

1

SEMANTIC MODELS

Fred Landman

Spring 2013
Version of 2019

2

CONTENTS

1. Universal algebra

2. Semantic Applications
 1. Tense logic and branching time
 2. Vagueness and comparatives
 3. Questions as partitions
 4. Inquisitive semantics

3. Lattices and Boolean algebras

4. Semantics Applications
 1. Plurals and Mass nouns
 2. Boolean pragmatics
 3. Iceberg semantics
 4. The Standard Model of regular open sets and separation

3

1. UNIVERSAL ALGEBRA

Let A be a set.

pow(A) is the powerset of A, pow(A) = {X: X  A}

An = A  …  A

 n times

For n-tuple <a1,…ak,…an> we define: <a1,…ak,…an>
k = ak

An n-place relation on A is a subset of pow(An)

Let R be an n-place relation:

The k-th projection of R, πk(R) is:

 πk(R) = {xk: x1,…xk─1xk+1…xn: <x1,…,xk─1xkxk+1…xn>  R}

If R is a two=place relation, π1(R)= dom(R) (domain) and π2(R)=ran(R) (range).

If R is an n-place relation, the converse relation, R─1, is: {<y,x>: <x,y>  R}

Let A and B be sets.

A function from A into B is a relation f such that:

 1. dom(f) = A

 2. ran(f)  B

 3. For every a  A, b1,b2  B if <a,b1>,<a,b2>  f then b1 = b2

We write f: A → B for function f from A into B and f(a)=b for <a,b>  f.

We have defined here the concept of a total function. For partial function we assume an

element ⊥, the undefined element, which is not in B (the range of the function).

f is a partial function from A into B iff f: A → B  {⊥}

A partial function from A into B is a total function from A into B  {⊥}.

For partial functions f,g: A → B we define:

 f  g iff for every a  A: if f(a)  B then f(a) = g(a)

This means that g assigns the same values that f assigns a value to, but possibly assigns

values to more arguments than f does.

Our functions will generally, but not always, be total functions. We are not going to be very

precise about the distinction.

4

Special functions

Let f be a function from A into B.

f is an injection, one-one, iff for every a1,a2  A: if a1  a2 then f(a1)  f(a2)

f is a surjection, onto, iff ran(f) = B

f is a bijection iff f is an injection and a surjection.

The identity function: idA: A → A is the function such that for every a  A: idA(a) = a

Let B  A

The characteristic function of B (in A): chB: A → {0,1} is the function such that

 for every a  A: chB(a)=1 iff a  B

The constant function from A into B on element b  B is the function cb: A → B such that:

for every a  A: cb(a) = b

Let f: A → B be a one-one function. Then the converse relation f─1 is itself a bijection from

ran(f) into A. In this case we call f─1 the inverse function.

Let f:A → B and g: B → C be functions.

the composition of g and f, g ∘ f: A → C, is the function that maps every a  A onto g(f(a)).

We visualize this in λ-notation:

 g ∘ f = λa.g(f(a)) the function that maps every a onto g(f(a))

Composition in number phrases

number: three → 3

number relation: at least → 

 λmλn.n  m

 the relation that holds between n and m if n  m

 the function that maps n and m onto truth value 1 iff n  m

 at most →  exactly → = more than → > less than → <

2 place relations between numbers = 2 place functions from numbers into truth values:

functions f: N × N → {0,1}

Semantics of application: n-place relation + argument → n−1-place relation

 Rn + arg → (Rn(arg))

at least three → (3)

 λn.n  3

 the property that n has if n  3

 the function that maps n onto truth value 1 iff n  3

 the set of numbers n such that n  3

5

at most three → λn.n  3 exactly three → λn.n = 3

more than three → λn.n > 3 less than three → λn.n < 3

1 place predicates of numbers = 1 place functions from numbers into truth values =

functions f: N → {0,1}

cardinality function: card = λx.|x|

The function that maps singular or plural objects onto their cardinality.

Let D be the domain of objects.

card: D → N function from objects to numbers

Nouns: cats is intepreted as CATS: D → {0,1}

the function that maps an object onto 1 iff it is a cat or a plurality of cats

at least three + cats → at least three cats

λn.n  3 CATS ?

N → {0,1} D → {0,1} D → {0,1}

Composition: 1-place predicate of numbers ∘ card → 1-place predicate of objects

 N → {0,1} D → N D → {0,1}

Composition: at least three + [card] → at least three

λn.n  3 ∘ λx.|x| → λn.n  3 ∘ λx.|x|
N → {0,1} D → N D → {0,1}

λn.n  3 ∘ λx.|x| = λz.(λn.n  3(λx.|x|(z))) =

 λz.(λn.n  3(|z|)) =

 λz.(|z|  3)

at least three → λx.|x|  3

 the property that x has if |x|  3

 the function that maps x onto truth value 1 iff |x|  3

 the set of objects x such that |x|  3

 the set of pluralities that are sums of at least 3 singularities

at most three → λx.|x|  3 exactly three → λx.|x| = 3

more than three → λx.|x| > 3 less than three → λx.|x| < 3

at least three + cats → at least three cats

λx.|x|  3 CATS λx.|x|  3  CATS

 λx.CATS(x)  |x|3

D → {0,1} D → {0,1} D → {0,1}

λx.CATS(x)  |x|3

The set of cat-pluralities that are sums of at least three cat-singularities.

(see the plurality theory discussed later in this class).

6

Moral:

Semantics of application to arguments:

n-place relation + argument → n−1-place relation

 Rn + arg → (Rn(arg))

Semantics of intersective adjectives:

 adjective + NP → NP
 ADJ N → ADJ  N

Composition with card

1-place predicate of numbers ∘ card → 1-place predicate of objects

 N → {0,1} D → N D → {0,1}

Composition with card is a systemsatic principle that shifts the interpretation of at least three

as a set of numbers to the corresponding interpretation of at least three as a set of objects.

Composition in the verb cluster in Dutch and German.

(1) That Kim will help Sam let Pat eat her porridge.

A standard assumption is that cases like (1) get a small clause analysis.

 CP

 C S

 that NP I'

 Kim I VP

 will V S

 help NP VP

 Sam V S

 let NP VP

 Pat V NP

eat her porridge

verbs: help, let, see, hear, make…

7

In Dutch and German V and I, are assumed to be on the right. The same class of verbs take

bare infinitives. This means that, following the English analysis, we would expect to find for

Dutch:

 CP

 C S

dat NP I'

 Kim VP I

 S V zal

 NP VP helpen

 Sam S V

 NP VP laten

 Pat NP V

 haar pap eten

This is not what we find. What we find is arguably more like (arguments in my class notes

Formal Languages):

 CP

 C S

dat NP I'

 Kim VP I

 S V zal

 NP VP e

 Sam S V

 NP VP e

 Pat NP V

 haar pap helpen laten eten

German: Ihr Brei essen lassen helfen wird

8

Semantic assumption: transitive verbs

eat → λyλx.EAT(x,y)

 The relation that x and y stand in if x eats y =

 The function that maps x and y onto 1 iff x eats y =

 The function that maps y onto the one place function λx.EAT(x,y),

 which is the function that maps x onto 1 iff x eats y.

Semantics of application to arguments:

An n-place relation applies to an argument to form an n−1 place relation

Semantic assumption: let, help, see…. are semantically 3 place relations:

let → λPλyλx.LET(x,P(y)) (call it LET)

3-place relation between two individuals and a property

 "x lets it be brought about that y has P"

help → λPλyλx.HELP(x,P(y)) (call it HELP)

"x helps it be brought about that y has P"

similarly, see, hear, make (the latter only in English)…

Semantics of English: just use application at all stages

Semantics of Dutch and German:

The verb cluster is a complex verb. Inside category V the semantics uses function

composition as its general tool.

Generalized composition: g ∘ f = λxn…λx1.g(f(x1,…xn))

Hence: helpen laten eten → HELP ∘ LET ∘ EAT

Step 1: LET ∘ EAT =

λPλyλx.LET(x,P(y)) ∘ λyλx.EAT(x,y) =

λz.(λPλyλx.LET(x,P(y)) (λyλx.EAT(x,y)(z))) =

 This expressions simplifies with λ-conversion: (see class notes on Advanced semantics)

Step 1: λzλPλyλx.LET(x,P(y)) (λyλx.EAT(x,y)(z)) =

 λzλPλyλx.LET(x,P(y)) (λx.EAT(x,z))

Step 2: λzλPλyλx.LET(x,P(y)) (λx.EAT(x,z)) =

λzλyλx.LET(x, λx.EAT(x,z) (y))

Step 3: λzλyλx.LET(x, λx.EAT(x,z) (y)) =

λzλyλx.LET(x, EAT(y,z))

LET ∘ EAT = λzλyλx.LET(x, EAT(y,z)) 3-place relation

 The relation that x, y and z stand in iff x lets it be brought about that y eats z

HELP ∘ LET ∘ EAT = λPλyλx.HELP(x,P(y)) ∘ λzλyλx.LET(x, EAT(y,z))

9

λPλyλx.HELP(x,P(y)) ∘ λzλyλx.LET(x, EAT(y,z)) =

λuλzλPλyλx.HELP(x,P(y)) (λzλyλx.LET(x, EAT(y,z))(u,z)) =

Notice: Generalized composition requires that we apply the three place relation

λzλyλx.LET(x, EAT(y,z)) to two variables, which gives a one place property.

This is because HELP is a function that must apply first to a one place property.

After that, generalized composition abstracts over those two variables.

We simplify with λ-conversion:

Step 1: λzλu.λPλyλx.HELP(x,P(y)) (λzλyλx.LET(x, EAT(y,z))(u,z)) =

 λzλuλPλyλx.HELP(x,P(y)) (λx.LET(x, EAT(u,z))

Step 2: λzλuλPλyλx.HELP(x,P(y)) (λx.LET(x, EAT(u,z))) =

 λzλuλyλx.HELP(x, (λx.LET(x, EAT(u,z))(y))

Step 3: λzλuλyλx.HELP(x, (λx.LET(x, EAT(u,z))(y)) =

 λzλuλyλx.HELP(x, LET(y, EAT(u,z)))

helpen laten eten → λzλuλyλx.HELP(x, LET(y, EAT(u,z)))

 four place relation:

The relation that holds between x, y, u and z iff

x helps it be brought about that y lets it be brought about that u eats z

Application: Rn + arg = Rn−1

pap helpen laten eten = λuλyλx.HELP(x, LET(y, EAT(u,porridge)))

The three place relation that holds between x, y and u if x helps it be brought about that y lets

it be brought about that u eats porridge.

Pat pap helpen laten eten = λyλx.HELP(x, LET(y, EAT(Pat,porridge)))

The two place relation that holds between x and y if x helps it be brought about that y lets it

be brought about that Pat eats porridge.

Sam Pat pap helpen laten eten = λx.HELP(x, LET(Sam, EAT(Pat,porridge)))

The one place property that x has if x helps it be brought about that San lets it be brought

about that that Pat eats porridge

 Kim Sam Pat pap helpen laten eten = HELP(Kim, LET(Sam, EAT(Pat,porridge)))

The null-place relation (= statement) that Kim helps it be brought about that San lets it be

brought about that that Pat eats porridge

10

Crucial property of composition:

 Let Z be a three place relation between two objects and a property

Let R be an n-place relation between objects

 Then Z ∘ R is an n+1 place relation between objects

Thus composition gives languages the capacity to create n-place relations.

