 

So linearity is expressed in (14): 

 

(14) For each way of being intelligent, either Minoes is more intelligent than Ronya in a that 

        way or Ronya is more intelligent than Minoes in that way, or they are equally intelligent  

        in that way.  
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Comparison classes and degree modifiers (following Klein 1980) 

 

We now introduce vagueness models with comparison classes. 

 

A vagueness model with comparison classes is a structure M = <S, F > where S is a 

  vagueness frame and for every n-place predicate P and for every s  S: 

 Fs(P)  is a triple Fs(P) = <F(P), Fs,F(P)─(P), Fs,F(P)+(P) > where (for s,s1,s2  S, w  W) 

  1. F(P)  Dn 

  2. Fs,F(P)─(P)  F(P) and Fs,F(P)+(P)  F(P) 

    3. Fs,F(P)─(P)  Fs,F(P)+(P) = Ø 

4. if s1 ⊑ s2 then Fs1,F(P)─(P)  Fs2,F(P)─(P) 

                    and Fs1,F(P)+(P)  Fs2,F(P)+(P) 

5. Fw,F(P)─(P)  Fw,F(P)+(P) = F(P) 

 

We set: 

 ⟦P⟧M,s,g = Fs(P) 

 

and: 

 

 ⟦P(x)⟧M,s,g = 1 iff g(x)  +⟦P⟧M,s,g iff Fs(P)3 (which isFs,F(P)
+(P) ), etc. 

 

We have now moved away from classical logic even on the set of all worlds:  

if g(x)  F(P) then ⟦(P(x)  P(x))⟧M,w,g  1. 
 

We let the interpretation function F choose for each predicate P a comparison set  

 F(P).  Unlike the structure of standards S, the set of possible comparison sets of P on domain 

D is only constrained by the meaning of P.   

Thus the meaning of tall may tell us that interpretation function F can only chose comparison 

sets F(tall) which is a set of objects for which it is sortally correct to call them tall, or not tall.   

But if interpretation function FM assigns to tall comparison set F(tall)  D, then for every 

non-empty subset Y of F(tall), some interpretation function on M: FM’(tall) = Y, 

 

Of course we can assume that predicates P that are not sensitive to comparison sets lexically 

select interpretation functions F where F(P)= D.  

 

With this we can introduce comparison set restriction in the logical language. 

For simplicity we introduce the restriction only for lexical predicates: 

 

 If P, Q  PRED1 then P↾Q  PRED1 

 

 ⟦P↾Q⟧m,s,g = ⟦P⟧M,s,g + ⟦Q⟧M,s,g
3 

 

We define: for one-place predicate P, M,s,g and set X  DM: 

 

 Fs(P) + X = <F(P)  X, Fs,F(P)  X
─(P), Fs,F(P)  X

+(P)> .    
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So if Fs(small) = <D, Fs,D
─(small), Fs,D

+(small) > 

and   Fs(elephant) = <D, Fs,D
─(elephant), Fs,D

+(elephant) > 

 

Then ⟦tall↾elephant ⟧M,s,g = Fs,D(small) + Fs,D+(elephant) 

 
Let Fs,D+(elephant) = ELEPHANT 

 

Then ⟦small↾elephant⟧M,s,g = <ELEPHANT, Fs,ELEPHANT
─(small), Fs,ELEPHANT

+(small) 

 

This interpretation devides the elephants into the clearly tall ones and the clearly not tall ones. 

 

With this, (11a) entails (11c) but not (11b): 

 

(11) a. Jumbo is a small elephant  elephant(jumbo)  small↾elephant(jumbo) 

        b. Jumbo is small   small↾C(jumbo) 

        c. Jumbo is small for an elephant small↾elephant(jumbo) 

 

Note the following: 

 

If Fs(small) = <D, Fs,D
─(small), Fs,D

+(small) > and Fs,D
+(small) = SMALL 

then:    

  

⟦small↾small⟧M,s,g =  Fs(small↾small) where: 

      Fs(small↾small) = <SMALL, Fs, SMALL
─(small), Fs, SMALL

+(small) > 

 

If P  PRED1  then very(P)  PRED1 

 

⟦very(P)⟧m,s,g = Fs(very(P))  where 

    Fs(very(P)) = <F(P), Fs,F(P)
─(very(P)), Fs,F(P)

+(very(P)) > and: 

   

  1. Fs,F(P)
+(very(P)) = Fs(P↾P)3   

The positive extension of P↾P) 

  2.  Fs,F(P)
─(very(P)) = (Fs(P)1 ─ Fs(P)3)  Fs(P↾P)2 

The negative extension and the gap of P together with the negative extension of P↾P 
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In a picture: 

                  ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ 

 

small                    small ─       small + 

 

 

small↾small        small↾small ─         small↾small + 

 

 

very small  very small ─                  very small + 

  

 

small↾small   ‘small in the land of the small’  

not small↾small  ‘not-small in the land of the small’ 

 

 very small  ‘small in the land of the small’ 

not very small  ‘not small, borderline small or not-small in the land of the small’ 

 

 

Of course, for non-gradable predicates like cat we will assume that the positive extension of 

cat↾cat is just cat, and hence the negative extension is empty.  This means that, on this 

interpretation very is not doing anything on cat.  

 

 
Comparison (based on, or inspired by, McConnell-Ginet and Klein) 

 

Instead of defining ⟦(x1 >P x2)⟧M,s,g = 1, I will give an ‘algorithm’ for building Fs,F(P)
+(>P). 

 

Above I introduced some useful relations in the logical language.  Here I introduce them as 

relations in the models (suppressing the relevant interpretation parameters): 

 

d1 ≺Fs(P) d2  iff d1  Fs
─(P) and d2  F(P) ─ Fs

─(P) 

d1 ≻ Fs(P) d2 iff d1  Fs
+(P) and d2  F(P) ─ Fs

+(P) 

d1 ─ Fs(P) d2 iff d1d2  Fs
─(P) 

d1 + Fs(P)
 d2 iff d1,d2  Fs

+(P)  

d1 ⊥ Fs(P) d2 iff d1,d2  Fs
⊥(P) 

 

Let M = <S,F> be a model, s  S and g an assignment, P  PRED1. 

 

1. >P
1 = {<d1,d2>: d2 ≺ Fs(P) d1 or d1 ≻ Fs(P) d2} 

 

 

 

 

 

 

 

 

 



45 

 

1+  Let P+ = Fs,F(P)
+ and +(Fs(P)) = < P+, Fs,P+

─(P), F s,P+
+(P)> 

 >P
1+ = {<d1,d2>: d2 ≺ +(Fs(P)) d1 or d1 ≻ +(Fs(P)) d2} 

 

1⊥ Let P⊥ = Fs,F(P)
⊥ and ⊥(Fs(P)) = < P⊥, Fs,P

⊥─(P), F s, P
⊥+(P)> 

 >P
1+ = {<d1,d2>: d2 ≺ ⊥(Fs(P)) d1 or d1 ≻ ⊥(Fs(P)) d2} 

 

1─ Let P─  = Fs,F(P)
─ and ─(Fs(P)) = < P─, Fs,P

─   ─(P), F s,P
─ +(P)> 

 >P
1─ = {<d1,d2>: d2 ≺ ─(Fs(P)) d1 or d1 ≻ ─(Fs(P)) d2} 

 

Continue the construction for 1+ +, 1+ ⊥, 1+ ─, 1⊥ +, 1⊥ ⊥, 1⊥ ─, 1─ +, 1─ ⊥, 1─ ─ , etc. 

 

2. Let >P
 be the union of all these relations 

3. Let >P
 TR  be the transitive closure of that set: 

 >P
 TR = {<d1,d2>: for some d3: <d1,d3>  >P

 and <d3,d2>  >P
} 

4.  Fs,F(P)
+(>P) = >P

 TR 

 

The idea is the following: 

1. You start with Fs(small) and decide that anybody in the positive extension of small 

according to Fs(small) is taller than anybody in F(small)  not in the positive extension of 

small, and anybody in F(small)  not in the negative extension of small is smaller than 

anybody in the negative extension of small. 

2.  We are left with pairs of objects that are either both in the positive extension of small, or 

both in the negative extension of small or both in F(small) but in the gap. 

-We look at the interpretation of small with the comparison set reset to each of these three 

sets: So we ask: 

-Restrict yourself to the people that are small according to s and ask again:   

of these people, who is small, who is borderline small and who isn’t small. 

-Restrict yourself to the people that are borderline small according to s and ask again:   

of these people, who is small, who is borderline small and who isn’t small. 

-Restrict yourself to the people that are not small according to s and ask again:   

of these people, who is small, who is borderline small and who isn’t small. 

 

The idea is:   

 

on the postive extension of small you reinterpret small as: small for a small person 

on the gap of small you reinterpret small as: small for a borderline small person 

on the negative extensions of small you reinterpret small as: small for a non-small person 

 

And you continue on those:  on the domain of people that are small for a small person, you 

reinterpret small  as small within the class of people who are small for a small person, etc. 

 

  

If we let this procedure define smaller than in s, >small,s, we can go on to define a less standard 

dependent definition, by associating with s a set Rs, consisting of s and a chosen set of 

standards s’ such that s’ ⊑ s.   

 

 >P,Vs  = { >P,s’: s’  Vs}TR  
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The idea would be that while in standard s two objects d1 and d2 may not be distringuishable, 

even with respect to comparision set {d1,d2}, because the standard s places both without any 

doubt in the positive extension of P, it may be the case that on a liberalized standard, only one 

of them is without doubt put in the positive extension of P.  In that case, we will want to say 

that the latter one is more P than the first, even though s doesn’t distinguish them.  

