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PART 9:  SEMANTIC AUTOMATA 

 

Sections 9.1 – 9.5 are background from the class notes Quantification and Modality. 

 

9.1. GENERALIZED QUANTIFIERS 
 

DET = {EVERY, SOME, NO, n, AT MOST n, AT LEAST n, EXACTLY n,  

  BETWEEN n AND m, MOST} where n,m  N and m > n. 

 

ABSTRACTION: 

 If x  VAR and φ  FORM, then λxφ  PRED
1
 

  

QUANTIFICATION: 

 If D  DET and P,Q  PRED
1
, then D(P,Q)  FORM 

 

For model M = <DM,FM> and assignment function g: 

 For every D  DET: vDbM,g = FM(D) 

 

 If x  VAR and φ  FORM, then: 

 vλxφbM,g = {d  DM: vφbM,gx
d
 = 1} 

 

 If D  DET and P,Q  PRED
1
, then: 

 vD(P,Q)bM,g = 1 iff < vPbM,g, vQbM,g >  vDbM,g  

 

This leaves the specification of the lexical items, the determiners: 

 

 For every D  DET: FM(D)  pow(DM)  pow(DM) 

 Every determiner is interpreted as a relation between sets of individuals. 

 

FM(EVERY)   = {<X,Y>: X,Y  DM and X  Y} 

FM(SOME)     = {<X,Y>: X,Y  DM and X  Y  Ø} 

FM(NO)          = {<X,Y>: X,Y  DM and X  Y = Ø} 

FM(AT LEAST n) = {<X,Y>: X,Y  DM and |X  Y| ≥ n} 

nFM(AT MOST n)  = {<X,Y>: X,Y  DM and |X  Y| ≤ n} 

FM(n)    = FM(AT LEAST n) 

FM(EXACTLY n)  = {<X,Y>: X,Y  DM and |X  Y| = n} 

FM(BETWEEN n AND m)= {<X,Y>: X,Y  DM and n  |X  Y|  m} 

FM(MOST)  = {<X,Y>: X,Y  DM and |X  Y| > |X  Y|} 
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9.2. GENERAL CONSTRAINTS ON DETERMINER INTERPRETATION. 

 

With some notorious problematic cases, discussed in the literature (eg. few, many), 

natural language determiners all satisfy the following principles of extension, 

conservativity and quantity (van Benthem 1983). 

 

EXTENSION 
 Determiner α satisfies extension iff for all models M1, M2 and  

for all sets X,Y such that X,Y  DM1 and X,Y  DM2: 

 <X,Y>  FM1(α) iff <X,Y>  FM2(α) 

 

Let FM1(P) = FM2(P) = X and FM1(Q) = FM2(Q) = Y. 

If α satisfies extension, then the truthvalue of α(P,Q) depends only on what is in 

XY, not on what is in DM1  (XY) or in DM2  (XY). 

 

The intuition is the following: 

If α satisfies extension then, if we only specify of a model FM(BOY) and FM(SING), 

the truth value of α(BOY,SING) in M is already determined. 

 

This is a natural constraint on natural language determiners: 

The truth value of every boy/some boy/no boy/most boys…sing(s) does not depend on 

the presence or absence of objects that are neither boys nor singers. 

 

CONSERVATIVITY 

Determiner α is conservative iff for every model M and  

for all sets X,Y  DM: 

   <X,Y>  FM(α) iff <X,XY>  FM(α) 

 

There is another formulation of conservativity and extension, which is useful: 

 

 Determiner α satisfies extension and conservativity iff  

for all models M1,M2, and all sets X1,Y1,X2,Y2 such that 

X1, Y1  DM1 and X2, Y2   DM2 : 

 If X1  Y1 = X2  Y2 and X1  Y1 =  X2  Y2 then  

 <X1,Y1>  FM1(α) iff <X2,Y2>  FM2(α). 

 

Let FM1(P) = X1 and FM2(P) = Y1 and FM1(Q) = X2 andFM2(Q) = Y2. 

If α satisfies extension, and conservativity, then the truthvalue of α(P,Q) depends only 

on what is in X1  Y1 (= X2  Y2) and in X1  Y1 (= X2  Y2). 

 

The intuition is the following: 

If α satisfies extension and conservativity, then if we specify of a model M, not even  

what FM(BOY) and FM(SING) are, but only what FM(BOY)  FM(SING) and 

FM(BOY)  FM(SING) are, then still the truth value of α(BOY,SING) in M is already 

determined. 

 

This is a natural constraint on natural language determiners: 
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The truth value of every boy/some boy/no boy/most boys…sing(s) does not depend on 

the presence or absence of objects that are neither boys nor singers, and also not on 

the presence or absence of singers that are not boys:  it only depends on what is in the 

set of boys that sing, and what is in the set of boys that don't sing. 

 

Conservativity can be checked in the following pattern: 

 

 α is conservative iff α(BOY,WALK) is equivalent to  

α(BOY,λxBOY(x)  WALK(x)) 

 

α boy walks iff α boy is a boy that walks 

α boys walk iff α boys are boys that walk. 

 

cf: 

 Every boy walks iff Every boy is a boy that walks 

 Most boys walk iff Most boys are boys that walk. 

 

QUANTITY (Independent definition in terms of permutations, see van Benthem). 