This is what seems to happen with serial verbs.

An n-place operation on A is a function from An into A.

A one-place operation which is a bijection is called a permutation.

n-place operations are called finitary operations if n is finite.

Operations can also be infinitary. To choose a terminology that is suited for finite and

infinite sets, I will use the expression complete (the terminology will be explained later):

A complete operation on A is a function from pow(A) into A.

In fact, it will be useful to introduce a partial variant of this notion:

A complete+ operation on A is a partial function f from pow(A) into A, which is total,

 except that f(Ø) = ⊥

Let B  A and let R  An and let f: An → C

The restriction of R to B, R↾B = {<a1,…,an>  R: a1,…,an  B}

The restriction of f to B, f↾B = {<b1,…,bn : f(<b1,…,bn>)>: b1,…,bn  B}

Structures (of finite type)

A structure is a quintuple A = <A, RA, OA, SA, τA> where:

 1. A is a non-empty set

 2. RA is a finite set of relations on A

 3. OA is a finite set of operations on A

 4. SA is a finite set of special elements of A

 5. τA is the union of an enumeration of RA, an enumeration of OA

 and an enumeration of SA

τ is an enumeration of finite set X iff τ is a bijection between X and an initial segment of N+.

(An initial segment of N+ is a set {1,2,…n}, for some n  N).

Let A and B be structures. Let rA  RA and rB  RB.

rA and rB are corresponding relations iff τA(rA) = τB(rB)

The same for operations and special elements.

τA is a subtype of τB, τA  τB, iff all relations, functions, special elements in A have

 corresponding relations, functions, and special elements in B of the same arity.

(i.e. if rA is an n-place relation in RA, then there is a corresponding n-place relation in RB).

A and B have the same type, τA = τB iff τA  τB and τB  τA

11

The central relations between structures are standardly defined for structures of the same

type, sometimes for structures where one is of a subtype of the other.

Universal algebra defines its notions at this level of generality. Algebra and logic (and

semantics) are usually concerned with much more specific notions. You get these by putting

restrictions on the structures and restrictions on the notion of corresponding

relation/operation/special element. Thus in a structure which is a partial order you assume a

two-place relation which is transitive. To be of the same type, it is not enough to be a

structure which has a corresponding two-place relation, but the relation itself must be

transitive as well. In other words, the relevant notions of structure preservation that we will

be concerned with below compare partial orders not just with structures of the same type, but

with partial orders of the same type.

Various of the sets RA, OA, SA can be empty.

A relational structure is a structure A = <A, RA, τA>

An algebra is a structure A = <A, OA, τA>

A relational algebra is a structure A = <A, RA, OA, τA>

There is no special termimology for structures with special elements. In fact, with a

characteristic bit of mathematician’s humour, special elements are standardly subsumed

under operations, as 0-place operations.

In practice, we suppress the reference to the type in the notion of structure, and for ease, we

will define the relevant notions for token structures which have one two-place relation R, one

two-place operation and one special element:

 A = <A, RA, *A, sA> B = <B, RB, *B, sB>

The use of the same symbols R, * and s indicates corresponding relations, operations and

special elements. I will use infix notation for *A: and write *A(a1,a2) as: (a1 *A a2).

Thus, A1 = <A, RA> is a relational structure

 A2 = <A, *A> is an algebra

 A3 = <A, RA, *A> is a relational algebra

 A4 = <A, RA, *A, sA> is also a relational algebra.

Important: Technically the structures A1…A4 count as distinct structures, even though they

are the same set, structured by the same relations and operations. But they will count as

different for the sake of structure preservation relations that we discuss now.

So in what follows we are concerned with structures of the same type.

12

Examples of special relations: Partial orders

Let R be a two place relation on A.

R is reflexive iff for all aA: R(a,a)

R is irreflexive iff for no aA: R(a,a)

R is transitive iff for for all a,b,c  A: if R(a,b) and R(b,c) then R(a,c)

R is intransitive iff for all a,b,c  A: if R(a,b) and R(b,c) then R(a,c)

R is symmetric iff for all a,b  A: if R(a,b) then R(b,a)

R is asymmetric iff for all a,b  A: if R(a,b) then R(b,a)

R is antisymmetric iff for all a,b  A: if R(a,b) and R(b,a) then a=b

R is connected iff for all a,b  A: R(a,b) or R(b,a) or a=b

R is a preorder iff R is reflexive and transitive

R is a partial order iff R is reflexive, transitive and antisymmetric

R is a strict partial order iff R is irreflexive, transitive and asymmetric

R is a (strict) total or linear order iff R is a connected (strict) partial order

R is an equivalence relation iff R is reflective, transitive and symmetric.

Fact: every partial order determines a strict partial order and vice verse.

Namely:

-Let ⊑ be a partial order.

 Define: x ⊏ y iff x ⊑ y  xy

 Then ⊏ is a strict partial order.

-Let ⊏ be a strict partial order.

 Define: x ⊑ y iff x ⊏ y  x=y

 Then ⊑ is a partial order.

This terminology extends to structures:

Structure A = <A,⊑> is a partial order iff ⊑ is a partial order.

We simplify the graphs of partial orders in the following way:

Consider the following partial order.

 o

o o o

o o o

 o

We apply the following conventions.

13

1. We do not distinguish in the graph between strict partial orders and partial orders, and

hence do not write the reflexivity arrows:

 o

o o o

o o o

 o

2, We take transitivity to be understood in the graph: when an arrow goes from a to b and

from b to c, we do not write the arrow from a to c: we assume it is there:

 o

o o o

o o o

 o

3. Since in a partial order all arrows go in the same direction, we take in the graph the

direction as understood. This means we do not have to write the arrow heads:

 o

o o o

o o o

 o

14

Examples of special operations: join and meet

Let A = <A, ⊑> be a partial order, let a,b  A.

 The join of a an b under ⊑, a ⊔ b, is the minimal element of A such that:

 a ⊑ a ⊔ b and b ⊑ a ⊔ b

 The meet of a an b under ⊑, a ⊓ b, is the maximal element of A such that:

 a ⊓ b ⊑ a and a ⊓ b ⊑ b

A oa⊔b⊔c o

oa⊔b oa⊔c ob⊔c o d o e o f

oa ob oc d⊓e o o d⊓f o e⊓f

 o o d⊓e⊓f

The above example is an example of a partial order in which join and meet are defined for

every two elements. This is not generally the case for partial orders:

B oa ob C o1

 o o c od

 oa ob

 o0

In B there is no minimal element in B that both a and b are part of, so a⊔b is not defined.

In C there are three elements that are part of both c and d: a, b and 0, but there is no element

that is maximally such, so c⊓d is not defined. Similarly, a⊔b is not defined, because no

element is "the mimimal element that both a and b are part of".

In other words:

Look at the following partial order (with ⊑ going up):

A

 o 1

o d o e

 o c

o a o b

 o 0

We want to know what the join is of a and b: a ⊔ b.

15

Step 1: We look at the set: {x  A: a ⊑ x and b ⊑ x}
This is the set X marked in red:

A

 o 1

o d o e X

 o c

o a o b

 o 0

Step 2: The join of a and b, a ⊔ b is the minimum of X:

A

 o 1

o c o d X

 o c = a ⊔ b

o a o b

 o 0

This is the smallest element of A of which both a and b are part.

We want to know what the meet is of a and b: a ⊓ b.

Step 1: We look at the set: {x  A: x ⊑ a and x ⊑ b}
This is the set Y marked in red:

A

 o 1

o d o e

 o c = a ⊔ b

o a o b

 o 0 Y

Step 2: The meet of a and b, a ⊓ b is the maximum of X:

A

16

 o 1

o a o b X

 o c = a ⊔ b

o a o b

 o 0 = a ⊓ b Y

The meet of a and b, a ⊓ b is the biggest element that is part both of a and of b.

a ⊔ b is only defined if the set {x  A: a ⊑ x and b ⊑ x} has a minimum.
a ⊓ b is only defined if the set {x  A: a ⊑ x and b ⊑ x} has a maximum.

It is useful practice to take the above picture, or some of the other ones in the text, and

determine for any two elements what are their join and meet.

17

While the notions of join and meet are defined here for partial orders, they can be defined

independently as two place operations. Thus, the operations of join and meet on D can be

specified by the tables given:

D o 1

 d o e o o f

 a o b o o c

o 0

⊔ 0 a b c d e f 1

0 0 a b c d e f 1

a a a d e d e 1 1

b b d b f d 1 f 1

c c e f c 1 e f 1

d d d d 1 d 1 1 1

e e e 1 e 1 e 1 1

f f 1 f f 1 1 f 1

1 1 1 1 1 1 1 1 1

Special elements: minimum 0 and maximum 1

Let A = <A,⊑> be a partial order, a  A

a is a minimal element in A iff for no b  A: b ⊏ a

a is a maximal element in A iff for no b  A: a ⊏ b

a is the minimum of A iff for all b  A: a ⊑ b

a is the maximum of A iff for all b  A: b ⊑ a

If A has a minimum, we call the minimum 0A (or just 0)

If A has a maximum, we call the maximum, 1A (or just 1)

A partial order can have more than one minimal element. The following structure with

orientation from left to right has two minimal elements and two maximal elements. It has

neither a minimum, nor a maximum.

 o o

 o

 o o

The use of the definite article in minimum invites the following observation:

Fact: if partial order A has a mimium then it has a unique minimum.

⊓ 0 a b c d e f 1

0 0 0 0 0 0 0 0 0

a 0 a 0 0 a a 0 a

b 0 0 b 0 b 0 b b

c 0 0 0 c 0 c c c

d 0 a b 0 d a b d

e 0 a 0 c a e c e

f 0 0 b c b c f f

1 0 a b c d e f 1

18

Proof: if m1 and m2 are both minimums of A then m1 ⊑ m2 and m2 ⊑ m1, and by

antisymmetry m1 = m2.

With this we see:

D = <D,⊑> is a relational structure (a partial order)

D = <D,⊓,⊔> is an algebra with operations join and meet (a lattice)

D = <D,0,1> is a structure with special elements 0 and 1

D = <D,⊑,⊓,⊔> is a relational algebra

D = <D,⊑,⊓,⊔,0,1> is a relational algebra with special elements 0 and 1

Substructures.

Let A = <A, RA, *A, sA> and B = <B, RB, *B, sB> be structures of the same type.

A  B, A is a substructure of B iff

 1. A  B

 2. RA = RB↾A

 3. *A = *B↾A

 4. sA = sB

Important: *A = *B↾A

for all b1,b2  B: (b1 *B b2)  B

*A is defined only for pairs of objects b1,b2  A, but assigns the same value to these as *B

does.

hence for b1,b2  A: (b1 *A b2)  B.

How do we know that in fact for b1,b2  A: (b1 *A b2)  A?

Answer: by the definition of substructure.

if A is a substructure of B then A is a structure.

If A is a structure then A is closed under *A, hence A is closed under *B↾A.
And that means precisely that b1,b2  A: (b1 *A b2)  A.

Given this, a substructure of B should be distinguished from a structure of the same type as B

on a subset of B.

For instance, look at the following structures:

 A = <pow({a,b,c}),  >

 B = <pow({a,b}),  >

 C = <pow+({a,b,c}),+ >

where pow({a,b,c})+ = pow({a,b,c}) ─ {{a},{b},{c}}

and where + is defined as:

 X  Y if X  Y  pow+({a,b,c})

 X + Y =

 Ø otherwise

19

A o{a,b,c} B C o{a,b,c}

o{a,b} o{a,c} o{b,c} o{a,b} o{a,b} o{a,c} o{b,c}

o{a} o{b} o{c} o{a} o{b}

 o Ø o Ø o Ø

B  A

C is not a substructure of A but a structure of the same type on a subset of A.