 

 
      

     1 2 3 4 5 6 7 8 9 10 11     1 2 3 4 5 6 7 8 9 10 11    1 2 3 4 5 6 7 8 9 10 11        1 2 3 4 5 6 7 8 9 10 11 

 

 

 

              1 2 3 4 5 6 7 8 9 10 11                           1 2 3 4 5 6 7 8 9 10 11                1 2 3 4 5 6 7 8 9 10 11 

 

 

 

      1 2 3 4 5 6 7 8 9 10 11                                                                               1 2 3 4 5 6 7 8 9 10 11 

  

 

 

                 s                                                          1 2 3 4 5 6 7 8 9 10 11 

 

 

 

       1 2 3 4 5 6 7 8 9 10 11                        1 2 3 4 5 6 7 8 9 10 11 

 

 

     

                  1 2 3 4 5 6 7 8 9 10 11                   1 2 3 4 5 6 7 8 9 10 11                1 2 3 4 5 6 7 8 9 10 11 

 

 

 

                  1 2 3 4 5 6 7 8 9 10 11                         1 2 3 4 5 6 7 8 9 10 11               1 2 3 4 5 6 7 8 9 10 11 

 

 

 

                  1 2 3 4 5 6 7 8 9 10 11                                                                            1 2 3 4 5 6 7 8 9 10 11 

 

 

 

                                             1 2 3 4 5 6 7 8 9 10 11 

 

 1. In s: 1234 < 5678 < 9 10 11 

 2. :  5  < 67 < 8 

 3. : 1 < 23 < 4 9 < 10 11 

 hence:  1 < 23 < 4 < 5 < 67 < 8 < 9 < 10 11 

   2 ~ 3, 6 ~ 7, 10 ~ 11 

 

P      

     1 2 3 4 5 6 7 8 9 10 11     1 2 3 4 5 6 7 8 9 10 11    1 2 3 4 5 6 7 8 9 10 11        1 2 3 4 5 6 7 8 9 10 11 
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              1 2 3 4 5 6 7 8 9 10 11                           1 2 3 4 5 6 7 8 9 10 11                1 2 3 4 5 6 7 8 9 10 11 

 

 

 

      1 2 3 4 5 6 7 8 9 10 11                                                                               1 2 3 4 5 6 7 8 9 10 11 

  

 

 

                 s                                                          1 2 3 4 5 6 7 8 9 10 11 

 

 

 

       1 2 3 4 5 6 7 8 9 10 11                        1 2 3 4 5 6 7 8 9 10 11 

 

 

     

                  1 2 3 4 5 6 7 8 9 10 11                   1 2 3 4 5 6 7 8 9 10 11                1 2 3 4 5 6 7 8 9 10 11 

 

 

 

                  1 2 3 4 5 6 7 8 9 10 11                         1 2 3 4 5 6 7 8 9 10 11               1 2 3 4 5 6 7 8 9 10 11 

 

 

 

                  1 2 3 4 5 6 7 8 9 10 11                                                                            1 2 3 4 5 6 7 8 9 10 11 

 

 

 

                                             1 2 3 4 5 6 7 8 9 10 11 

 

 1. In s: 1234 < 5678 < 9 10 11 

 2. :  5  < 67 < 8 

 3. : 1 < 23 < 4 9 < 10 11 

 hence:  1 < 23 < 4 < 5 < 67 < 8 < 9 < 10 11 

   2 ~ 3, 6 ~ 7, 10 ~ 11 

  

P is a linear degree predicate iff P is connected. 

Lexical stipulation:  scalar adjectives denote lexical degree predicates 

(well, relative to a fixed domain, see Kamp 1975)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

Conceptual Program (initiated by Kamp 1975) 

 

Notions of degrees, scales, and comparison are conceptually derived notions, derived from 

the basic semantics of the adjectives.  

 

 talladjective + er = taller 

 

(Against this von Stechow 1984:  tallroot + er = taller; tallroot + Ø = talladjective) 

 

Constrain the theory of adjective meanings with conceptually plausible axioms, and prove 

that the comparison structure thus defined is rich enough to be a useful theory of degrees, 

 

 

  measure structures 

 

              equivalence classes 

 

 

  comparison relation 

 

    definition 

 

 

          conceptual structure of adjective meanings    isomorphism 

 

 

 

         underlying comparison relation 

 

 

 

Let us assume an assignment g. 

Let V  S be the set of standards compatible with the world as far as we know it.   

Let us assume that for every s  V: ⟦x1 >tall x2⟧M,s,g = 1 

 

Then we know the following things: 

 

1.  for no s  V: g(x2)  Fs
+(tall) and g(x1)  Fs

+(tall) 

2.  for no s  V: g(x1) Fs
─(tall) and g(x2)  Fs

─(tall) 

3.  for no s  V: g(x1)  Fs
⊥(tall) and g(x2)  Fs

⊥(tall) and  

     for some s’: s ⊑ s’ and g(x2)  Fs’
+(tall) and g(x1)  Fs’

+(tall) 

4.  for no s  V: g(x1)  Fs
⊥(tall) and g(x2)  Fs

⊥(tall) and  

     for some s’: s ⊑ s’ and g(x1)  Fs’
─(tall) and g(x1)  Fs’

─(tall) 

5.  for no s  V: g(x1)  Fs
─(tall) and g(x2)  Fs

─(tall) and 

     for some s’: s’ ⊑ s and g(x1)  Fs’
─(tall) and g(x2)  Fs’

─(tall) 

6.  for no s  V: g(x1)  Fs
+(tall) and g(x2)  Fs

+(tall) and 

     for some s’: s’ ⊑ s and g(x2)  Fs’
+(tall) and g(x2)  Fs’

+(tall) 
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Thus, the truth of x1 is taller than x2 requires not just that certain standards are not in V, but 

also that in the relation ⊑ as it relates worlds in V to other worlds, there is a patterns of gaps, 

absenses in comparision to a relation that does not omit any logical possibility. 

 

This is exactly what we use accessibility relations for: to encode modal patterns which omit 

logical possibilities, so that we can regard the possibilities and connections between 

possibilities that we do find as a different kind of possibility, and as modal connections of a 

different nature than logical entailment,  

 

This is illuminating and can be philosophically justified in the context of modal logic (see  

especially the works of David Lewis and of Robert Stalnaker).   

But in the case of the conceptual program of reducing the semantics of comparatives to trhe 

semantics of positive adjectives, there is a conceptual problem.   

The truth of  x1 is taller than x2 depends technically on particular constraints on the standards 

in our set of standards V, and  the part of logical space (i.e.their place in ⊑) where they are 

located.  But, while we treat the notions involved in analogy to modal notions, they are de 

facto not modal notions. Even though we do not know which of the worlds extending some 

standard in V is the real world, we still assume that they are ultimately standards concerning 

the facts in the real world.   

And this means that the particular structure of gaps and absenses around the worlds in V 

cannot be regarded as encoding modal facts (as they do in modal logic), but must be regarded 

as encoding facts about the real world.   

In other words, we must assume that the structure around the worlds in V is the way it is, 

because of the facts in the real world.  This means that the structure around the worlds in V is 

ultimately derived from a set of witnessing facts in the real world. 

 

But then, in terms of conceptual reconstruction, it is only fair to ask:  which are the facts that 

witness the structure around the worlds in V? 

 

Kamp 1975 does not answer this question, and in fact, asked in this way, the natural answer 

is:  well, of course, in this particular case, the fact that g(x1) is, in the real world, has a certain 

height, and g(x2) has a certain height, and the first height is smaller than the second.   

This, of course, is circular.  If this is the answer to the question, then the conceptual program 

doesn’t derive the comparative relation conceptually from the semantics of positive 

adjectives:  it derives some comparative relation, which is calibrated (via manipulating the 

structure of standards V) to fit the natural comparative relation which we find in the real 

world.   
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Conceptual approach (Kamp, McConnel-Ginet, Klein, Doetjes) 

-Vague adjectives:  <⟦tall⟧− , ⟦tall⟧⊥, ⟦tall⟧+ 

-Primitive comparison relation 

-Definiton of comparison and scales in precisification structures 

 

Scalar approach (Cresswell, von Stechow, Bartsch and Vennemann, Kennedy)  

-measure function:  HEIGHTunit: D → ℝ+ 

-order:   >HEIGTH  = λyλx.HEIGHTunit(x) >ℝ HEIGHTunit(y)     

-boundaries  <HEIGHTunit
−, HEIGHTunit

+> 

 

⟦taller⟧ = >HEIGTH 

⟦shorter⟧ = >HEIGTH 

⟦tall⟧   = λx.HEIGHTunit(x) >HEIGHT HEIGHTunit
+ 

⟦short⟧ = λx.HEIGHTunit(x) <HEIGHT HEIGHTunit
− 

 

 

 

Cross linguistic data:  quite some languages have Klein-like constructions like: 

 He was tall among men                      = He was the tallest man 

 A was tall among the two (A and B)  =  A was taller than B   

 

compare Biblical Hebrew:  shir ha shirim 1-8 

 ha yafa be nashim = the beautiful among women = the most beautiful woman 

 

also:  yoter-more, hachi-most have no lexical correspondence in Biblical Hebrew. 

 

Stassen 1985:  20 out of 110 languages go like Klein. 

 

Also: comparatives and the scalar system only develop around age 4-5, while the basis of the 

underlying comparison relation may be innate (and shared with mammals).  

 

Suggestion:  a form of both systems may be relevant, and at age 4-5 the two adjectival 

meanings are identified: ⟦tall⟧+ = λx.HEIGHTunit(x) >HEIGHT HEIGHTunit
+ 
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Advantages of the conceptual approach 

 

1. Conceptually ‘simple’ semantics: (1b) 

   a.  Comparative is an operation on the root tall 

   b.  Adjective meaning = root meaning 

 

2. Standard analysis: 

 Measure function HEIGHT maps pairs of individuals and worlds onto degrees in a 

            scale of height.  (following Lewis, Cresswell): 

  

d1 >TALL,w d2 iff  HEIGHTw(d1) >SCALE(HEIGHT) HEIGHT(d2) 

 

or: 

 Measure relation HEIGHT associates with each individual and world an initial 

            interval of a scale of height (following von Stechow, Heim): 

 

d1 >TALL,w d2 iff  HEIGHTw(d1) ─ HEIGHTw(d2)  Ø 
 >SCALE(HEIGHT) HEIGHT(d2) 

 

 Both require us to associate with gradable predicates as scale of numerical values. 