The reason is that the operations of A are not preserved in C.

With the same pictures look at the structures:

A’ = <pow({a,b,c}), , Ø, {a,b,c} > and B’ = <pow({a,b}), , {a,b}, Ø >

While B is a substructure of A, B’ is not a substructure of B, since the special elements are

not preserved, in particular, {a,b,c} is a special element in A, but the corresponding special

element in B is {a,b}. This violates the last clause of substructure. So B’ is a structure of the

same type as A’ on a subset of pow({a,b,c}), not a substructure.

Let B = <B, RB, *B, sB> and let A  B

The restriction of B to A, B↾A is defined as:

 B↾A = <A, RB↾A, *B↾A, sB>

The restriction of B to A is only defined if A is closed under *B
 and sB

  A.

Fact: if B↾A is defined then B↾A  B

Of course you can generalize the notion of substructure to a relation between two structures

A and B where A is a structure of a subtype of B, and that is a useful notion.

This would allow a structure <A,  > to be a substructure of <A, ,  > and also of

<B, ,  > (if <A, ,  >  <B, ,  >).

Homomorphisms

Let A = <A,RA, *A, sA> and B = <B,RB, *B, sB> be structures of the same type.

h is a homorphism from A into B iff

 1. h is a function from A into B

 2. h preserves the structure:

 1. for all a1,a2  A: if RA(a1,a2) then RB(h(a1),h(a2))

 2. for all a1,a2  A: h(a1 *A a2) = h(a1) *B h(a2)

 3. h(sA) = sB

20

Let h be a homomorphism from A into B.

h is an injective homomorphism iff h is an injection

h is a surjective homomorphism iff h is a surjection

h is a bijective homomorphism iff h is a bijection

h is a strong homomorphism iff h anti-preserves RA:

 for all a1,a2  A: if RB(h(a1),h(a2)) then RA(a1,a2)

This means that for a strong homomorphism h we have:

 for all a1,a2  A: RA(a1,a2) iff RB(h(a1),h(a2))

h is an embedding iff h is a strong injective homomorphism

h is an epimorphism iff h is a strong surjective homomorphism

h is an isomorphism iff h is a strong bijective homomorphism

A and B are isomorphic iff there is an isomorphism between A and B.

h is an automorphism on A iff h is a homomorphism from A into A.

The notion of strength has to do with the preservation of the relation. For relational

structures a bijective homomorphism isn’t yet an isomorphism.

Example:

A h B

o o

o o

o o

h is a bijective homomorphism from A into B, a one-one function such that for every a1,a2 

A: if RA(a1,a2) then RB(h(a1),h(a2)). But h is not an isomorphism, because the relation is not

anti-preserved: it is not the case that for every a1,a2  A: if RB(h(a1),h(a2)) then RA(a1,a2).

 It is easy to see that if our structures are algebras (understood as structures without special

relations), then the notion of embedding and injective homomorphism coincide, and so do the

notions of epimorphism and surjective homomorphism, and also isomorphism and bijective

homomorphism.

Let h be a homomorphism from A into B.

The homomorphic image of A in B under h is the structure:

 h(A) = <h(A), Rh(A), *h(a), sh(A) > where:

 1. h(A) = {h(a): a  A}

 2. Rh(A) = {<h(a1),h(a2)>: a1,a2  A and RB(h(a1),h(a2))}

 3. *h(A) is the unique operation on h(A) such that

for all a1,a2  A: h(a1) *h(A) h(a2) = h(a1 *A a2)

 4. sh(A) = h(sA)

21

Fact: h(A)  B, in fact, h(A) = B↾h(A)

If h is an epimorphism from A into B then B = h(A)

If h is an embedding, then h(A) is called the isomorphic image of A inside B.

If h is an isomorphism the obviously B is the isomorphic image of A.

Partitions

We defined an equivalence relation as a reflexive, transitive and symmetric relation.

Let A be a set.

Covers and partitions on A are sets of subsets of A. The subsets of a cover or a partition are

called the blocks, or the cells of the cover or partition.

A cover of A is a set CA such that:

 1. CA  pow(A) and Ø  CA CA is a set of non-empty subsets of A

 2. A = {B: B  CA} CA covers A

A partition of A is a set PA such that:

 1. PA is a cover of A.

 2. for all B1,B2  PA: if B1  B2 then B1  B2 = Ø

 The blocks of PA do not overlap

A partition of A is a cover of A where the blocks form a minimal cover of A.

 1 3 6

 2 4 7 9

 5 8

There is a natural relation between partitions and equivalence relations:

Let A be a set and  an equivalence relation on A and a  A.

The equivalence class of a under , [a], is:

 [a] = {b  A: b  a}

a is called the representative element of equivalence class [a]

 [A] = {[a]: a  A}

22

Fact 1: If  is an equivalence relation of A then [A] is a partition of A

Proof:

We prove the following four lemmas:

Lemma 1. if b  [a] then [a] = [b]

-If b  [a] then b  a, and hence (by symmetry) a  b.

Now:

-If x  [a] then x  a. Since a  b, (by transitivity) x  b. Then x  [b]

-If x  [b], then x  b. Since b  a (by transitivity) x  a. Hence x  [a]

Lemma 2. For every B  [A], B  Ø
If B  [A], then for some a  A: B = [a]. Since  is reflexive a  [a]. Hence B  Ø.

Lemma 3. if [a]  [b] then [a]  [b] = Ø

Assume [a]  [b]  Ø, say, x  [a]  [b]

Then x  [a] and x  [b]. Then, by Lemma 1, [a] = [x] = [b].

Lemma 4. [A] = A

-Let a  A. Then (by reflexivity) a  [a]. Since [a]  [A], a  [A]

-Let a  [A]. Then for some B  [A], a  B. Since B  A, a  A.

 ⧠

For partition PA we define:

 a1 P a2 iff B  PA: a1  B and a2  B

The following two facts are easy to check.

Fact 2. If PA is a partition of A, then P is an equivalence relation on A

Fact 3: If  is an equivalence relation and P = [A], then P = 

This means that indeed equivalence relations and partitions are two sides of the same coin.

 1 3 6

 2 4 7 9

 5 8

 1 3 6

 2 4 7 9

 5 8

23

We define language L.

L has one individual constant: s

L has one two-place relational constant: R

L has one two-place functional constant: *

VAR = {x1, x2, x3,…} a countable set of individual variables.

TERML is the smallest set such that: terms of L

 1. s  TERML

 2. VAR  TERML

 3. If t1, t2  TERML then (t1 * t2)  TERML

ATFORML is the smallest set such that: atomic formulas of L

 1. If t1, t2  TERML then R(t1, t2)  ATFORML

 2. If t1, t2  TERML then (t1 = t2)  ATFORML

FORML is the smallest set such that: formulas of L

 1. ATFORML  FORML

 2. If   FORML then   FORML

 3. If , ψ  FORML then (  ψ), (  )  FORML

 4. If x  VAR and   FORML then x, x  FORML

POSFORML is the smallest set such that: positive formulas of L

 1. ATFORML  FORML

 3. If , ψ  FORML then (  ψ), (  )  FORML

 4. If x  VAR and   FORML then x, x  FORML

Positive formulas are formed without use of negation.

A structure for L is a structure A = <A, RA, *A, sA>

An assignment function on A is a function g: VAR → A

gx
a = the assignment that differs at most from g in that g(x)=a

 i.e. gx
a(y) = = g(y) if y  x

 gx
a(x) = a

Interpretation: We define ⟦α⟧A,g the interpretation of α in A relative to g:

Constants: ⟦s⟧A,g = sA

 ⟦R⟧A,g = RA

 ⟦*⟧A,g = *A

Variables: ⟦x⟧A,g = g(x)

Terms: ⟦t1 * t2⟧A,g = ⟦t1⟧A,g *A ⟦t2⟧A,g

For formulas ⟦⟧A,g specifies truth conditions:

Atomic formulas: ⟦R(t1,t2)⟧A,g = 1 iff <⟦t1⟧A,g,⟦t2⟧A,g>  RA; 0 otherwise

⟦t1 = t2⟧A,g = 1 iff ⟦t1⟧A,g = ⟦t2⟧A,g; 0 otherwise

Formulas: ⟦⟧A,g = 1 iff ⟦⟧A,g 0; 0 otherwise

⟦  ψ ⟧A,g = 1 iff ⟦⟧A,g = 1 and ⟦ψ⟧A,g = 1; 0 otherwise

24

⟦  ψ ⟧A,g = 1 iff ⟦⟧A,g = 1 or ⟦ψ⟧A,g = 1; 0 otherwise

⟦x⟧A,g = 1 iff for some a  A: ⟦⟧A,gxa = 1; 0 otherwise

⟦x⟧A,g = 1 iff for every a  A: ⟦⟧A,gxa = 1; 0 otherwise

Let A and B be structures for L and let h: A → B be a homomorphism.

For assignment g on A we define assignment h[g] on B as:

 for all x  VAR: h[g](x) = h(g(x))

Lemma: If t  TERML and h is a homorphism then h(⟦t⟧A,g) = ⟦t⟧A,h[g]

Proof: with induction

1. h(⟦s⟧A,g) = h(sA) = sB = ⟦s⟧B,h[g]

2. h(⟦x⟧A,g) = h(g(x)) = h[g](x) = ⟦x⟧B,h[g]

3. Assume that h(⟦t1⟧A,g) = ⟦t1⟧B,h[g] and

 h(⟦t2⟧A,g) = ⟦t2⟧B,h[g]

 Then: h(⟦t1 * t2⟧A,g) = h(⟦t1⟧A,g *A ⟦t2⟧A,g) = h(⟦t1⟧A,g) *B h(⟦t2⟧A,g) [homomorphism]

 h(⟦t1⟧A,g) *B h(⟦t2⟧A,g) = ⟦t1⟧B,h[g] *B ⟦t2⟧B,h[g] [induction assumption]

 ⟦t1⟧B,h[g] *B ⟦t2⟧B,h[g] = ⟦t1 * t2⟧ B,h[g]

 In sum: h(⟦t1 * t2⟧A,g) = ⟦t1 * t2⟧B,h[g]

□

Theorem: If  is a positive formula and h is a surjective homomorphism then

 If ⟦⟧A,g = 1 then ⟦⟧B,h[g] = 1

Positive formulas are preserved onto homomorphic images

Proof: with induction

1. Assume ⟦R(t1,t2)⟧A,g = 1

 Then <⟦t1⟧A,g, ⟦t2⟧A,g>  RA

 Then <h(⟦t1⟧A,g), h(⟦t2⟧A,g)>  RB [homomorphism]

 Then <⟦t1⟧B,h[g]), ⟦t2⟧B,h[g])>  RB [lemma]

 Then ⟦R(t1,t2)⟧B,h[g] = 1

2. Assume ⟦(t1 =t2)⟧A,g = 1

 Then ⟦t1⟧A,g = ⟦t2⟧A,g

 Then h(⟦t1⟧A,g) = h(⟦t2⟧A,g)> [homomorphism]

 Then ⟦t1⟧B,h[g]) = ⟦t2⟧B,h[g]) [lemma]

 Then ⟦ (t1 = t2)⟧B,h[g] = 1

3. Assume: If ⟦⟧A,g = 1 then ⟦⟧B,h[g] = 1 and

 If ⟦ψ⟧A,g = 1 then ⟦ψ⟧B,h[g] = 1

Assume ⟦  ψ⟧A,g = 1.

Then ⟦⟧A,g = 1 and ⟦ψ⟧A,g = 1

Hence ⟦⟧B,h[g] = 1 and ⟦ψ⟧B,h[g] = 1 [induction assumption]

Hence ⟦  ψ⟧B,h[g] = 1

25

4. Assume: If ⟦⟧A,g = 1 then ⟦⟧B,h[g] = 1 and

 If ⟦ψ⟧A,g = 1 then ⟦ψ⟧B,h[g] = 1

Assume ⟦  ψ⟧A,g = 1.

Then ⟦⟧A,g = 1 or ⟦ψ⟧A,g = 1

Hence ⟦⟧B,h[g] = 1 or ⟦ψ⟧B,h[g] = 1 [induction assumption]

Hence ⟦  ψ⟧B,h[g] = 1

5. Assume for every a  A: if ⟦⟧A,gx
a = 1 then ⟦⟧B,h[g]z

h(a) =1

Assume ⟦x⟧A,g = 1

Then for some a  A: ⟦⟧A,gx
a = 1

Then for some a  A: ⟦⟧B,h[g]x
h(a) = 1 [induction assumption]

Then for some b  B: ⟦⟧B,h[g]x
b = 1 [namely: b = h(a)]

Then ⟦x⟧B,h[g] = 1

6. Assume for every a  A: if ⟦⟧A,gx
a = 1 then ⟦⟧B,h[g]z

h(a) =1

Assume ⟦x⟧A,g = 1

Then for every a  A: ⟦⟧A,gx
a = 1

Then for every a  A: ⟦⟧B,h[g]x
h(a) = 1 [induction assumption]

Then for every b  B: ⟦⟧B,h[g]x
b = 1 because h is a surjection: every b is h(a) for some a 

A]

Then ⟦x⟧B,h[g] = 1

Consequences:

Example 1:

Let <A,R> be a connected reflexive structure:

 x[R(x,x)]

 xy[R(x,y)  R(y,x)  x=y]

Let h: <A,R> → <B,R> be a surjective homomorphism

Then <B,R> is also connected reflexive structure.

Example 2:

Let <A,*> be an itempotent, commutative, associative structure:

 x.[x*x = x]

xy[x*y = y*x]

 xyz[x*(y*z) = (x*y)*z]

Let h: <A,*> → <B,*> be a surjective homomorphism

Then <B,*> is a;lso an idempotent, commutative, associative structure.

26

The next notion is an algebraic notion.

Let A = <A, R, *, s1, s2> be a structure.

A congruence relation on A is an equivalence relation A that preserves the algebraic

structure:

1. for all a1,a2,b1,b2  A:

 if a1 A a2 and b1 A b2 then (a1 * b1) A (a2 * b2)

2. (s1 A s2)

Congruence relations (like homomorphisms) preserve the algebraic structure (the special

elements are not congruent, just like homomorphisms do not identify special elements).

Let A = <A, R, *, s> be a structure and let A be a congruence relation on A.

We define the congruence structure of A under : A

 A = <A, R, *, s > where

 1. A = [A]

 2. for all a,b  A:

 R([a],[b]) iff x  [a]y  [b]: R(x,y)

 3. for all a,b  A: ([a] * [b]) = [a * b]

 4. s = [s]

Example.

A = <{a,…,f}, ⊑,⊔>

 f o {e,f}

 e o

o c d o {c} {d}

 b o

 {a,b}

 a o

⊑ is a partial order : as in the picture ef, ab,…

⊔ is join

Preservation of ⊑:

{a,b} ⊑ {c} because a ⊑ c

{c} ⊑ [e,f} because c ⊑ f etc…

Preservation of ⊔:

{c} ⊔ {f} = [c] ⊔ [d] = [c ⊔ d] = [e] = {e,f}

27

Substructures:

A↾{b,c,d,e} is a substructure of A

A↾{a,c,d,f} is not a substructure of A

Let A be a structure, let  be a congruence relation on A, and let A be the congruence

structure of A under .

The natural homomorphism on A relative to , h is the function h from A onto A such

that:

 for all a  A: h(a) = [a]

Lemma 1: The natural homomorphism h is a surjective homomorphism from A onto A

Proof.

1. h is onto. If B  A then for some a  A: B = [a]. h(a)=B.

2. Let a,b  A and R(a,b). Then a  [a] and b  [b] and R(a,b),

hence R([a],[b]). So indeed R(h(a),h(b))

3. h(a * b) = [a * b] = (by the fact that  is a congruence relation)

 [a] * [b] = h(a) * h(b)

4. h(s) = [s] = s

⧠

Example.

A = <{a,…,f}, ⊑,⊔>

 f o {e,f}

 e o

o c d o {c} {d}

 b o

 {a,b}

 a o

 : as in the picture ef, ab,…

 h(e)=h(f)={e,f}

 h(a)=h(b)={a,b}

 h(c)={c}, h(d)={d}

Substructures:

A↾{b,c,d,e} is a substructure of A

A↾{a,c,d,f} is not a substructure of A

(while the relation ⊑ is preserved, the operation ⊔ is not, since c ⊔ d  {a,c,d,f}.

Preservation of ⊑:

{a,b} ⊑ {c} because a ⊑ c

{c} ⊑ [e,f} because c ⊑ f etc…

28

Preservation of ⊔:

h(c ⊔ d) = h(e) = [e] = {e,f}

h(c) ⊔ h(d) = {c} ⊔ {d} = [by definition] [c ⊔ d] = [e] = {e,f} etc.

A congruence relation preserves the algebraic structure by contracting elements, identifying

elements within the structure.

Lemma 2: If h is a homomorphism from A into B then h(A) is a substructure of B

Proof.

This fact was mentioned above: h(A) = B↾h(A).

-Obviously h(A)  B.

-h(A) is closed under *B: If b1, b2  h(A), then for some a1,a2  A: b1 = h(a1) and b2 = h(a2).

Then b1 *B b2 = h(a1) *B h(a2) = (homomorphism) h(a1 * a2), and indeed b1 *B b2  h(A).

-The restriction of R and s are unproblematic.

⧠

Lemma 3: If A a congruence relation on A and and C a substructure of A, then:

 A↾C is a congruence relation on C

Proof.

Let us set C = A↾C

-It is easy to see that C is an equivalence relation on C.

-Obviously, since the special elements are in different equivalence classes in A, they stay in

different equivalence classes in C, and since C is a substructure of A, C contains the special

elements.

-let a1,a2,b1,b2  C and let a1 C b1 and a2 C b2.

Then (a1 *C a2) A (b1 *C b2)

Since C is a substructure of A, (a1 *C a2)  C and (b1 *C b2)  C.

Hence (a1 *C a2) C (b1 *C b2)

⧠

Lemma 4: If h is a homomorphism from A into B and C a substructure of A, then:

 h↾C is a homomorphism from C into B

Proof.

-The preservation of the special elements follows from the fact that a substructure of A has

the same special elements as A.

-The preservation of the relations and operations is obvious.

⧠

Lemma 5: The composition of two homomorphisms is a homomorphism

Proof.

Let f: A → B and g: B → C be homomorphisms.

-g ∘ f is a function from A into C.

-Let RA(a1,a2). Then, because f is a homomorphism, RB(f(a1),f(a2)), with f(a1),f(a2)  B.

Then, because g is a homomorphism, RC(g(f(a1)),g(f(a2))).

Hence RC(g∘f(a1), g∘f(a2))

- for every a1,a2  A: g∘f(a1) *C g∘f(a2) = g(f(a1)) *C g(f(a2)) = g((f(a1) *B f(a2))) (because g

is a homomorphism) = g(f((a1 *A a2)) (because f is a homomorphism) = g ∘ f(a1 *A a2)

-g ∘ f(sA) = g(f(sA)) = g(sB) = sC.

⧠

29

Homomorphism Theorem.

Let h: A → B be a homomorphism and define h and f,h as follows:

 for all a1,a2  A: a1 h a2 iff h(a1)=h(a2)

 for all a  A: f([a]h) = h(a)

 Then h is a congruence relation on A and

f is an isomorphism between Ah and h(A)

Proof.

1. h is a congruence relation on A.

 It is easy to check that h is an equivalence relation (it is built from identity).

 Let a1 h b1 and a2 h b2, i.e. h(a1)=h(b1) and h(a2)=h(b2), then h(a1) *B h(a2) =

 h(b1) *B h(b2), and hence (by the fact that h is a homomorphism)

h(a1 *A a2) = h(b1 *A b2), and hence a1 *A a2 h b1 *A b2

So h is a congruence relation.

2.- f([a1]h *h [a2]h) = f([a1 *A a2]h) = h(a1 *A a2) = (homomorphism)

h(a1) *B h(a2) = f([a1]h) *B f([a2]h)

Again, special elements are obviously preserved, hence f is a homomorphism.

Let b  h(A). Then for some a  A: h(a)  B. Then f([a]h)=b, so f is onto.

Assume h(a1) = h(a2). Then a1 h a2 and [a1]h = [a2]h. So f is one-one.

⧠

30

SOME BOOLEAN ILLUSTRATIONS

We introduce Boolean algebras property in chapter 3. But it will be already useful to use

these richer structures to illustrate the restrictions on homomorphisms and congruence

relations. For us in this section a Boolean algebra is a structure B = <B,⊑,,⊓,⊔,0,1> which

has one special relation, partial order ⊑, one one-place operation  of complementation, two

two-place operations ⊓ and ⊔ of join and meet and two special elements 0 and 1.

We illustrated the notions of 0, 1 and join and meet in pictures above (repeated here):

o 1

 d o e o o f

 a o b o o c

o 0

 0 and 1 are resp. the minimal and maximal element of B.

o a⊔b⊔c

 a⊔b o o a⊔c o b⊔c

 a o b o o c

o 0

a⊔b, the join of a and b, is the smallest element of B such that a ⊑ a⊔b and b ⊑ a⊔b

o 1

 d o o e o f

 d⊓e o d⊓f o o e⊓f

o d⊓e⊓f

d⊓e, the meet of d and e, is the largest element of B such that d⊓e ⊑ a and d⊓e ⊑ f

o 0 o 1

 c o b o o a d o e o o f

 a o b o o c f o e o o d

o 0 o 1

We say: x and y do not overlap iff x⊓y=0.

x and y do not overlap if the only part they have in common is 0 (they have no 'real' part in

common). With this we define:

31

x, the complement of x, is the maximal element of B that does not overlap x.

In order to be Boolean algebras, structures need to satisfy special postulates which we ignore

here: we know enough to talk about congruence relations and homomorphisms.

First we illustrate the difference between a relation that is only an equivalence relation and a

relation that is an congruence relation:

B1 B2

o 1 o 1

 d o e o o f d o e o o f

 a o b o o c a o b o o c

o 0 o 0

no preservation in collapsing elements preservation in collapsing elements

B1 is an equivalence relation, but not a congruence relation:

a  a and b  f. If the relation were a congruence relation, what should hold is that:

a⊔b  a⊔f. But a⊔b = d and a⊔f = 1, and (d  1).

B2 is both an equivalence relation and a congruence relation.