 

Quantitative analysis, takes measurable adjectives as a model for all gradable predicates. 

But many gradable predicates do not really have numerical values, but only tongue-in-cheek 

values: 

 

 (12) a.  Mary is more lovely than Jane 

         b.  Mary is twice as lovely as Jane. 

 

(Although, you do need to consider the logic of cases like (12b), as in (13): 

 

 (13) a. Ronya is twice as lovely as Minoes 

         b Poekie is twice as lovely as Ronya 

         c  Poekie is four times as lovely as Minoes ) 

 

 

Also, think about Ruud is twice as fat as Fred 

Not in terms of weight, but in terms of bulging out of a standard form. 

We don’t have degrees of bulging, it’s just that for Ruud, there’s more of it, on more sides, 

etc.   

 

Cf. Jennie Doetjes’ 2011 Amsterdam Colloquium paper. 
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Problems 

 

Fundamental problem with the analysis (including the modalization): 

 

Vlad the Empaler (the model for Count Dracula) and Gilles de Rais (the companion of Jeanne 

d’Arc), or for Dante, Judas Iskarioth and Brutus. 

 

On the positive side:  Albertine and Odette. 

 

Look at (14): 

 

 (14) a. Vlad the Empaler and Gilles de Rais are both quintessentially despicable, but  

                        Gilles is even more despicable than Vlad. 

        b. Albertine and Odette are in my world absolutely and totally the most lovely 

                       beings.  But Albertine is just a tad more lovely than Odette. 

 

In order for the comparative to be true, the above analysis must assume that  

either gilles  Fs,{vlad,gilles}
+(despicable) and vlad  Fs,{vlad,gilles}

+(despicable) or 

          vlad  Fs,{vlad,gilles}
─(despicable) and gilles  Fs,{vlad,gilles}

─(despicable) 

or that this holds for one of the relaxations of s in Rs.   

 

To me this seems incorrect:  any interpretation of despicable that allows Vlad or Gilles to 

escape from the positive extension of despicable misses the point about what despicable 

means relative to our current standard.  The same is true with Albertine and Odette.  If in 

order to say that Albertine is more lovely than Odette, I have to recognize a standard relative 

to which one of them is lovely and the other isn’t, or, worse, a standard relative to which one 

of them is not-lovely, misses the point about my standards for lovely:  such a standard 

changes the meaning of the word lovely, and shouldn’t be in the ball park to start out with. 

 

At first sight, we may give the following rebuttel: 

What Klein is after, besides the conceptual reduction,  is a formalization of the basic idea of 

McConnell-Ginet’s analysis: 

 

It’s not that we need to assume that there is a standard relative to which Vlad is not 

despicable.  What the analysis tries to capture is that: 

 

 Gilles is very very very very despicable and Vlad is only very very very despicable. 

 

I grant this, but McConnel-Ginet did not herself give a conceptual reconstruction of this idea, 

and hence it depends on the analysis of very despicable whether or not the criticism is valid 

or not.   

 

Klein and McConnell-Ginet’s analysis of the cmparative in fact quantifies over functions like 

very and very very and very very very.  let K be the class of such functions: 

 x1 >P x2 iff  f  K[ f(P) (x1)   f(P) (x2) ] 

 

(f could be, for instance, very very very) 
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The crux of the bisquit lies in the definition of what it means to be a function like very and 

very very.  What these functions do is easy to explain relative to a scale:  They take the 

extension of the predicate P and map it onto the extension of the predicate f(P) which right-

shifts the positive extension with respect to P along the scale associated with P. 

 

As in the case of Kamp’s definition of the comparative given earlier, if you do not define this 

in terms of conceptual concepts that do not rely on scales, your conceptual reduction has not 

been succesful, and you have merely defined one scalar concept in terms of another (which 

may be independently useful, by the way). 

 

When we take another look at Klein’s reduction then we see that his analysis is indeed a true 

conceptual reconstruction of the comparative, but we also see that the problem that I brought 

up does not go away:  I agree that McConnell-Ginet’s definition of the comparative is a 

viable one, but the problem lies hidden in the analysis of very P, and with that of functions 

‘like’ very P. 

The crux of Klein’s analysis here is that we do not simply assign very P to a subset of 

FF(P)
+(P), but that we assign it FF+(P)

+(P), the positive extension of P on the comparison set 

F+(P).  And this is the aspect of the analysis that the scalar order is constructed out of: 

 

 When we look at who is tall within the tall set, that’s going to be the taller ones. 

 

So, I don’t think that without this aspect, the analysis is going to work.  But this ius exactly 

the aspect that I criticized above: 

 

When it comes down to it, I think that the notion x1 is more despicable than x2 cannot be 

reduced completely to there is a comparison set and standard relative to which x1 is 

despicable and x2 is not. 
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 More problems 

 

There are serious questions about the construction of scales in this way. 

In essence, if you derive scales via equivalence relations, you will never get more degrees, 

i.e. scalar values than there are individuals compared. 

 

-Thus, on a finite domain you will only get finite scales 

-On infinite domains, the above construction will only get you countable scales. 

 This is not necessarily a disadvantage, for instance, computationally.  Some discussion of 

rationals versus reals in van Hambalgen and Hamm, The proper treatment of events. 

But it is a disadvantage if your scalar semantics relies on notions like bounds, supremums, 

infimums. 

-On domains where you do want scalar values, and even on domains where you don’t, you do 

want a notion of distance to be part of the scale.   

 

There are various ways in which you can do something about these problems. 

 

Example 1: Height 

Equivalence classes will only give you height-classes for the objects there actually are and 

not for heights in between, or above what we have.   

What do we do with (15): 

 

(15) Nobody can be smaller than Jane but taller than Emma because there is no height 

       between Jane and Emma. 

 

Introducing intermediate heights is not a real problem if we allow besides the individuals in 

the domain also their parts.  If all my parts (and by that I do not just mean my body-parts)  

are in principle in the domain as well, then a shaving principle can introduce enough 

intermediate height:  there is my height, the height of me with my hair shaved,  the height of 

me with the skin of the top of my head shaved, etc… 

 

A second way of introducing intermediate heights is modally, by composing the scale not just 

from actual objects, but from possible objects as well.  But you have to be careful here, a 

judgement about whether there could be someone of intermediate height would have to be 

reconstructed as a non-scalar statement.  You run the risk here of adding possible objects just 

to fit in the scale. 

 

Example 2: Distances 

In my world, everybody (including me) is drab, but Albertine and Odette are not only lovely, 

they are very very very very much more lovely than anybody else. 

On my notion of loveliness, we get only two equivalence classes:  everybody else  Albertine 

and Odette, or three, everybody else, Albertine and Odette. 

 

Or compare huggability.  My pets are electric eals, jellyfish, and Ronya, my cat. 

Again, there are three equivalence classes, hence three degrees of huggability. 

How will you express that Ronya is a lot more huggable than any of my other pets. 
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Direction of resolution. 

The standard scalar theory generalizes to the worst case:  it equips scales with the topology 

and arthmetics requires for quatitative measure scales.  The conceptual theory (based on 

Klein) makes the scales clearly not rich enough, and suffers from the Albertine-Odette 

problem.   We do not need to adhere to the conceptual ideology to be attracted to deriving as 

much as possible of the  comparison relation from the positive gradable adjective semantics.     

(see Doetjes).  But we must resolve the Albertine-Odette problems first, because, arguably, if 

we do not  accept the last steps in the Albertine-Odette case, we don’t get the right 

comparison relation, because Albertine and Odette come out as equally lovely. 

 Let us take the order we get with the Klein procedure: ≤P,klein.  It determines an 

equivalence relation P,klein.  Let B be a block of the corresponding partition.  We got to B, 

because at some stage s of the Klein-algorithm, we derived a triple <X,FX
─(P),FX

+(P)> where 

either B = FX
─(P), or B = FX

⊥(P) or B = FX
+(P), and B was not further refined. 

 I suggest that at this point we give up the conceptual ideology, and accept that the 

basis of further divisions may be comparative facts that are not reducible any further in the 

Klein procedure.  However, taking stage s to be a standard, we have now a situation 

  <Xs,Fs,X
─(P),Fs,X

+(P)> to which we can apply Kamp’s semantics: 

 For Block B and stage s, we establish P,kamp,s relative on the elements of  B.  

Relevant for this is only what B was at stage s:  FX
─(P), FX

⊥(P) or FX
+(P).  Depending on 

which it is, the relevant clause of the Kamp definition applies.  For instance, Albertine and 

Odette are clearly, when the refinement process stops in B = Fs,X
+(lovely).  The relevant 

Kamp clause tells us that Albertine is more lovely, if every reduction of s that takes Albertine 

out, takes Odette out first, and some reduction s’ of s takes Odette out, but not Albertine. 

 Waiddaminute!  Didn’t we just tell Klein that we weren’t prepared to do that.  We 

told Klein that we were not prepared to call Albertine lovely and Odette not.  That means that 

if we were put in state s’, we would refuse to  accept that as a state in which lovely means 

what it means.  This is why the process of deciding, on smaller and smaller sets stops before 

it reaches s’.  But we can use s’ counterfactually in evaluating just the question:  don’t worry, 

neither is going to get out, but who would get out first?   

The last stage, then, is counterfactual (and that is, of course, in essence what Kamp’s 

definition imitates).  

 

 So we have: 

>P,klein   

and  

>P,kamp, =  

 {>P,kamp,s: B  P.klein and s is the stage of the Klein-procedure where B stabilized}   

  

And we can now define: 

 >P = [>P,klein   >P,kamp,]
TR (the transitive closure of the union). 

 

As I indicated under the earlier discussion concerning the Kamp definition, I do not believe 

that with this the conceptual reduction is succesful:  I think the structure of standards around s 

supporting the counterfactual is indicative of the existence of a witnessing conditional fact 

(Albertine is more lovely than Odette), rather than producing successfully such a fact. 