For instance, ad and cf, and a⊔c = e and d⊔f=1, and indeed e1.

The intuitive difference is visible: both equivalence relations contract the 8-element structure

to a 4-element structure, but the second one does so by collapsing what was a plane in the 8-

element structure onto another plane: that is, you collapse something that has itself the

structure of a Boolean algebra (but not a sub-Boolean algebra) onto a non-overlapping

structure which also itself has the structure of a Boolean algebra. This is what congruences

do.

We are now interested in homomorphisms from B3 to B4, in particular in a homomorphism

that contracts the structure B3 to a structure of 8 elements.

B3 o 1 B4 o 1

od oc ob oa o o o o

o e o f og og of oe o o o o o o

oa ob oc od o o o o

o o

0 0

32

If the structure had been defined as a structure <B,⊑,⊓,⊔>, without mention of special

elements or operation , then forming a homomorphism would be simple, because you see

the 8-element structures sitting in the picture, so, the following would do, with the other

arrows analogously identifying corresponding elements.

B3 o 1 B4 o 1

o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o

o o

0 0

 But this function is not a Boolean homomorphism, because complements and special

elements are not preserved.

Thus, a first fact about preservation is that only functions that preserve the special elements 0

and 1 will be able to count as homomorphisms:

B3 o 1 B4 o 1

o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o

o o

0 0

Let us add one more connection to the homomorphism:

B3 o 1 B4 o 1

o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o

o o

0 0

The fact that the homorphism is a Boolean homomorphism, says that complements must be

preserved: this means that f(a) must be mapped onto f(a):

33

B3 o 1 B4 o 1

o o o oa o o o o

o o o o o o o o o o o o

o a o o o o o o o

o o

0 0

Next, we decide that b will be mapped independently:

B3 o 1 B4 o 1

o o ob oa o o o o

o a⊔b o o o o o o o o o o o

o a ob o o o o o o

o o

0 0

This fixes the values for b and for a⊔b:

B3 o 1 B4 o 1

o o ob oa o o o o

o a⊔b o o o o o o o o o o o

o a ob o o o o o o

o o

0 0

We have fixed 8 elements in the value structure. This means that we will have to identify all

the remaining elements with the ones already determined (since we wanted 8 elements).

Fixing one more element will fix the whole structure. The intuition of collapsing planes tells

you that you have the choice of collapsong either c or d with 0. We choose the visually

easiest and map c onto 0:

34

B3 o 1 B4 o 1

o o ob oa o o o o

o a⊔b o o o o o o o o o o o

o a ob o c o d o o o o

o o

0 0

The effect is that the remaining left blue plane is collapsed onto the left red plane, and the

remaining right blue plane onto the remaining right red plane.

We can show the corresponding effect as a congruence relation in structure B3

 o

 o o o o

o o o o o o

o o o o

 o

The effect is that the planes are collapsed as follows:

 o

 o o o o

o o o o o o

o o o o

 o

35

In this process, the horizontal planes get collapsed into lines:

 o 1

o o o

o o o

 o

 0

And, of course, this gives an 8-element Boolean algebra

 o 1

o o o

o o o

 o

 0

36

Once more the story:

We want a homomorphism that maps 16 element Boolean algebra A onto an 8 element

Boolean algebra in B (which, for ease we take to be A).

-We start out by mapping 0 onto 0 and 1 onto 1: h(0) = 0 and h(1) = 1

-We choose to map a onto a and b onto b, h(a) = a and h(b) = b

This means that a⊔b will be mapped onto a⊔b, because h(a⊔b) = h(a) ⊔ h(b) = a⊔b:

A o 1 B o 1

o o o o o o o o

o a⊔b o o o o o o a⊔b o o o o o

o a ob o c o d oa ob o o

o o

0 0

Now we decide to map c onto 0: h(c) = 0.

This means that both 0 and c map onto c: h(0) = h(c) = 0

A o 1 B o 1

o o o o o o o o

o a⊔b o a⊔c o o o o o a⊔b o o o o o

o a ob o c o d oa ob o o

o o

0 0

Now we argue:

 (1) h(a) = a

 (2) h(a)⊔0 = a [since a⊔0=a]

 (3) h(c)=0

 (4) h(a)⊔h(c) = a [by substituting h(c) for 0 in (2)]

 (5) h(a⊔c) = a [from (4), since h is a homomorphism]

Hence it follows that h(a)=h(a⊔c):

A o 1 B o 1

o o o o o o o o

o a⊔b o a⊔c ob⊔c o o o o a⊔b o o o o o

o a ob o c o d oa ob o o

o o

0 0

37

Exactly the same argument shows that h(b⊔c)=h(b)=b:

A o 1 B o 1

oa⊔b⊔c o o o o o o o

o a⊔b o a⊔c ob⊔c o o o o a⊔b o o o o o

o a ob o c o d oa ob o o

o o

 0

And with h(a⊔b) = a⊔b and h(c)=0, of course h(a⊔b⊔c) = a⊔b:

A o 1 B o 1

oa⊔b⊔c o o o o o ob oa

o a⊔b o a⊔c ob⊔c o o o o a⊔b o o o o o(a⊔b)

o a ob o c o d oa ob o o

o o

 0

So the homomorphism contracts the elements in the blocks to the lowest element.

With duality, the same argument will show that the homomorphism divides the remaining

elements similarly into blocks and contracts the elements in these blocks to the higher

element:

(i.e. c is mapped onto 1).

A o 1 B o 1

oa⊔b⊔c o o o o o ob oa

o a⊔b o a⊔c ob⊔c o o o o a⊔b o o o o o(a⊔b)

o a ob o c o d oa ob o o

o o

0

Now we see clearly the relations between homomorphisms, congruence relations and

substructures:

38

homomorphism h:A → B determines a congruence relation ~h on A

 and its range is a substructure of B:

A o 1 B o 1

oa⊔b⊔c o o o o o ob oa

o a⊔b o a⊔c ob⊔c o o o o a⊔b o o o o o(a⊔b)

o a ob o c o d oa ob o o

o o

0

Thus: on algebras homomorphisms and congruence relations are two sides of the same coin.

Equational classes of algebras.

One more general algebraic notion is that of product:

Let A = <A, RA, *A, sA > and B = <B, RB, *, sA > be structures of the same type.

The direct product of A and B, AB, is:

AB = <AB, RAB, *AB, sAB >, where:

 1. RAB(<a1,b1>, <a2,b2>) iff RA(a1,a2) and RB(b1,b2)

 2. (<a1,b1> *AB <a2,b2>) = <(a1 *A a2), (b1 *A b2)>

 3. sAB = <sA,sB>

K is an equational class of algebras iff K is a class of algebras of the same type and:

 1. If A  K and B is a subalgebra of A then B  K

 2. If A  K and h is a homorphism from A onto B then B  K

 3. If A  K and B  K then the direct product AB  K

An equational class of algebras is a class of algebras of the same type which is closed under

the formation of subalgebras, homomorphic images and direct products.

I repeat the definition of positive formulas:

Assume a first-order logical language L*,s for algebra with two-place operator-symbol * and

individual constant s (again, algebra: we ignore relations here).

In the language L*,s all atomic formulas are of the form (α = β), where α,β  TERML*s and

TERM:*s is defined as:

39

 TERML*s is the smallest set such that:

 1. VAR  TERML*s (all variables are terms)

 2. s  TERML*s

 3. if t1,t3  TERML*s then (t1 * t2)  TERML*s

A positive formula in L*,s is a formula built from atomic formulas without the use of

 negation.

Theorem: Positive formulas are preserved under subalgebras, onto homomorphic images and

 onto direct products.

This means the following:

Let A = <A, *A, sA> be an algebra and φ a formula of L*,s.

φ is true on A iff for every interpretation function FA: φ is true on model <A, FA>.

If φ is a positive formula and φ is true on A and on B then:

-If C is a subalgebra of A, or C is the homomorphic image of A under some homomorphism

h, or C is the direct product of A and B, then φ is true on C.

Equational classes of algebras are classes of algebras that are defined by axiom schemas

which are positive formulas.

This is the rationale for defining algebraic structures via identities. Algebraic identities are

positive formulas.

So, when we claim that an algebraic operation * is commutative, we express that as the

identity:

 (a * b) = (b * a)

This stands for the positive formula:

 xy((x * y) = (y * x))

The class of algebras where this formula holds is the class of commutative algebras. Since

the axiom is a positive formula, this class is an equational class: closed under subalgebras,

homomorphc images and direct products.

40

Building structures via equivalence relations

Lemma: Let A = <A, R> be a pre-order (reflexive and transitive)

 Let R the relation such that for all a,b  A: a R b iff R(a,b) and R(b,a)

 R is an equivalence relation and <AR,RR> is a partial order.

Proof.

It is easy to check that R is an equivalence relation.

-RR is reflexive

for any a: a  [a]R and R(a,a), hence RR([a]R,[a]R)

-RR is transitive

Let RR([a]R,[b]R) and RR([b]R,[c]R)

Say: x  [a]R and y  [b]R and R(x,y)

 z  [b]R and w  [c]R and R(z,w)

y,z  [b]R, hence R(y,z) and R(z,y), by definition of R.

So R(x,y) and R(y,z) and R(z,w), and hence, since R is transitive, R(x,w).

So: x  [a]R and w  [c]R and R(x,w)

Hence RR([a]R,[c]R)

-RR is antisymmetric.

Assume RR([a]R,[b]R) and RR([b]R,[a]R)

Say: x  [a]R and y  [b]R and R(x,y)

z  [b]R and w  [a]R and R(z,w)

Then, by definition of R, R(y,z) and R(z,y), so R(x,y) and R(y,z).

Then, by transitivity, R(x,z).

Also, by definition of R, R(x,w) and R(w,x), so R(z,w) and R(w,x)

Hence, by transitivity, R(z,x)

So R(x,z) and R(z,x), and hence, by definition of R, then x R z, and hence a R b.

So [a]R = [b]R

⧠

In a picture:

 o o

 o o

Let A = <A,R > be a pre-order and < as above.

A is R-connected iff for every x,y  A: R(x,y) or R(y,x) or (x R y)

Fact: If A = <A,R> is a R- connected pre-order, then [𝑨]R
 is a linear order.

41

Refinement structures

Let A be a set.

Let ΠA be the set of all partitions on A.

The partition structure, ΠA, is the structure:

ΠA = <ΠA, ⊑Π, ⊔Π, ⊓Π, 0Π, 1Π > where:

 1. PA ⊑Π QA iff B  PA C  QA: B  C

 2. ⊔Π is defined below.

 3. PA ⊓Π QA = {B  C: B  PA and C  QA and B  C  Ø}

 4. 0Π = {{a}: a  A}

5. 1Π = {A}

Facts: 1. ⊑A is a partial order

We call partial order ⊑Π the refinement relation: PA ⊑Π QA means that partition PA is a

refinement of QA. In the diagrams this means, intuitively, that you get from QA to PA by

adding lines (i.e.by splitting blocks).

 2. PA ⊓Π QA is the biggest partition of {PA,QA} such that PA ⊓Π QA ⊑Π PA and

 PA ⊓Π QA ⊑Π QA

PA ⊓Π QA is the minimal way of splitting blocks in PA and in QA so that the result is a

refinement both of PA and of QA:

 3. 0Π is the minimum of ΠA, 0Π is a refinement of every partition in ΠA

 4. 1Π is the maximum of ΠA, every partititio in ΠA is a refinement of 1Π

 1 2 3 1 2 3 1 2 3

 4 5 4 5 4 5

 PA QA PA ⊓Π QA

We come to ⊔A.

Fact: for every PA, QA  ΠA: there is a mimimal partition that both PA and QA are

 refinements of, a mimimal way of unifying blocks in PA and in QA into a partition that

 both PA and QA are a refinement of.

We will make PA ⊔Π QA this partition:

 1 2 1 2 1 2

 3 4 3 4 3 4

 PA QA PA ⊔Π QA

Intuitively, we remove all lines, except the ones that the two partitions share.

We follow the following steps:

42

Closure and +-closure under operation O.

Let <A,O> be a structure with O: An → A an n-place operation.

Let B  A.

[B]O, the closure of B under O, is the smallest subset of A such that:

 1. B  [B]O

 2. If a1,…,an  [B]O then O(a1,…,an) 
 [B]O

Let <A,O> be a structure with O: pow(A) → A an operation.

Let B  A.

[B]O, the closuse of B under O, is the smallest subset of A such that:

 1. B  [B]O

 2. If X  [B]O then O(X)  [B]O

[B]O+, the +-closuse of B under O, is the smallest subset of A such that:

 1. B  [B]O

 2. If X  [B]O and X  Ø then O(X)  [B]O

The join of the partitions on A: PA ⊔ QA

 1 2 1 2 1 2

 3 4 3 4 3 4

 PA = {{1},{2},{3,4}} QA = {{1,2},{3},{4}} PA ⊔ QA = {{1,2},{3,4}}

Intuitively, we remove all lines, except the ones that the two partitions share.

Formally:

Step 1: Take the +-closure of PA and of QA:

[PA]+ = {{1},{2},{3,4}, {1}{2},{1}{3,4},{2}{3,4},{1}{2}{3,4}} =

 {{1},{2},{3,4}, {1,2}, {1,3,4}, {2,3,4}, {1,2,3,4} }

[QA]+ = {{1,2},{3},{4},{1,2}{3},{1,2}{4},{3}{4},{1,2}{3}{4}} =

 {{1,2},{3},{4},{1,2,3}, {1,2,4}, {3,4} {1,2,3,4} }

Step 2: Take the intersection of [PA]+ and [QA]+:

[PA]+  [QA]+: {{1,2},{3,4},{1,2,3,4}} This is a cover of A

min⊑(A) = {a  A: a is a minimal element of A under ⊑}

43

Step 3: Take min([PA]+  [QA]+):

min([PA]+  [QA]+) = {{1,2},{3,4}} This is a partition of A

Thus we define: PA ⊔ QA = min([PA]+  [QA]+)

44

Numbers

ℕ is the set of natural numbers, {0,1,2,3,…}

𝔼 is the set of even numbers {0,2,4,6…}

ℤ is the set of integers {…−3,−2,−1,0,1,2,3 …}

ℤ+ is the set of positive integers {1,2,3,…}

ℚ is the set of rational numbers p/q with p  ℤ and q  ℤ+.

ℝ is the set of real numbers p.X with p  ℤ and X any countably infinite sequence of digits

0,1,2,3,4,5,6,7,8,9.

Cardinality

|A| is the cardinality of set A.

A and B have the same cardinality, |A| = |B| iff there is a bijection h:A → B.

ℵ0 is the cardinality of countably infinite sets: |ℕ| = ℵ0

A is countably infinite iff |A| = ℵ0

This means that A is countably infinite iff there is a bijection between ℕ and A.

Cantor:

|pow(A)| = 2|A|

Cantor's theorem: 2|A| > |A|, for any set A.

Proof: omitted

Fact 1: ℕ is countably infinite.

By definition.

Fact 2: 𝔼 is countably infinite.

The function λn.2n is a bijection between ℕ and 𝔼:

0 1 2 3 4 5 6 ...

0 2 4 6 8 10 12 …

Fact 3: ℤ is countably infinite.

Make your bijection as follows: start in the middle at 0 and chose alternatingly the next

positive and the next negative number:

0 1 2 3 4 5 6 7 8 ...

0 1 −1 2 −2 3 −3 4 −4 …

Fact 4: ℚ is countably infinite

We show that the set of non-negative rational numbers is countably infinite.

45

Form a square in the following way:

0/1 0/2 0/3 0/4 0/5 0/6 …

1/1 1/2 1/3 1/4 1/5 1/6 …

2/1 2/2 2/3 2/4 2/5 2/6 …

3/1 3/2 3/3 3/4 3/5 3/6 …

4/1 4/2 4/3 4/4 4/5 4/6 …

5/1 5/2 5/3 5/4 5/5 5/6 …

6/1 6/2 6/3 6/4 6/5 6/6 …

… … … … … …

All non-negative rational numbers occur in this square.

Enumerate the square by following the diagonal:

0/1 0/2 0/3 0/4 0/5 0/6 …

1/1 1/2 1/3 1/4 1/5 1/6 …

2/1 2/2 2/3 2/4 2/5 2/6 …

3/1 3/2 3/3 3/4 3/5 3/6 …

4/1 4/2 4/3 4/4 4/5 4/6 …

5/1 5/2 5/3 5/4 5/5 5/6 …

6/1 6/2 6/3 6/4 6/5 6/6 …

… … … … … …

So we map 0 onto 0/1. We map the next natural number onto the next number on the

diagonal that isn't yet in the mapping. So 1 is mapped onto 1/1, 2 is mapped onto 2/1; 3 is

mapped onto 1/2; 4 is mapped onto 1/3, etc.

To get a bijection between ℕ and ℚ make a second square for the negative rational numbers

and a diaginal enumeration, and alternate between adding the next number in the first square

and adding the next number in the second square (i.e. do the same as what we did for ℤ).

Fact 5: |ℝ| = 2ℵ0

Hence |ℝ| > |ℕ|

46

Fact 5 follows from the way the real numbers are constructed via countably infinite sets of

rational numbers. The entailment that |ℝ| > |ℕ| follows with Cantor's general theorem.

There is an insightful direct proof of the latter, called a diagonal proof, which uses the

representation of real numbers as consisting of an integer followed by a countably infinite

sequence of digits.

We prove that the set of real numbers between 0 and 1, (0,1), is not countably infinite.

Assume (0,1) is countably infinite.

Then there is a countable list: r = r1, r2, r3… which lists all the elements of (0,1).

We put them in the list vertically, horizontally we line up the digits in each countable

sequence of digits. In this, q1 is the postion of the first digit, q2 the second, etc.

So <rn,qm> is the digit that occurs on digit-place m in number rn.

Hence <r2,q20> = 7 means hat the 20ieth digit in the digit list of number r2 is 7

 q1 q2 q3 q4 … qn …

r1 0. <r1,q1> <r1,q2> <r1,q3> <r1,q4> … <r1,qn> …

r2 0. <r2,q1> <r2,q2> <r2,q3> <r2,q4> … <r2,qn> …

r3 0. <r3,q1> <r3,q2> <r3,q3> <r3,q4> … <r3,qn> …

…

…

…

rn 0. <rn,q1> <rn,q2> <rn,q3> <rn,q4> … <rn,qn> …

…

…

…

We define operation + on digits: 0+=1,…,8+=9, 9+ = 0

Now we define a number c (for cantor) as follows:

c = 0.X, with X a countably infinite sequence of digits given by:

n  ℤ+: <c,qn> = <rn,qn
+>

Hence:

if <r1,q1> = 2 then <c,qn> = 3

if <r2,q2> = 6 then <c,q2> = 7

if <r3,q3> = 9 then <c,q3> = 0

…

 q1 q2 q3 q4 … qn …

r1 0. <r1,q1> <r1,q2> <r1,q3> <r1,q4> … <r1,qn> …

r2 0. <r2,q1> <r2,q2> <r2,q3> <r2,q4> … <r2,qn> …

r3 0. <r3,q1> <r3,q2> <r3,q3> <r3,q4> … <r3,qn> …

…

…

…

rn 0. <rn,q1> <rn,q2> <rn,q3> <rn,q4> … <rn,qn> …

…

…

…

47

c:

 q1 q2 q3 q4 … qn …

 0. <c,q1
+> <r1,q2> <r1,q3> <r1,q4> … <r1,qn> …

 0. <r2,q1> <c,q2
+> <r2,q3> <r2,q4> … <r2,qn> …

 0. <r3,q1> <r3,q2> <r3,q3
+> <r3,q4> … <r3,qn> …

…

…

…

 0. <rn,q1> <rn,q2> <rn,q3> <rn,q4> … <rn,qn
+> …

…

…

…

Fact 1: c  (0,1).

c is 0. followed by a countably infinite sequence of digits.

Fact 2: c differs in place qn from rn.

This means that c differs from every number in the list r.

This means that c is not in the list r.

But, by hypothesis, r was a list of all real numbers in (0,1).

Hence this hypothesis is false: there is no such list.

Hence there are more real numbers than there are natural numbers.

In fact, you can prove:

Between any two rational numbers lie exactly as many numbers as there are rational numbers

(i.e. countably many).

Between any two real numbers lie exactly as many numbers as there are real numbers.

(i.e. 2ℵ0 many).

48

Linear orders and intervals.

We repeat:

Let A = <A,⊑> be a partial order, a  A

a is a minimal element in A iff for no b  A: b ⊏ a

a is a maximal element in A iff for no b  A: a ⊏ b

a is the minimum of A iff for all b  A: a ⊑ b

a is the maximum of A iff for all b  A: b ⊑ a

If A has a minimum, we call the minimum 0A (or just 0)

If A has a maximum, we call the maximum, 1A (or just 1)

For the next definitions, we think our partial order A = <A,⊑> as running from left to right.

A is right continuing iff a  Ab  A: a ⊏ b

A is left continuing iff a  Ab  A: b ⊏ a

A is continuing iff A is left continuing and A is right continuing

A is left-linear iff for every a, b1, b2  A:

 if b1 ⊏ a and b2 ⊏ a then b1 ⊏ b2 or b2 ⊏ b1 or b1=b2

A is right-linear iff for every a, b1, b2  A:

 if a ⊏ b1 and a ⊏ b2 then b1 ⊏ b2 or b2 ⊏ b1 or b1=b2

A is non-branching iff A is left-linear and A is right-linear.

Let <L,< > be a linear order.

A is dense iff for every a1`,a2  A: if a1 < a2 then b: a1 < b < a2

A is discrete iff for every a  A:

 if b  A: b < a then b  A: b < a and c: b < c < a and

 if b  A: a < b then b  A: a < b and c: a < c < b and

Every element that has a predecessor has an immediate predecessor and every element that

has a successor has an immediate successor.

The natural numbers < ℕ, < > form a discrete, right continuing linear order with minimum 0

Not every discrete, right continuing linear order with minimum 0 is isomorphic to the natural

numbers.

Example

Let C (COPY) be an operation that maps a structure <A, < > onto an isomorphic, non

overlapping structure. Thus C(<ℤ, < >) is an isomorphic copy of the integers.

<C(ℤ), < > is a structure such that ℤ  C(ℤ) = Ø (and, since ℕ  ℤ, N  C(ℤ) = Ø)

We define a new structure ℕ + C(ℤ) = <N  C(ℤ), <N+C(Z) >

where <ℕ +C(Z) is defined as follows:

 <ℕ+C(ℤ) = <ℕ  <C(ℤ)  {<a,b>: a  ℕ and b  C(ℤ)}

49

ℕ 0 1 2 3…

ℕ + C(ℤ) 0 1 2 3......─3’ ─2’ ─1’ 0’ 1’ 2’ 3’ ….