 Also note that, with this modified analysis, I also do not think that Klein is succesful 

in giving a succesful conceptual reconstruction of the other essential degree notion that he 

uses, namely:  very.  It is not true that I am ever willing to say that Albertine is lovely, but 

Odette is not.  But, with McConnell-Ginet I am willing to say that Albertine is veryn+1 lovely, 

but Odette is only veryn lovely, not veryin+1 lovely.  But that means that the procedure 
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definition Klein propeses for very breaks down at exactly the same point where the 

comparsative breaks down:  when it comes to just Albertine and Odette, very lovely does not 

mean:  lovely in the land of the lovely.  And again, maybe there we can reconstruct it as: if 

you had to choose one to remove first, it would be Odette.       

 Now suppose we have the corrected comparative relation >P.  We take equivalence 

classes with our new equivalence relation P
. 

 If the adjective we started out with was a mono-dimensional gradable adjective, the 

resulting structure is a linear order. 

 Now instead of associating with the scalar adjective directly a full-blown real-valued 

scale, we can start piecemeal  from the other side. We get, of course, the linear order <P, < > 

of the equivalence classes.  Instead of assuming that these form (part of) one single scale, we 

can assume that the induced scale is a set of homomorphisms into R.  The semantics, then, 

puts  constraints on this set, but there is no assumption that there is necessarily something 

which is the scale associated with P (cf. Robert van Rooy’s paper on vagueness). 

 One thing that would  be expressed at this level, is a constraint that every 

homomorphism maps my electric eals and jelly fish on a degree of huggability that is 

considerably smaller than that of Ronya.  In other words, constraints on distance between 

equivalence classes are expressed here.   

As far as I am concerned, this is also the natural place to express the meaning of the adjective 

modifier very, in terms of distance between degrees.  But the distance constraints may be 

approximative:  twice as lovely need not be literally twice as lovely, it tells you that the 

homomorphisms map two degrees at some approximate distance. 

Semantic scalar constraints can be incorporated too, like the constraint that only scales with a 

maximum are appropriate for certain adjectives (like clean), but not for others (like dirty). 

 But the scalar values themselves are not necessarily numbers, and do not necessarily 

have a quantitative topology defined on them. 

 

In other words:  you determine qualitatively who is more lovely than whom, and you 

determine qualitatively how much more lovely.  After that, you map this onto a set of scales:  

the scales compatible with the qualitative scale, using equivalence relations and constraints. 

 

This means that there are initially no degrees of loveliness:  these are derived. 

 

Thus, we determine 'qualitatively' what it means that Ruud is 'twice as fat' as Fred by 

comparing 'on the eye' for each the material that bulges outside a Standard model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Fred      Ruud 
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We do not start out for fat with a measure lipels such that Fred is n lipels fat and Ruud is 2n 

lipels fat. 

 

 

Note about the counterfactual way out 

  

Klein determines all cases extensionally: 

x is in P+ relative to {x,y} and y is not in P+ relative to {x,y} 

x is in P− relative to {x,y} and y is not in P− relative to {x,y} 

 

This leaves the cases of Odette and Albertine and of Vlad and Gilles. 

 

Assume that here we access the modal theory and determine counterfactually who gets in 

first/who goes out first.  Let this determine the ultimate comparative relation. 

 

Technically this could work, of course, but I still think that this is fundamentally changing the 

meaning of what counts as lovely, even if counterfactually, i.e. resetting the meaning of what 

counts as lovely. 
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2.3. QUESTIONS AS PARTITIONS 

 

Groenendijk and Stokhof 1985, Studies in the Semantics of Questions and the Pragmatics of 

 Answers, PhD Diss. University of Amsterdam 

Groenendijk and Stokhof 1990, ‘Partitioning logical space.’ (both on their webpages). 

 

(1) a. Fred believed that Ronya was asleep. 

      b.  believew(Fred, {v  W: asleepv(Ronya)=1} ) 

 

Fred stands in world w in the believe-relation to a propostion: 

 {v  W: asleepv(Ronya)=1} 

 The set of worlds v in which asleep maps Ronya onto truthvalue 1. 

 

Fact 1:  that-complements and wh-complements can be conjoined: 

 

(2)  Fred knows that there is going to be a party, whether it is come as you are, and who is 

       going to come. 

 

Fact 2: Entailment relations with know and with tell between that-complements and  

wh-complements. 

 

(3)  a.  Fred knew whether Buck was angry. 

      b1. Buck was angry  

      c1. Fred knew that Buck was asleep.  

 

a.  Fred knew whether Buck was angry. 

      b2 Buck wasn’t angry 

c2 Fred knew that Buck wasn’t angry.  

 

Not to do with the factiveness of know: 

 

 (4)  a.  Fred told me at some point whether Buck was angry. 

      b1. Buck was angry         

c1. Fred told me at some point that Buck was angry. 

 

  a.  Fred told me at some point whether Buck was angry. 

      b1. Buck wasn’t angry         

c1. Fred told me at some point that Buck wasn’t angry. 

 

 

Cf.  (4') 

 

(4') a. Fred told me that Anna Sophie won the Songfestival, but he lied, she didn't win. 

          ✓But he did tell me that Anna Sophie won. 

      b. Fred told me that who won the Songfestival, Anna Sophie, but he lied, she didn't win. 

          #But he did tell me who won. 

       

 

 

 



59 

 

Fact 3: Some verbs only take that-complements, some verbs only take wh-complements. 

 

(5) a. ✓Fred believed that Buck was angry. 

 b.  #Fred believed whether Buck was angry 

 

 c.  #Fred wondered that Buck was angry. 

 d. ✓Fred wondered whether Buck was angry. 

 

Also inferences with other wh-complements: 

 

(6) a. At that point Fred knew who was the murderer. 

 b. Jack was the murderer 

 c. At that point Fred knew that Jack was the murderer. 

 

On the strongest theory: 

 

(6) a. At that point Fred knew who was the murderer. 

 b. Jack wasn’t the murderer 

 c. At that point Fred knew that Jack wasn’t the murderer. 

 

Exhaustiveness: 

 

(7)  a. Fred knows who has passed the test. 

 b Jane, Mary and Joanna are the ones who passed the test. 

 c. Fred knows that Jane, Mary and Joanna have passed the test. 

 

Problemetic case: 

 

(8) a. Fred knows which prime numbers are even 

 b. 2 is the only even primenumber 

 c. Fred knows that 2 is the only even primenumber 

 

 a. Fred knows which prime numbers are even 

 b. 7919 is a prime number, but not an even primenumber 

 c. Fred knows that 7919 is a prime number, but not an even primenumber 

 

Groenendijk and Stokhof would argue that you don’t ‘really’ know which prime numbers are 

even if you don’t know what the prime numbers are (i.e. if for you the set of prime numbers 

can vary from world to world).  I don’t agree with that, but once we have defined the stronger 

semantics, we can see various ways of weakening it. 

  

Groenendijk and Stokhof: 

Semantic answer: complete exhaustive direct answer.  

Pragmatic answer: less complete, less exhaustive, less direct…. 

 

Fact 1 suggests that wh-complements have the same type as that-complements. 

Since that-complements denote propositions, wh-complements denote propositions. 

But which propositions? 

Answer:  propositions that make the above entailments come out valid. 
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Basic intuition:   

whether Buck is angry contemplates two answers: 

Buck is angry versus Buck is not angry 

The answers are propositions: 

A = {v  W: angryv(b)=1} versus A = {v  W: angryv(b)=0} 

Knowing in world w0 whether Buck is angry is knowing whether w0  A or w0  A.  

 

Which proposition does whether Buck is angry denote depends on where w0, the world of 

evaluation, is:   

if w0   A, whether Buck is angry denotes    A  

if w0 A, whether Buck is angry denotes A  

 

Let w0 be the world of evaluation: 

 

whether Buck is angry denotes: 

 {v  W: angryv(b) = angryw0(b)} 

 

The set of worlds v in which angry maps b onto  

the same truthvalue as it maps b onto in w0. 

  

In general, let φw
 be the truthvalue of φ in w.   

  

 that φ denotes  {v  W: φv = 1}  

 The set of worlds v where the truthvalue of φ is 1 

 

 that φ denotes  {v  W: φv = 0}  

 The set of worlds v where the truthvalue of φ is 0 

 

 whether φ denotes: {v  W: φv = φw0 } 

 The set of worlds v where the truthvalue of φ is the same as it is in w0. 

 

With this interpretation of whether φ the patterns in (9) and (10) become valid: 

  

 (9) a. Fred tells whether φ  tellw0(f, {v  W: φv = φw0 }) 
                  b. φ is true in w0                                                         φw0 = 1 

                  c. Fred tells that φ   tellw0(f, {v  W: φv =            1 }) 
 

 (10) a. Fred tells whether φ  tellw0(f, {v  W: φv = φw0 }) 
                  b. φ is false in w0                                                    φw0 = 0 

                  c. Fred tells that φ  tellw0(f, {v  W: φv            = 0 }) 
 

Wh-complements: 

 

(11)  a. Fred knows who passed. 

 b Ruth, Mary and Joanna are the ones who passed. 

 c. Fred knows that Ruth, Mary and Joanna passed. 
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Relative clause: who - passed  

    passedw   The set of individuals that passed in w 

Question: 

 who P denotes: {v  W: Pv = Pw0 } 

 The set of worlds v where the denotation of P is the same as it is in w0. 

 

(7) a. knoww0(f, {v  W: passedv = passedw0}) 

      b                                                passedw0 = {r, m, j} 

      c. knoww0(f, {v  W: passedv =                   {r, m, j}) 

 

Multiple relative:  who loves whom denotes lovew0 

Question: 

 who R denotes {v  W: Rv = Rw0} 

 

So far we have been concerned with the denotation, extension of the question, the proposition 

expressed.  

The intension of a propositional type expression α is the function that maps every world w0 

onto the extension of α in w0.   

If the extension of α is a proposition, a set of worlds, the intension of α is a function from 

worlds into sets of worlds, which is (up to isomorphism) nothing but a relation between 

worlds. 

 

that Buck is angry: extension in w0: {v  W: angryv(b)} 

   intension in w0: {<w,v>  W2: angryv(b)} 

 

(abstract over world w0, rename as w for clarity): 

The intension is a constrant function from worlds to sets of worlds. 

 

whether Buck is angry: extension in w0: {v  W: angryv(b) = angryw0(b)}  

  intension in w0: {<w,v>  W2: angryv(b) = angryw(b)} 

 

The relation that holds between w and v iff Buck is angry has the same truthvalue in w and in 

v. 

 

who is angry:  extension in w0: {v  W: angryv = angryw0}  

intension in w0: {<w,v>  W2: angryv = angryw} 

 

The relation that holds between w and v iff the people that are angry in w are the same as the 

people who are angry in v. 

 

who loves whom:  extension in w0: {v  W: lovev = lovew0}  

intension in w0: {<w,v>  W2: lovev = lovew} 

The relation that holds between w and v iff the loving couples in w are the same as the loving 

couples in v. 

 

Typal concerns for propositional complements. 

 

 believe, know and tell operate on the extension of the complement. 

 wonder operates on the intension of the complement.  
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Lexical postulates: 

 believe requires a complement whose intension is constant 

 wonder requires a complement whose intension is not constant 

 know, tell allow both kinds 

 

 

Extension of the wh-complement in w0  =  The answer to the question in w0 

Intension of the wh-complement in w0 = The question itself 

 

(11)  Fred knows whether Buck is angry 

 knoww0(f, {v: angryv(b) = angryw0(b)}) 

Fred wonders whether Buck is angry 

 wonderw0(f, {<w,v>: angryv(b) = angryw(b)}) 

 

know and tell relate Fred to the answer in w0 to the question Is Buck angry. 

wonder relates Fred in w0 not to the answer, but to the question Is Buck angry itself. 

A natural lexical postulate would be: 

 

 z(wonderz(f, {<w,v>: φv = φw }) → knowz(f, {v: φv})  knowzf, {v: φv})  

 

Now we relate this to partitions: 

 

Fact:  Let R be an n-place relation (including formulas as 0-place relations). 

The relation {<w,v>  W2: Rv = Rw} is an equivalence relation on W. 

Proof:  This is obvious from the definition in terms of identity. 

 

Questions are partitionings of the space of possible worlds. 

For instance, the following two questions:  Is Buck angry? and Is Sara angry? 

   

                                                                                                      W                                                          

                               {v  W: angryv(b) = 1 }                        

               angry(b)? 

                                {v  W: angryv(b) = 0 } 

          

                 W 

{v  W: angryv(s) = 1}     {v  W: angryv(s) = 0}      angry(s)?  

 

 

 

As we see, depending on where w0 is, the extension of angry(b)? is the extension of that Buck 

is angry or the extension of that Buck is not angry, and the the extension of  angry(j)? is the 

extension of that Sara is angry or that Sara is not angry. 
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Let us assume D = {buck, jane, sara}.  Then the set of worlds W partitions according to what 

the extension of angryv is, for v  W.  There are 8 logical possibilities: 

 

                W  

    {v  W: angryv = { buck, jane, sara } B1 

 

    {v  W: angryv = { buck, jane }  B2 

 

 {v  W: angryv = { buck, sara }  B3 

 

 {v  W: angryv = { jane, sara }  B4 

 

 {v  W: angryv = { buck }   B5 

 

 {v  W: angryv = { jane }   B6 

 

 {v  W: angryv = { sara }   B7 

 

 {v  W: angryv = Ø    B8 

 

Who is angry? 

 

Again, if w0  B4 then the true complete semantic answer to the question is: 

Jane and Sara are the ones that are angry 

 

 

In the next picture we show the two partitions, Who is angry? and Is Buck angry? 

 

                W  

    {v  W: angryv = { buck, jane, sara } B1 

 

    {v  W: angryv = { buck, jane }  B2 

 

 {v  W: angryv = { buck, sara }  B3 

 

 {v  W: angryv = { buck }   B5 

 

 {v  W: angryv = { jane, sara }  B4 

 

 {v  W: angryv = { jane }   B6 

 

 {v  W: angryv = { sara }   B7 

 

 {v  W: angryv = Ø    B8 

 

 

Now, clearly, there is a relation between these questions, namely: 

Every possible true complete answer to the question: Who is angry entails a true complete 

answer to the question:  Is Buck angry? 
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That is, if the real world is w0, then, whichever block of partition Who is angry w0 is in, that 

block is a subset of a block of partition Is Buck angry, and hence that answer to Is Buck angry 

is also a true answer in w0. 

The subset relation on the set of possible worlds is the entailment relation between 

propositions, hence, we can define entailment between questions in terms of the refinement 

relation on partitions: 

 

 Q1 entails Q2 iff Q1 ⊑ Q2, iff  

For every world w:  the true complete answer to Q1 in w entails the true complete 

answer to Q2 in w   

 

Suppose you are interested in getting a cat, and someone seeks a new house for her cat 

Minoes.  You ask: 

 

(12) a. Is she sweet?  And is she smart? 

        b. Is she sweet and smart? 

 

Is Minoes sweet? is the following bipartition:   

                                                                                                      W                                                          

                                sweet(m)                        

               sweet(m)? 

                                sweet(m)  

 

 

Is Minoes smart? is the following bipartition: 

                 W 

 

smart(m)     smart(m)           smart(m)?  

 

 

 

Is Minoes sweet and smart? is also a bipartition: 

                                                                                                      W                                                          

          sweet(m)  smart(m)                        

               sweet(m)  smart(m)? 

                                (sweet(m)  smart(m) 

 

 

But the conjunction of the two questions Is Minoes sweet? And is she smart? is a partition 

with four blocks: 

                                                                                                      W                                                          

          sweet(m)  smart(m)            sweet(m)  smart(m)            

               sweet(m)? ⊓ smart(m)? 

          sweet(m)  smart(m)           sweet(m)  smart(m)  

 

 

And, again, every answer to the the conjunction of the two questions entails an answer to 

each of the questions that are conjoined. 
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It is not so clear that disjunctions of questions are actually interpreted as joins in the partition 

lattice.  While in the case of conjunction, I think there is a clear reading where the   

conjunction of questions is a partition with four blocks, rather than two, it is not clear to me 

that there is a sense in which the following disjunction is trivial rather than a bipartition: 

 

(13) a. Is Minoes sweet? Or is Minoes smart? 

        b. Is Minoes one of sweet and smart? 

   

                                                                                                      W                                                          

                  sweet(m)  smart(m)                        

               sweet(m)  smart(m)? 

                                                           sweet(m)  smart(m) 

 

 

                                                                                                      W                                                          

                     

               sweet(m)? ⊔ smart(m)? 

            

 

 

But then, trivial readings are rarely preferred when non-trivial readings are available. 

 

 

Look at the questions: 

Is more than one person angry? 

This partition has blocks: {B1  B2  B3  B4} and {B5  B6  B7  B8} 

 

                W  

    {v  W: angryv = { buck, jane, sara } B1 

 

    {v  W: angryv = { buck, jane }  B2 

 

 {v  W: angryv = { buck, sara }  B3 

 

 {v  W: angryv = { jane, sara }  B4 

 

 {v  W: angryv = { buck }   B5 

 

 {v  W: angryv = { jane }   B6 

 

 {v  W: angryv = { sara }   B7 

 

 {v  W: angryv = Ø    B8 
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Is nobody angry? 

This partition has blocks: {B8} and {B1  B2  B3  B4  B5  B6  B7} 

 

                W  

    {v  W: angryv = { buck, jane, sara } B1 

 

    {v  W: angryv = { buck, jane }  B2 

 

 {v  W: angryv = { buck, sara }  B3 

 

 {v  W: angryv = { sara, jane }  B4 

 

 {v  W: angryv = { buck }   B5 

 

 {v  W: angryv = { jane }   B6 

 

 {v  W: angryv = { sara }   B7 

 

 {v  W: angryv = Ø    B8 

 

 

Is more than one person angry? ⊔ Is nobody angry? 

has blocks: {B1  B2  B3  B4  B8} and {B5  B6  B7} 

 

The questions is whether there is a notion of disjunction on which the following two 

questions are equivalent: 

 

(14) a. Is more than one person angry? Or is nobody angry? 

        b. Is exactly one person angry? 

 

I am not sure (meaning, I think not). 

Notice that the definition of join of two partitions is dramatically more complex than meet of 

two partitions.  Could this be reason for the lack of the join of partition reading for 

disjunction?... 

 

With this bit of theory in place, Groenendijk and Stokhof define a variety of relations 

between questions and answers.  I give variants of their notions here. 

 

Proposition p is semantically non-trivial iff p  Ø and p  W 

The tautological question is {W}. 

 

Let p be a proposition and Q a question. 

 

p is a semantic answer to Q iff p  Q  

p is a partial answer to Q if p is non-trivial and for some X  Q: p = X 

 

 

Any of the blocks in Q is a semantic answer to Q.   

Any union of blocks in Q which is non-trivial is a partial answer to Q. 
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Fact 1:  If p is a semantic answer to Q and Q is not the tautological question, then p is a 

               partial answer to Q 

Fact 2: Every partial answer to a yes-no question is a semantic answer. 

 

Let p  Ø  

      p entails a semantic answer to Q iff for some p1: p  p1 and p1 is a semantic answer to Q 

      p entails a partial answer to Q iff for some p1: p  p1 and p1 is a partial answer to Q 

 

Who is angry? 

                W  

  {buck, jane, sara}     B1 

 

  {buck, jane}      B2 

 

  {buck, sara}      B3 

 

  {jane, sara}     p    B4 

 

  {buck}      B5 

 

  {jane}      B6 

 

  {sara}      B7 

 

  Ø       B8 

 

 

Let p be proposition: Jane and Sara lost at the horses, and everybody else won. 

p entails a semantic answer to the question who is angry? 

 

Who is angry? 