ℕ + C(ℤ) is a discrete, right continuing linear order with minimum 0, like ℕ.

But ℕ and ℕ + C(ℤ) are not isomorphic.

Proof: take a bijection f between ℕ + C(ℤ) and ℕ and assume that k  C(ℤ). Then k has

infinitely many predecessors, while f(k) has only finitely many predecessors. Then,

obviously, it is not possible to preserve the order of all the predecessors of k into ran(f),

because there are only finitely many values available. Hence f cannot preserve the order (i.e.

for some p <ℕ +C(Z) k: (f(p) <N f(k)).

The extra property that the natural numbers have is the second order property of

wellfoundedness:

Let A = <A,⊑> be a partial order.

X is a chain in A iff X is a linear subset of A.

When not confusing, I will use X for <X, ⊑↾X>.
X is a linear subset of A iff X  A and X is a linear order.

A is wellfounded iff every linear subset of A has a minimum.

Fact: A is isomorphic to N iff A is wellfounded, discrete, right continuing linear order with a

 minimum.

N + C(ℤ) is not wellfounded. C(ℤ)  N + C(ℤ), and C(ℤ) does not have a minimum.

A tree is a structure T = <T, ⊑, top > where <T,⊑ >is a wellfounded,discrete, left-linear

 order with minimum top.

Here the relation ⊑ is the dominance relation.

Note that in mathematics trees are not necessarily finite, and that if you want to impose a left-

right order on the nodes of the tree you have to endow the structure with a second relation, a

leftness relation.

A left-right ordered tree is a structure T = <T, ⊑, top, L > where:

 2. <T, ⊑, top > is a tree.

 3. L is a strict partial order on T such that:

 for all n1,n2  T: (n1 L n2) or (n2 L n1) iff (n1 ⋢ n2) and (n2 ⋢ n1)

Fact: L satisfies monotonicity: If a ⊑ a1 and b ⊑ b1 and L(a,b), then L(a1,b1)

50

Let A = <A, ⊑ > be a partial order.

As we saw, a chain in A is a linear subset of A.

X is a maximal chain in A iff X is a chain in A and for

every X  Y  A: if Y is a chain in A then X = Y.

A maximal chain in A is called a path in A or a branch in A.

Let X  A.

 X is a convex set in A iff for every x1,x2  X: a  A: if x1 ⊑ a ⊑ x2 then a  X

 X is an interval in A iff X is a linear convex set in A

A convex set is closed under untermediate elements.

Example: A:

 o1

od oe of

oa ob oc

 o 0

{0,d} is not a convex subset of A, because 0,d,  {0,d} and 0 ⊑ a ⊑ d but a  {0,d}.

{0,a,b,d} is a convex subset of A.

Important note: {c,f,1} is not an interval in A.

The reason is that {c,f,1} is not a convex set in A. Namely, c,1  {c,f,1} and c ⊑ b ⊑ 1, but

b  {c,f,1}. So {c,f,1} is a linear subset of A, but it is not convex, hence not an interval in

A.

If we want to express the sense in which {c,f,1} is an interval, we can do that by introducing

a branch in A:

{c,f,1} and {0,c,f,1} are chains in A. {0,c,f,1} is a branch in A (adding any more element

yields a set which is not linear anymore).

{c,f,1} is not an interval in A, but it is an interval in {0,c,f,1}.

We generalize the notions of join and meet:

Let A = <A,⊑> be a partial order. Let X  A and a  A.

a is an upper bound for X iff for every x  X: x ⊑ a

a is a lower bound for X iff for every x  X: a ⊑ x

UB(X) is the set of all upper bounds for X.

LB(X) is the set of all lower bounds for X.

If X has a minimum,we call the minimum min(X) (we could also call it 0X).

If X has a maximum, we call the maximum max(X).

Note that, by the notation convention, min(X) is the minimum in <X,⊑↾X>.

51

The supremum of X, ⊔X, is:

 ⊔X = min(UB(X)), the lowest upper bound of X

The infimum of X, ⊓X, is:

 ⊓X = max(LB(X)), the greatest lower bound of X

 o1

od oe of

oa ob oc

 o0

UB{a,b} = {d,1} LB({a,b}) = {0}

min(UB({a,b})) = d max({0}) = 0

⊔({a,b}) = d ⊓({a,b}) = 0

Note that ⊔{a,b}  {a,b} and ⊓{a,b}  {a,b}

⊔{0,a,b,d} = ⊔{a,b} = d

This time ⊔{0,a,b,d}  {0,a,b,d} and ⊓{0,a,b,d}  {0,a,b,d}

The notions of join and meet defined earlier are the two place variants:

a ⊔ b = ⊔({a,b}), a ⊓ b = ⊓({a,b,})

We call the general notions of join and meet also complete join and complete meet.

We repeat from above: Not for every partial order is it true that every subset has a supremum

and an infimum.

B oa ob C o1

 o0 o c od

 oa ob

 o0

In structure B {a,b} has an infimum (0), but not a supremum. UB({a,b}) = Ø, which does

not have a minimum.

In C {a,b} also has an infimum (0) but not a supremum. This time UB({a,b}) = {c,1,d}, but

again, {c,1,d} does not have a minimum. This time, {c,d} does not have an infimum,

because LB({c,d}) = {a,b,0}, which does not have a maximum.

X is upper bounded iff X has a supremum

X is lower bounded iff X has an infimum

X is bounded iff X has both as supremum and an infimum.

52

Interval structures

If T is a linear order, an interval in T is a non-empty convex subset of T, a non-empty set

 which is closed under intermediate elements.

In a temporal context where we use intervals a lot and rely a lot on the notion of bound, it is

useful to introduce virtual bounds.

A linear order with virtual bounds is a structure T = <T  {¡, }, <, ¡, > where:

 1. <T,<↾T> is a linear order.

 2. ¡,   T

 3. for all t  T:¡ < t < 

We have defined above for X  T the bounds of X (if they exist):

⊓X, the infimum (lower bound) of X and ⊔X, the supremum (upper bound) of X.

A bound b for X is an open bound iff b  X

A bound b for X is a closed bound iff b  X

If b is a closed lower bound for X, b is the minimum of X.

If be is a closed upper bound for X, b is the maximum of X.

We call a bounded set X an open set if the bounds are open, a closed set if the bounds are

closed, and a half open set in the two other cases.

¡ and  are virtual bounds: they are not in T, but are the lower resp. upper bounds of sets

that do not have a lower resp. upper bound in T. Hence, while Z does not have a lower

bound and an upper bound in Z, it does have a lower bound and an upper bound in Z with

virtual bounds.

I will use the following terminology for a,b  T

 [a,→) = {t  T: a ≤ t} [a,b] = {t  T: a ≤ t ≤ b}

 (a,→) = {t  T: a < t} [a,b) = {t  T: a ≤ t < b}

 (,a] = {t  T: t ≤ a} (a,b] = {t  T: a < t ≤ b}

 (,a) = {t  T: t < a} (a,b) = {t  T: a < t < b}

Note: I will use the notation [a,→) even if T has a maximum.

This interval notation is notation suitable only for bounded intervals.

Let X  T.

X is left-extended in T iff t  T x  X: x < t

X is right-extended in T iff t  T x  X: t < x

I will treat left or right extended subsets of T as bounded by the virtual bounds:

 If X is left-extended in T then (by definition) ⊓(X) = ─∞

 If X is right-extended in T then (by definition) ⊔(X) = ∞

In those cases I may also write (─∞,a] for (,a].

53

Note : An important subtlety: I define intervals as subsets of T, excluding the virtual

bounds. This means that an interval bounded by virtual bounds is an open interval.

Note too that intervals, on this definition, are not necessarily bounded.

Let T = <T, <T > be a linear order (with virtual bounds).

The interval structure of T, IT = <IT, , < > where

 1. IT is the set of all intervals in T

 2. , the inclusion relation, is the subset relation on IT.

 3. <, the relation of precedence, is defined on IT−{Ø} by:

 for all i,j  IT: i < j iff t1  i t2  j: t1 <T t2

The reason we define < on IT−{Ø} is that we want < to be a linear order on intervals in a

sense defined below. If we include Ø, < is not irreflective (since it would be true that Ø < Ø).

The interval structures defined here are also called point-generated interval structures.

We can define overlap in terms of inclusion:

 i O j, i overlaps j iff k  IT: k  i and k  j

Note that we require that i and j overlap in an interval, a non-empty convex subset. Don't

think here in terms of subsets: the empty set does not count as a 'real' subinterval.

With precedence and overlap we define the intuitive notion of linearity for intervals:

 < is i-linear iff for all i,j  IT−{Ø}: i < j or j < i or i O j

Fact: If T is linear, IT is i-linear.

We can define a variety of other useful notions:

i and j co-start iff k  IT: k < i iff k < j

i and j co-end iff k  IT: i < k iff j < k

i is an initial subinterval of j iff i  j and i and j co-start

i is a final subinterval of j iff i  j and i and j co-end

i is a medial subinterval of j iff i  j and neither i and j co-start

 and neither i and j co-end

54

 i splits into j and k, i = j + k iff i = j  k and j < k

 i

 j k

This means that i partitions into two intervals j and k, with j before k.

 i is a point-interval in IT iff i = {t} for some t  T.

 POINTI is the set of all point intervals in IT.

 A cut through i is a pair of intervals <j,k> such that j + k = i

Let <j,k> be a cut through T.

<j,k> detemines a jump iff ⊔j  j and ⊓k  k

<j,k> determines a transition iff ⊓k  j or ⊔j  k

 <j,k> determines a gap iff ⊔j = ⊥ and ⊓k = ⊥

 (j has no upper bound and k has no lower bound)

Let <T,< > be a linear order.

Lemma 1: T is dense iff no cut through T determines a jump

Proof.

-Suppose <i,j> is a cut through T that determines a jump.

Then ⊔i  i and ⊓j  j.

By definition of cut, {i,j} is a partition of T and ⊔i < ⊓j.

But then t  T: ⊔i < t < ⊓j, and hence T is not dense.

-Suppose that T is not dense. Then for some t1,t2  T t1 < t2 and t  T: t1 < t < t2,

Then <(,t1],[t2,→)> is a cut through T that determines a jump.

Note: remember that the notation (,t1) does not mean that the lower bound of (,t1) is a

virtual bound, or that (,t1) is an open interval. The subinterval (,10) of N is [0,10).

On the other hand (─∞,a) is an open interval.

Lemma 2: T is discrete iff no cut through T determines a transition

Proof.

Similar.

We define:

T is continuous iff no cut through T determines a gap.

-Continuity is the same as completeness: all sets have bounds.

A gap is a situation of two sets approximating each other without a bound, like the cut:

<{q  Q: q < }, {q  Q:  < q}>, where π  Q

We can also express a principle like density directly at the interval structure. In that case, we

formulate it as a property of intervals bigger than a point.

55

Let us call a interval bigger than a point a proper interval.

 IT is dense iff for every i  IT ¡ POINTI: j,k  IT ¡ POINTI: i = j + k

Every proper interval in IT can be split into proper intervals.

Note that if T is discrete, T is continuous. But, as we will see, there are continuous orders

that are not discrete, in fact, dense continuous orders.

Some more operations on intervals.

Let IT be an interval structure.