                W  

  {buck, jane, sara}     B1 

 

  {buck, jane}      B2 

 

  {buck, sara}      B3 

    t 

  {jane, sara}         B4 

 

  {buck}      B5 

 

  {jane}      B6 

 

  {sara}      B7 

 

  Ø       B8 
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Let t be the proposition:  

Sara lost at the horses and quarelled with Buck or with Jane, but not with both. 

t entails a partial answer to the question Who is  angry? 

 

Let w  W: 

p is a semantic answer to Q true in w iff p  Q and w  p 

p is a partial answer to Q true in w if p is non-trivial and for some X  Q: p = X 

and w  X 

 

p entails a semantic answer to Q true in w iff for some p1: p  p1 and  

p1 is a semantic answer to Q true in w 

p entails a partial answer to Q true in w iff for some p1: p  p1 and  

p1 is a partial answer to Q true in w 

 

Note that if p entails a true semantic or partial answer, that doesn’t mean that p is itself true. 

 

For pragmatic notions of questions and answers, we relativize the questions and answers to a 

set I  W which represents the information relative to which the question is evaluated. 

 

 

 

Who is angry? 

                W  

  {buck, jane, sara}                  B1 

 

  {buck, jane}      B2 

 

  {buck, sara}      B3 

 

  {jane, sara}         B4 

 

  {buck}      B5 

 

  {jane}      B6 

 

  {sara}           I  B7 

 

  Ø       B8 

 

 

I is the set of worlds compatible with the information. 

We will assume that I is the information against the background of which the question Q is 

asked.  As you can see in the picture, and as we proved in chapter 1, we have a lemma: 

 

Lemma: If Q is a partition on W and I  W, I  Ø then: 

     QI = {p  I: p  I  Ø and p  Q} is a partition on I 
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Proof: 

-Clearly, by the definition of QI: for every b  QI: b  I and b  Ø. 

-If b1, b2  QI then for some p1, p2  Q: b1 = p1  I and b2 = p2  I. 

Since Q is itself a partition, p1  p2 = Ø.  Hence b1  b2 = Ø 

-Let w  QI.  Then for some b  QI; w  b, and since for some p  Q, b = p  I, w  I 

-Let w  I, then w  W and, since Q is a partition of W, for some p  Q: w  Q. 

Then w  p  I.  Hence for some b  QI: w  b.  Then w  QI. 

So indeed QI is a partition on I. 

  

Let Q be a question and I a non-empty information set. 

 

 Q is an open question on I iff |QI| > 1.  

 

A question Q is open on I iff QI is at least a bipartition on I. 

 

Let Q be a question open on I, w  W: 

  p is a pragmatic answer to Q, rel I iff pI is a semantic answer to QI 

  p is a partial pragmatic answer to Q rel I if pI is a partial answer to QI 

  p entails a pragmatic answer to Q rel I iff pI entails a semantic answer to QI 

  p entails a partial pragmatic answer to Q rel I iff pI entails a partial answer to QI 

  p is a pragmatic answer to Q true in w rel I iff p is a pragmatic answer to QI true in w  

  p is a partial pragmatic answer to Q true in w rel I iff p is partial answer to QI true in w 

  p entails a pragmatic answer to Q true in w rel I iff p entails an answer to QI true in w  

  p entails a partial pragmatic answer to Q true in w rel I iff p entails a partial answer to  

                                                                                                        QI true in w 

 

Who is angry? 

                W  

  {buck, jane, sara}               p   B1 

 

  {buck, jane}      B2 

 

  {buck, sara}      B3 

 

  {jane, sara}         B4 

 

  {buck}      B5 

 

  {jane}      B6 

 

  {sara}           I  B7 

 

  Ø       B8 

 

 

In this example p does not entail a semantic answer to question Q at all:   

no block of Q gets eliminated if we intersect Q with p. 

But, given our information I, it turns out that p entails a pragmatic answer to Q relative to I. 

So, if p is the proposition: Jane and Sara lost at the horses. 



70 

 

And the background information is:   

Buck won at horses, and Buck, Sara, and Jane are notoriously bad losers. Buck, Sara and jane 

are the occupants of the appartment next door. 

Then, if you ask me: I hear screaming in the appartment next door. Who is angry? 

I can answer:  Sara and Jane lost at the horses.  And you say: oops. 

 

Who is angry? 

                W  

  {buck, jane, sara}               p   B1 

 

  {buck, jane}      B2 

 

  {buck, sara}      B3 

 

  {jane, sara}         B4 

 

  {buck}      B5 

 

  {jane}      B6 

 

  {sara}           I  B7 

 

  Ø       B8 

 

 

This is the next day, and my answer is you: One of them lost at the horses. 

This time, you may know that only one of them was at the race track, without it being known 

which of them.  In this case p entails a partial pragmatic answer. 

 

Further topics:  

-Different theories of questions:  Hamblin, Karttunen, Heim, GS,… 

-Exhaustiveness and answerhood (see the paper, and also Aldo Sevi’s dissertation) 

-Mention all vs mention some readings; choice readings, de dicto-de re in questions, 

functional readings in questions,… 

-Pragmatics of questions and pragmatics with questions:   

formalize Gricean theory in question theory (see the section in the paper mentioned)  

GS work on questions started as a way of formalizing the pragmatic notion of discourse 

topic.  See also work by Craige Roberts, Gerhard Jager, and many others. 

-Inquisitive semantics.  See the next section.  
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2.4 INQUISITIVE SEMANTICS 

 

Ciardelli, Groenendijk and Roelofson 2012, ‘Inquisitive semantics,’ 

 

2.4.1. Issues 

 

We start with the possible world view of propositions as sets of possible worls,  

Stalnaker’s view of the common ground or an information state as a set of worlds, and  

accepting a proposition as intersecting it with the common ground, i.e. information growth as 

kicking out alternative. 

 

W is the set of possible worlds. 

S = pow(W) is the set of all information states. 

 

An information state s  S as the set of worlds compatible with the common information is 

taken to be the set of worlds that are still candidates for being the real world. 

There is, of course, the actual real world w0, but, as far as our information goes, we don’t 

know which world that it.   

If t is a proper subset of our information state s, then t kicks out some candidates for being the 

real world as no longer in the running.  From the perspective of t, you have come closer to the 

real world than you were when your information was only s.    

CGR call t an enhancement of s. I am not happy with that terminology  and will call t a 

sharpening of s if t  s. 

 

W is the set of possible worlds. 

S = pow(W) is the set of all information states. 

 t is a sharpening of s iff t  s 

 

  W is the state of ignorance 

 Ø is the inconsistent state (overly sharp) 

 {{w}: w  W} is the set of the precise states. 

 

Precise states are maximally (but not overly) sharp: they fix one world. 

 

Let s be an information state. 

We are interested in getting better informed, which means, sharpening the information. 

An issue over s is, in essence, a specific set of alternatives for sharpening to be 

contemplated in s:  should we go on and sharpen s in direction s0, in direction s1, or in 

direction s2?  Thus it is a set of choices of sharpening paths to be contemplated. 

 

From this we see, as a first constraint, that an issue I over s should be a non-empty set of 

sharpenings of s: I is a non-empty set of subsets of s. 

 

Now let us think of the issue as a choice between sharpening in the direction of s1 or of s2, 

and for clarity, let us think of the issue as a clear choice between non-overlapping 

sharpenings s1 and s2.  Then it should be clear that sharpening t1  s1 settles the issue in 

favour of s1, and similarly, t2  s2 settles the issue in favour of s2.   

This means that we want an issue I over s to be closed under sharpening: if u  I and t  u 

then t  I. 
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Finally, the worlds that are in s are there for a good reason:  each of them could turn out to be 

the real world.  If we raise an issue, to be resolved by sharpening, we do not want to define 

the issue in such a way, that some of the worlds in s are not engaged in the choices at all.   

If such a world turns out to be the real world after all (and s says that it may well!) then the 

choices in the issue were clearly ill-conceived.  We do not want issues to be ill-conceived.   

We will assume the choices that the issue presents, form a cover of  I = s  

 

With this we define: 

  

I is an issue over s iff 1. I  pow(s) and I  Ø 

    2. If t  I and u  t then u  I 

    2. I = s 

 

If I and J are both issues over s then I is at least as inquisitive as J iff I  J 

The least inquisitive issue over s is the trivial issue pow(s). 

The most inquisitive issue over s is {{w}: w  s}  {Ø} 

A proper issue over s is an issue I over s such that s  I. 

 

 

2.4.2. Propositions 

 

Inquisitive semantics uses the notion of issue to define the basic semantic notion of 

proposition.  A proposition in inquisitive semantics is not a set of possible worlds, but an 

issue, a set of information states: 

 

A proposition P over state s is an issue over a sharpening of s. 

Πs is the set of propositions over s 

   

W is the set of all worlds, so ΠW is the set of all propositions over W, which, by the definition 

given, clearly includes for every s  S: Πs.      
 

We write Π for ΠW:  

Π is the set of all propositions. 

 

Of course, there is a natural mapping from propositions to states: 

 

 if P  Π then P is the information state covered by P 

 

In the past, a statement expressed a proposition, and the only informative function that the  proposition 

had was to function as an assertion and sharpen the common ground, if accepted. In inquisitive 

semantics, the statement that expresses proposition P can have two informative functions: 

 1.  As before, the statement function as an assertion of proposition P and we can let 

the information state covered by P sharpen the common ground, if accepted. 

 2. the statement can raise the issue of P.  The statement can be regarded as a request 

to the speech partitipant to sharpen the information by adressing the choices raised by P. 

  

These two functions correspond to different relations between proposition P and information 

state s: 
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P is informative on s iff (P)  s  

P is inquisitive on s iff (P)  P 

 

P is informative if (P) properly sharpens s. 

P is inquisitive if it offers a real choice. if (P)  P, then P = pow(P) and P is the 
maximum.  That means that P doesn’t really offer true alternative paths. 
 

As we will see, there are purely informative propositions,  

there are purely inquisitive propositions,  

and, most interestingly, there are also hybrid propositions which are informative and 

inquisitive at the same time. 