Lemma: IT is closed under non-empty intersection:

 If i, j  IT and i  j  Ø, then i  j  IT

 i

j

 i  j

Proof

It is easy to prove that the non-empty intersection of two intervals is itself an interval.

The interval structure I is not closed under union, and not under complementation.

-the union of Yesterday and Tomorrow is not itself an interval.

-The complement of Today, is all time, except today, which is not an interval.

Both of these are not convex sets.

Let X  T and Z  IT

The convex closure of X, Xcc,

Xcc = {t  T: t1  X t2  X: t1  t  t2}

The convex union of Z, c(Z),

 c(Z) = (Z) cc

Lemma: IT is closed under convex union

56

The diagrams of interval structures are half-chess boards:

 {1,2,3,4}

 {1,2,3} {2,3,4}

 {1,2} {2,3} {3,4}

 {1} {2} {3} {4}

Or, in another visualization:

 1234

123

 234

 12 34

 23

1 2 3 4

Convex union is the supremum operation under :

In this structure, the join operation is convex union,

so: {1} c {4} = {1,2,3,4}

57

Linear orders, discrete, dense, and continuous

In a discrete linear order no cut determines a transition; in a continuous linear order no cut

determines a gap. Hence in a discrete continuous linear order every cut determines a jump.

Theorem 1. If <A,< > is a discrete continuous linear order then <A,< > is isomorphic to a

 substructure of < ℤ, < >

Proof.

Let a,b  A and a < b.

Since every cut in A determines a jump, there is no transition or gap between a and b.

This means that there are finitely many elements between a and b.

This means that A is at most countable.

You make an isomorphism with a substructure of ℤ as follows.

Pick any element a  A. Choose f(a) = 0.

If for some b  A a < b then a has a direct successor in A a+1. Set f(a+1) = 1

If for some b  A b < a then a has a direct predecessor in A a−1. Set f(a−1) = −1

Since A is a linear order for any element b  A a < b or b < a. hence b  A comes into the

function after a finite number of steps. The function f obviously preserves the order.

Hence up to isomorphism the discrete continuous linear orders are the finite linear orders,

ℤ+, ℤ─ and ℤ.

Let [a,b]ℚ be the closed subinterval [a,b] of ℚ.

Theorem 2: Cantor’s Theorem

 Every countable dense linear order is isomorphic to one of

 <[0,1]ℚ,< >, <[0,1)ℚ,< >, <(0,1]ℚ,< >, <(0,1) ℚ,< >

We only need to prove one of these:

 Every continuing countable dense linear is isomorphic to <(0,1)ℚ ,< >

(and hence to ℚ).

Proof.

Let <A,< > and <B,< > be continuing countable dense linear orders.

Let A = a0,a1,...,an,... be an enumeration of A, and B = b0,b1,...,bn,... be an emumeration of B.

Since A and B are countable, such enumerations exist.

We define a sequence f0,f1,....fn,... as follows:

1. f0 = {<a0,b0>}

Note that f0 is, trivially, a finite one-one function that preserves the order.

2. If n>0 and n is odd, then fn = fn-1  {<a,b>} where:

 2a: a is the first element in enumeration A such that a  dom(fn-1).

Since dom(fn-1) is finite, and A countable there always is a first element in A not in dom(fn-1).

 2b1: If for every x  dom(fn-1): a < x, then b is the first element in enumeration B such

that b ran(fn-1) and for every y  ran(fn-1): b < y.

58

Since ran(fn-1) is finite, and B countable, and since B is continuing,

there always is a first element in B not in ran(fn-1) and before every element in ran(fn-1).

 2b2: If for every x  dom(fn-1): x < a, then b is the first element in enumeration B such

that b ran(fn-1) and for every y  ran(fn-1): y < b.

Since ran(fn-1) is finite, and B countable, and since B is continuing,

there always is a first element in B not in ran(fn-1) and after every element in ran(fn-1).

Since A is linear, if a  dom(fn-1) and a is not before every x in dom(fn-1) and not after every

x in dom(fn-1), then for some x1,x2  dom(fn-1): x1 < a < x2.

Since dom(fn-1) is finite this means that for some x1,x2  dom(fn-1): x1 < a < x2

and for no x3  dom(fn-1): x1 < x3 < a and for no x3  dom(fn -1): a < x3 < x2.

2b3: If for some x1,x2  dom(fn-1): x1 < a < x2

and for no x3  dom(fn-1): x1 < x3 < a and for no x3  dom(fn-1): a < x3 < x2,

then b is the first element in B such that b  ran(fn-1) and fn-1(x1) < b < fn-1(x2).

Since ran(fn-1) is finite, and B countable, and since B is dense, there always is a first element

in B not in ran(fn-1) and between fn-1(x1) and fn-1(x2).

Note that, by the construction, if fn-1 is a finite one-one function that preserves the order, then

so is fn. We add to fn-1 one pair <a,b>, where, by the construction, <a,b> is well defined,

a  dom(fn-1), b  ran(fn-1).

This means that, by the construction, if fn-1 is a function, so is fn; if fn-1 is one-one, so is fn,

and if fn-1 preserves the order, so does fn.

3. If n>0 and n is even, then fn = fn-1  {<a,b>} where:

 3a: b is the first element in enumeration B such that b  ran(fn-1).

Since ran(fn-1) is finite, and B countable there always is a first element in B not in ran(fn-1).

 3b1: If for every y  ran(fn-1): b < y, then a is the first element in enumeration A such

that a dom(fn-1) and for every x  dom(fn-1): a < x.

Since dom(fn-1) is finite, and A countable, and since A is continuing,

there always is a first element in A not in dom(fn-1) and before every element in dom(fn-1).

 3b2: If for every y  ran(fn-1): y < b, then a is the first element in enumeration A such

that a dom(fn-1) and for every x  dom(fn-1): x < a.

Since dom(fn-1) is finite, and A countable, and since A is continuing,

there always is a first element in A not in dom(fn-1) and after every element in dom(fn-1).

Since B is linear, if b  ran(fn-1) and b is not before every y in ran(fn-1) and not after every y

in ran(fn-1), then for some y1,y2  ran(fn-1): y1 < b < y2. Since ran(fn-1) is finite this means

that for some y1,y2  ran(fn-1): y1 < b < y2

and for no y3  ran(fn-1): y1 < y3 < b and for no y3  ran(fn-1): b < y3 < y2.

 3b3: If for some y1,y2  ran(fn-1): y1 < b < y2

and for no y3  ran(fn-1): y1 < y3 < b and for no y3  ran(fn-1): b < y3 < y2, then a is the first

element in A such that a  dom(fn-1) and fn-1
-1(y1) < a < fn-1

-1(y2).

59

Since dom(fn-1) is finite, and A countable, and since A is dense, there always is a first

element in A not in dom(fn-1) and between fn-1
-1(y1) and fn-1

-1(y2).

Note that, by the construction, if fn-1 is a finite one-one function that preserves the order, then

so is fn.

We add to fn-1 one pair <a,b>, where, by the construction, <a,b> is well defined,

a  dom(fn-1), b  ran(fn-1). This means that, by the construction, if

fn-1 is a function, so is fn; if fn-1 is one-one, so is fn, and if fn-1 preserves the order, so does fn.

The construction in a picture:

A = a0 a1 a2 a3 a4 …

B = b0 b1 b2 b3 b4 …

A a1 ao a4 a2 a3

B b4 b0 b2 b1

Fact 1: For every n: fn is a finite one-one function which preserves the order.

Proof: The induction steps are given in the construction.

Fact 2: For every a  A there is an n such that a  dom(fn).

 For every b  B there is an n such that b  ran(fn).

Proof: This follows from the zig-zag construction.

If a  A and for some k, a  dom(fk), then for some m, a is the m-th element of A not in

dom(fk). By the construction, this means that a  dom(fk+2m), either because it is chosen as

60

the argument for some b before that, or, if not, because at that stage it is the first element in

the enumeration A which isn't in the domain of the previous function.

The very same argument applies to any b  B.

Now we define:

 f = {fn: n  0}

Fact 3: f is an isomorphism between <A,< > and <B,< >.

Proof.

-f is, of course, by definition a relation between A and B.

-Since each fn+1 is a function extending fn, f is a function.

-By definition, dom(f) = {dom(fn): n  0}. By fact 2, this is A.

Thus f is a function from A into B.

-By definition, ran(f) = {ran(fn): n  0}. By fact 2, this is B.

Thus f is a function from A onto B.

-Since each fn is a one-one function, f is a one-one function. If a1,a2  dom(f) and f(a1)=f(a2),

then for some n: a1,a2  dom(fn), and hence fn(a1)=fn(a2),. But then, since fn is one-one, a1=a2.

Thus f is a bijection between A and B.

-Since each fn preserves the order, f preserves the order. If a1 < a2, then, since for some n,

a1,a2  dom(fn), by construction fn(a1) < fn(a2). But then f(a1) < f(a2).

⧠

We have so far dealt with linear orders with only jumps and with countable linear orders

without jumps.

What about linear orders with only gaps, and linear orders with only transitions?

Concerning the first, it is easy to see that they do not exist.

Namely, let A be any linear order and let a  A, but not an endpoint. Then <(,b],(b,→) >

determines a jump or a transition. This means that it can't be the case that every cut in A

determines a gap.

This means that for linear orders without jumps (i.e. dense linear orders) we can find only

two possible kinds: with gaps and transitions, or with only transitions.

The countable cases are cases with gaps and transitions. Gaps in ℚ can be shown by looking

at irrational numbers. let r  ℝ − ℚ:

ℚ = (,r)  (r,→), hence <(,r) ,(r,→)> is a cut through ℚ that determines gap.

Another nice way of showing that some cut in ℚ determines a gap is by considering

ℚ + C(ℚ), ℚ with a copy of itself after it. Obviously, < ℚ, C(ℚ)> determines a gap in

ℚ + C(ℚ).

But ℚ + C(ℚ) is itself a continuing countable dense linear order, and hence by Cantor’s

theorem isomorphic to ℚ. So some cut in ℚ determines a gap.

Even more dramatic: replace every element of ℚ by a full copy of ℚ, preserving the order.

This structure is also isomorphic to ℚ.

61

It follows that linear orders in which every cut determines a transition can only be non-

countable. Intuitively we get the set of real numbers ℝ by for every cut in ℚ that determines

a gap, filling up the gap with an irrational number. This turns the gap into a transition

(because you need to extend either T1 or T2 of the original cut which determined a gap with

the element added to get a partition). As it turns out, there is a way of doing this, and in fact

only one way of doing this.

Let <B,< > be a continuing dense linear order, and let A  B.

 A lies dense in B iff for every b1,b2  B: if b1 < b2 then there is an a  A: b1 < a < b2.

Theorem 3: Let <B,< > be a continuing linear order in which every cut determines a

 transition, and A a countable subset of B which lies dense in B.

 Then <B,<> is isomorphic to < ℝ,< >

Rationale.

If <A,< > is a continuing linear order in which every cut determines a transition and a

countable subset B lies dense in A, then every transition can be reconstructed as the bounds

of a cut of intervals in B, and A is just the result of adding these bounds where they are

lacking in B (when there are gaps).

Such a structure is called a completion of the structure < ℚ,< >.

You can prove that each incomplete structure has (up to isomorphism) one and only

completion, and that the completions of isomorphic incomplete structures are themselves

isomorphic. From this the result follows.

Note that not every continuing linear order in which every cut determines a transition is

isomorphic ℝ. Only those that have a countable subset which is dense in them.

62