 

Some technical notions: 

 

Let P, Q  Π 

P is at least as informative as Q iff (P)  (Q) 

P is at least as inquisitive as Q   iff (P) = (Q) and P  Q 

P entails Q iff P  Q 

  

Let P  Πs and t  s 

The restriction of P to t is: P↾t = {t’  t: t’  P} 

 

The proposition P↾t sharpens the issue P on s to an issue on sharpening t of s. 

 

2.4.3. Meaning functions 

 

The interpretation function maps every sentence in the language onto a meaning function: 

  

A meaning function is a function m: S → Π such that: 

1. for every s  S: m(s)  Πs 

 2. if t  s then m(t) = m(s)↾t 

 

M is the set of all meanings functions. 

 

Let m  M 

m is informative iff there is a state s  S such that m(s) is informative in s 

m is inquisitive iff there is a state s  S such that m(s) is inquisitive in s 

 

m1 entails m2 iff for every s  S: m1(s) entails m2(s) 

 

Fact 1: There is a one-one correspondence between meanings and propositions 

Fact 2: Let m  M:  m is informative iff m(W) is informative 

                                  m is inquisitive iff m(W) is inquisitive 

Fact 3: m1 entails m2 iff m1(W)  m2(W) 

 

Fact 4: The structure of propositions is a Heyting algebra.  
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Preview of some aspects of Heyting Algebras. 

 

Boolean algebra with Boolean complementation: 

 

  o 1         

 

 

 

o c   ob  o a       

 

 

 

o  a  o  b  o c     

 

 

 

     0 

 

Fact: Complete Heyting algebras = complete distributive lattices = complete pseudo 

         complemented lattices.   

 

The following structure is an example (the free distributive lattice on three generators): 
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a*, the pseudo complement of a is the maximal element such that a ⊓ a* = 0 

Pseudocomplements are indicated in compatible colors in the following picture: 

 

        17  

    

 

         14         15    16     

 

         11           12    13 
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       1                     3              

      2   

 

            0 

  

In a Boolean algebra a* = a. 

In general, it is not the case that a** = a, what is the case is: a ⊑ a**. 

i.e. look at 4: 4** = 7.  (i.e. a is a stronger proposition than a**).  * corresponds to 

intuitionistic negation. 

 

The operation →, called relative pseudo complement, corresponds to intuitionistic 

implication.   

(a → b), the relative pseudo complement of a rel b, is the maximal element such that  

a ⊓ (a → b) = b 

 

For instance, (4 → 2) = 10, because 10 is the maximal element such that 4 ⊓ (4 → 2) = 2. 
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Intuitionistic logic rejects the classical inference principle: 

 From φ   infer φ 

 

(In fact, the inference system for intuitionistic logic can be formulated as that of classical 

logic minus only the above rule) 

 

With that, it rejects other well known classical principles like:  

From Ø    infer φ  φ  (Law of excluded middle) 

 From  (φ  ψ)   infer φ  ψ (One de Morgan law) 

 From  xφ   infer xφ  (One quantifier law) 

 

For conditionals, intuitionistic logic satisfies classical principles like: 

From  (φ  ψ) → χ   infer (φ → χ)  (ψ → χ)  

From φ → (ψ  χ)  infer (φ → ψ)  (φ → χ) 

From  φ → ψ    infer (φ  ψ)  

 

But rejects classical troublemakers like: 

 From  Ø   infer  (φ → ψ)  (ψ → φ) 

 From  (φ → ψ)  infer  φ  ψ 

 From  (φ  ψ) → χ  infer (φ → χ)  (ψ → χ) 

From φ → (ψ  χ)  infer (φ → ψ)  (φ → χ) 

 

Intuitionistic logic models a constructive interpretation for mathematics:   

-A proof of (φ → ψ) is a method for turning any proof for φ into a proof for ψ 

-A proof of φ is a method for deriving a contradiction for any proof for φ 

-A proof of φ  ψ is a proof of φ and a proof of ψ 

-A proof of φ  ψ is a proof of one of them. 

-A proof for a universal statement is a method for proving all instances 

-A proof for an existental statement is a proof of an instance. 

 

Intuitionistic mathematics does not accept non-constructive proof (Like the famous Bolzano-

Weissenstrass ‘proof’ that every continuous function the values of which run from negative 

values to positive values on the Y-axis, crosses the X-axis in some point:  the B-W proof 

accepts the existence of this point even when we cannot construct it.)  The intuitionists will 

not accept the theorem in that form, and intuitionistic mathematics will tell you under what 

circumstances instances of the theorem are acceptable. 
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2.4.4. Inquisitive semantics 

 

We have a first order language with ⊥, , , →, ,  

We define: 

 

 φ  =  (φ → ⊥) 

 !φ  =  φ 

 ?φ  =  (φ  φ) 

 

We fix a domain D of possible objects. 

A D-world is a pair  w = <D, Fw>, where for every R  PREDn: Fw(R)  Dn  

W, the set of possible worlds is the set of all D-worlds. 

 

CGR give a substitutional semantics for predicate logic:   

instead of using assignment functions, they assume you can always extend the language for 

every object d in the domain with a constant d which rigidly denotes d.   

This way you can avoid using variable assignments  

(although it has the disadvantage of making the language as large as its interpretation 

domains) . 

 

We define a classical semantics: [φ]w = 1/0: 

 

 [R(t1,…,tn)]w = 1 iff  <[t1]w,…,[tn]w>  Fw(R); 0 otherwise 

 [⊥]w = 0, for all w  W 

 [φ  ψ]w = 1 iff [φ]w = 1 and [ψ]w = 1; 0 otherwise 

 [φ  ψ]w = 1 iff [φ]w = 1 or [ψ]w = 1; 0 otherwise 

 [φ → ψ]w = 1 iff [φ]w = 0 or [ψ]w = 1; 0 otherwise 

  [xφ]w = 1 iff for every d  D: [φ[d/x] ]w = 1; 0 otherwise 

 [xφ]w = 1  iff for some d  D: [φ[d/x] ]w = 1; 0 otherwise 

 

 [φ] = {w  W: [φ]w = 1} 

 pow([φ]) is the set of all states s such that for all w  s: [φ]w = 1 

 

 

With the help of this, we define the inquisitive semantics: 

⟦φ⟧ is the proposition expressed by φ  

 

for every sentence φ:  ⟦φ⟧ is a set of information states defined by:   
 

⟦ R(t1,…tn) ⟧ = pow([R(t1,…tn)]) 

⟦⊥⟧ = {Ø} 

⟦φ  ψ⟧ = ⟦φ⟧  ⟦ψ⟧ 

⟦φ  ψ⟧ = ⟦φ⟧  ⟦ψ⟧ 

⟦φ → ψ⟧ = ⟦φ⟧ → ⟦ψ⟧  

⟦xφ⟧ = {⟦φ[d/x] ⟧: d  D} 

⟦xφ⟧g = {⟦φ[d/x] ⟧: d  D} 

 

Fact: for every sentence φ: ⟦φ⟧  Π 
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→ is the operation of relative pseudocomplement (see chapter 3) 

* is the operation of  pseudo complement (see chapter 3) 

 

P* = {s  S: for all α  P: s  α = Ø} 

P → Q = {s  S: t  s: if t  P then t  Q} 

 

Fact:  P* = P → {Ø} 

 

Negation is pseudocomplement: 

 

⟦φ⟧  =  ⟦φ → ⊥⟧  =  ⟦φ⟧ → {Ø}  = ⟦φ⟧* 

 

 

With this, the notions defined for propositions above can be extended to sentences: 

    

φ entails ψ iff ⟦φ⟧  ⟦ψ⟧ 

 

 Sentence φ is informative iff (⟦φ⟧)  W 
 Sentence φ is inquisitive iff (⟦φ⟧)  ⟦φ⟧ 
 
With this, CGR distinguish four categories of sentences: 

 

φ is an assertion iff  φ is non-inquisitive    

φ is a question    iff  φ is non-informative 

φ is a tautology  iff  φ is neither inquisitive nor informative 

φ is a hybrid       iff  φ is both inquisitive and informative   

 

 φ is an assertion iff  (⟦φ⟧)  ⟦φ⟧ 

 φ is a question    iff  (⟦φ⟧) = W 

 φ is a tautology  iff  (⟦φ⟧) = W and (⟦φ⟧)  ⟦φ⟧ 

 φ is a hybrid      iff  (⟦φ⟧)  W and (⟦φ⟧)  ⟦φ⟧ 

 

 

Some more facts: 

 

Fact: 1. Information content is classical: 

    for every φ:  (⟦φ⟧) = [φ] 

  

Fact 2: φ is a question iff [φ] = W 

 

Questions are statements that are classical tautologies. 

The question φ? is interpreted as is φ true or isφ true?   

As a statement this is the tautology:  (φ  φ) 

 

Fact 3: φ is an assertion  iff [φ]  ⟦φ⟧   iff ⟦φ⟧  pow([φ]) 

 φ is an assertion  iff ⟦φ⟧ = pow((⟦φ⟧)) 

  φ is an assertion  iff ⟦φ⟧ has a maximal element ((⟦φ⟧) 

 

 



79 

 

2.4.5. Examples 

 

Suppose we have two objects r (Ronya) and m (Minoes) and one predicate SMART 

we have four worlds w11, w10, w01, w00 

and SMART(r) is true in world w10 and SMART(m) is false in world w10, etc. 

 

Atomic sentences: 

 

⟦SMART(r)⟧  is the set of all states s such that all the worlds in s make SMART(r) true: 

 

⟦SMART(r)⟧ = { Ø, {w10}, {w11}, {w10, w11} } 

[SMART(r)] = {w10, w11} 

 

We observe that [SMART(r)]  ⟦SMART(r)⟧, hence SMART(r) is an assertion. 

 

Fact: atomic sentences are assertions 

 

 

Disjunctions: 

⟦SMART(r)⟧ = { Ø, {w10}, {w11}, {w10, w11} } 

⟦SMART(m)⟧ = { Ø, {w01}, {w11}, {w01, w11} } 

 

⟦SMART(r)  SMART(m)⟧ = ⟦SMART(r)⟧  ⟦SMART(m)⟧ =  

{ Ø, {w01}, {w10}, {w11}, {w10, w11} } 

 

(⟦SMART(r)  SMART(m)⟧) = {w10, w01, w11} = W ─ {w00}  

Hence,  (⟦SMART(r)  SMART(m)⟧)  W, and SMART(r)  SMART(m) is informative. 

  

⟦SMART(r)  SMART(m)⟧ = {w10, w01, w11}  ⟦ SMART(r)  SMART(m)⟧,   
hence SMART(r)  SMART(m) is inquisitive 

  

Hence, SMART(r)  SMART(m) is inquisitive and informative, and hence a hybrid:   

it gives the information that one of the disjuncts is true, and requests information as to which 

of them. 

 

 

Negation: 

⟦SMART(r)⟧ = { Ø, {w00}, {w01}, {w00, w01} } 

the set of all states that have no world in common with any state in ⟦SMART(r)⟧ 

Like ⟦SMART(r)⟧, this set has a maximum, and hence ⟦SMART(r)⟧ is an assertion. 

 

Fact: for every φ: φ is an assertion. 

 

Interrogatives:  

?SMART(r) = SMART(r)  SMART(r) 

 

⟦SMART(r)⟧ = { Ø, {w10}, {w11}, {w10, w11} } 

⟦SMART(r)⟧ = { Ø, {w00}, {w01}, {w00, w01} } 

⟦SMART(r)  SMART(r)⟧ = { Ø, {w00}, {w10}, {w01}, {w11}, {w10, w11}, {w00, w01} } 
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(⟦SMART(r)  SMART(r)⟧) = W, hence SMART(r)  SMART(r) is not informative. 

W  ⟦SMART(r)  SMART(r)⟧, so SMART(r)   SMART(r) is inquisitive. 

Hence SMART(r)  SMART(r) is a question. 

 

Conjunction: 

Fact 1:  The conjunction of two assertions is an assertion 

Fact 2:   The conjunction of two questions is a question 

 

Quantified statements: 

Fact 1:  xSMART(x) behaves like SMART(r)  SMART(m) 

Fact 2:  x?SMART(x) is an exhaustive question 

 

⟦SMART(r)  SMART(r)⟧ = { Ø, {w00}, {w10}, {w01}, {w11}, {w10, w11}, {w00, w01} } 

 
⟦SMART(m)  SMART(m)⟧ = { Ø, {w00}, {w10}, {w01}, {w11}, {w01, w11}, {w00, w10} } 

 

⟦x?SMART(x)⟧ =    ⟦SMART(r)  SMART(r)⟧  ⟦SMART(m)   SMART(m)⟧  =  

{Ø, {w00}, {w01}, {w10}, {w11}} 

 

This is a question.   

But it is (the closure under subset of) a partition.   

This means that the question x?SMART(x) is not necessarily the proper representation for  

Is everybody smart (which would be ?xSMART(x)) but, it is an exhaustive question, like 

Groenendijk and Stokhof’s wh-question: who is smart? 

 

 

2.4.6. The connection with Hamblin semantic for questions. 

 

GS’s partition semantics for questions starts out with n-place relation α of type <s,<en,t>>, 

mapping a world and n-individuals onto a truth value.   

The question forming schema is:   {<w,v>: αw = α v} 

The n-place relations form the interpretation of the interrogatives. 

  

(1)  a. Does Fred come?   0-place relation 

 b. Who comes?    1-place relation 

 c.  Who loves whom?   2-place relation 

 d. Who introduced whom to whom? 3-place relation 

 ….  

 

The question is:  how does inquisitive semantics combine with a compositional theory of the 

interpretation of interrogatives? 

Inquisitive semantics encodes more in the notion  of proposition than classical possible world 

semantics does.   In possible world semantics you form the proposition expressed by φ by 

inspecting the extension of φ in different worlds.   The relation between α of type <s,<en,t>> 

and associated propositions at type <s,t> is rather straightforward. 

 Already in Cresswell 1973 it was argued that possible world semantics allows for an 

alternative treatment of n-place relations, namely as relations of type <en,<s,t>>, 

propositional functions.  Thomason 1980 argues that if you replace type <s,t> here by a 

primitive type p of propositions, structured according to what you think is appropriate, you 
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get a finegrained theory of n-place properties as propositional functions of type <en,p>, 

mapping n-arguments onto a proposition.   If we assume that p is the type of inquisitive 

propositions, we can straightforwardly lift the inquisitive semantics to n-place relations: 

 

(1)  a. Does Fred come?   come(fred) of type p 

 b. Who comes?    come  of type <e,p> 

 c.  Who loves whom?   love  of type <e2,p> 

 d. Who introduced whom to whom? introduce of type <e3,p> 

 ….  

 

What does this mean about the denotations of the interrogative: 

 

(1)  a. Does Fred come?   come(fred) of type <e0,p> 

come(fred)   

 

 b. Who comes?    come  of type <e1,p> 

{<d1,come(d1)>, <d2,come(d2)>, <d3,come(d3)>…}  

 

 c.  Who loves whom?   love  of type <e2,p> 

{<<d1,d2>, love(d1,d2)>, <<d3,d4>, love(d3,d4)>, <<d5,d6>, love(d5,d6)>…}  

… 

Now, apart from the n-tuples of arguments, these propositions are just the propositions that 

you find in question denotations according to Hamblin. 

But this means that the discussion on how to derive which interpretation from which meaning 

(see in particular Heim versus Groenendijk and Stokhof) can be done from propositional 

functions. 

 Consider, for instance, the following operations on n-place properties of type <en,p> 

 

 Let α be op type <en,p>. 

  

 α  = x1…xn.?α(x1,…,xn) 

 

 α  = x1…xn.?α(x1,…,xn) 

 

 Consider the question (2): 

 

 (2) a. Who knows the answer to question 3? 

       b.  x[know(x,the answer to q3)   know(x,the answer to q3)) 

       c.  x[know(x,the answer to q3)   know(x,the answer to q3)) 

 

(2b) is an exhaustive interpretation of the question, (2c) a mention-some interpretation.  The 

first is appropriate in context (3a), the second in context (3b): 

 

 (3) a. After I have corrected this exam I will have found out who knows the answer to 

                     question 3.   

      b.  Look at the screen, finger on the buzzer.  Who knows the answer to question 3? 

 

In (3b) only the person who knows and is fastest counts.   I definitely do not want to know 

who also knew the right answer. 
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2.4.7. The category of inquisitive semantic theories. 

 

Classical semantics: 

-A proposition is a set of worlds, a subset of W 

-The set of all propositions is pow(W) 

-pow(W) has the structure of a complete atomic Boolean algebra. 

The Boolean structure is induced by the semantics: 

⟦φ⟧ = W −  ⟦φ⟧, ⟦φ  ψ⟧ = ⟦φ⟧  ⟦ψ⟧, etc. 

However, arguably, the situation works both ways:  the powerset is most naturally endowed 

with a Boolean structure and directly leads us to the semantics. 

 

Inquisitive semantics: 

-The set of all propositions is a Heyting algebra. 

The Heyting structure is induced by the semantics. 

 

However, the set of propositions is actually a complete Heyting algebra (just like the set of 

all propositions in classical semantics is a complete Boolean algebra). 

 

But this changes matters considerably, because there is a theorem which says: 

 

Theorem:   The class of complete Heyting algebras coincides with the class of complete 

                   distributive lattices. 

 

Thus, while Heyting algebras are a special kind of distributive lattices, complete Heyting 

algebras are not are not a special kind:  all complete distributive lattices are Heyting algebras. 

 

The inquisitive semantics (and in particular the negation) is tailored to Heyting algebras, but 

this is not defended or motivated independently.   

Within distributive lattices, Heyting algebras are one kind of generalization of Boolean 

algebras (weakening the negation in one way), other types of distributive lattices wiuth other 

kinds of negation have been studied in the literature as well.  For instance, de Morgan 

lattices, structures that keep the law of double negation (φ =   φ), but weaken the link with 

the laws of 0 and 1 (φ  φ = 1, φ  φ = 0) arise naturally in the context of partial 

semantics (like the vagueness semantics discussed above). 

 Hence the structure of propositions given does not determine the semantics as 

obviously as it does in the case of classical semantics.  In fact, given this general notion of 

proposition determining complete distributive lattices, it becomes possible and interesting to 

develop and compare different types of inquisitive semantics, in particular with different 

notions of negation.  Thus, what they present is one instance of a category of inquisitive 

semantic theories.  
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2.4.8 Further topics: 

-Relation with finegrained alternative semantics. 

-Adding finegrainedness for highlighting and attention.   

The notion of proposition is now enriched with a ‘choice of alternative paths for sharpening’.  

One can add think of adding a weight function for paths, making certain paths prominent and 

others not.  (see the paper for an alternative).  This can be used to distinguish, for instance,  

explicitly mentioned alternatives from implicit alternatives, i.e. distinguishing, for instance, 

(φ  ψ  (φ  ψ)) from (φ  ψ)) and dealing with polarity in questions. 

The latter concerns, for instance, the difference between is the door open? and  

isn’t the door open? 

Puzzle:  if both are semantically the same question, why are they answered differently (i.e. 

yes selects a different answers). 

   Open(d)? =   Open(d)  Open(d) 

Open(d)? = Open(d)  Open(d) 

 

While it is true that Open(d) is not equivalent to Open(d) in this logic, it is not clear that 

that is very useful here, because we may well assume, contextually, that we are in a situation 

where also intuitionists would conclude φ, even though they have only derived φ (say, 

where the predicate involved is decidable and the domain is tractable).    

 

-The approach to inquisitive semantics makes one wonder about imperative semantics.   

abstracts relate to imperatives in the way that abstracts relate to questions  

(one place: go away, two-place:  one, two, three, kiss).  Can the approach of inquisitive 

semantics contribute to imperitive semantics? 

In fact, on the ILLC paper there is a link to the Festschrift for Jeroen Groenendijk, Martin 

Stokhof and Frank Veltman, with a link to a paper by Maria Aloni and Ivano Ciardelli which 

addresses just this issue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