 Determiner α satisfies extension and conservativity and quantity iff  

for all models M1,M2, and all sets X1,Y1,X2,Y2 such that 

X1, Y1  DM1 and X2, Y2   DM2 : 

 If |X1  Y1| = |X2  Y2| and |X1  Y1| =  |X2  Y2| then  

 <X1,Y1>  FM1(α) iff <X2,Y2>  FM2(α). 

 

 

Let FM1(P) = X1 and FM2(P) = Y1 and FM1(Q) = X2 andFM2(Q) = Y2. 

If α satisfies extension, and conservativity and extension , then the truthvalue of 

α(P,Q) depends only on the cardinality of X1  Y1 (= |X2  Y2|) and the cardinality 

of X1  Y1 (= |X2  Y2|). 

 

The intuition is the following: 

If α satisfies extension and conservativity and quantity, then if we specify of a model 

M, not even what FM(BOY) and FM(SING) are, and not even what  

FM(BOY)  FM(SING) and FM(BOY)  FM(SING) are, but only what  

|FM(BOY)  FM(SING)| and |FM(BOY)  FM(SING)| are 

then still the truth value of α(BOY,SING) in M is already determined. 

 

This is a natural constraint on natural language determiners: 

The truth value of every boy/some boy/no boy/most boys…sing(s) does not depend on 

the presence or absence of objects that are neither boys nor singers, and also not on 

the presence or absence of singers that are not boys; it doesn't even depend on what 

is in the set of boys that sing, and what is in the set of boys that don't sing, but only 

on how many things there are in the set of boys that sing and on how many things 

there are in the set of boys that don't sing. 

 

For determiners that satisfy extension, conservativity and quantity we can set up the 

semantics in the following more general way. 
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We let the model M associate with every determiner α that satisfies extension, 

conservativity and quantity a relation rα between numbers, r  N  N.   

We associate for every model the same relation rα with α.   

In terms of this, we define FM(α): 

 

 FM(α) = { <X,Y>: X,Y  DM and <|XY|,|XY|)>  rα } 

 

Given this, the meaning of the determiner α is now reduced to the relation rα between 

numbers.  These meanings we specify as follows: 

 

 rEVERY  = {<n,0>: n  N} 

 rSOME  = {<n,m>: n,m  N and n>0} 

 rNO  = {<0,m>: m  N} 

 rAT LEAST k = {<n,m>: n,m  N and n≥k} for k  N 

 rAT MOST k: = {<n,m>: n,m  N and n≤k} for k  N 

 rEXACTLY k: = {<k,m>: m  N}  for k  N 

 rBETWEEN k AND p= {<q,m>: q,m  N and k  q  p}  for k,p  N,  k < p   

 rMOST : =  {<n,m>: n,m  N and n>m} 

 

 

 

9.3 DETERMINERS AS PATTERNS ON THE TREE OF NUMBERS 
(van Benthem 1983) 

 

If |BOY| = 3, then there are four possibilities for the cardinalities in 

<|BOY  SING|, |BOY  SING|>: 

<0,3> means:   |BOY  SING| = 0 and |BOY  SING| = 3 

<1,2>   means:   |BOY  SING| = 1 and |BOY  SING| = 2 

<2,1>   means:   |BOY  SING| = 2 and |BOY  SING| = 1 

<3,0>   means:   |BOY  SING| = 3 and |BOY  SING| = 0 

 

We can write down a tree of numbers which shows for each cardinality of BOY, all 

the possibilities for the cardinalities of <|BOY  SING|, |BOY  SING|>: 

 

                                                    <0,0>     |BOY|=0 

                                               <0,1>  <1,0>      |BOY|=1 

                                         <0,2>  <1,1>  <2,0>     |BOY|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |BOY|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |BOY|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |BOY|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |BOY|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 

 

We can now study the pattern that each determiner meaning rα makes on the tree of 

numbers, by highlighting (bold italic) the extension of rα: 
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rEVERY 

                                                    <0,0>     |BOY|=0 

                                                 <1,0>      |BOY|=1 

                                          <2,0>     |BOY|=2 

                                    <3,0>     |BOY|=3 

                               <4,0>    |BOY|=4 

                        <5,0>    |BOY|=5 

<6,0>   |BOY|=6 

            <7,0>   |BOY|=7 

<8,0>   |BOY|=8 

 <9,0>  |BOY|=9 

...          ... 

 

rSOME 

                                                         |BOY|=0 

                                                 <1,0>      |BOY|=1 

                                           <1,1>  <2,0>     |BOY|=2 

                                    <1,2>  <2,1>  <3,0>     |BOY|=3 

                              <1,3>  <2,2>  <3,1>  <4,0>    |BOY|=4 

                         <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |BOY|=5 

                 <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |BOY|=6 

             <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

  <1,8>  <2,7>  <3,6>  <4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...    

 

rNO 

                                                    <0,0>     |BOY|=0 

                                               <0,1>        |BOY|=1 

                                         <0,2>     |BOY|=2 

                                   <0,3>      |BOY|=3 

                             <0,4>      |BOY|=4 

                       <0,5>     |BOY|=5 

                 <0,6>     |BOY|=6 

           <0,7>     |BOY|=7 

      <0,8>   |BOY|=8 

<0,9>    |BOY|=9 

...          ... 
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rAT LEAST 4 

 

                                                         |BOY|=0 

                                                    |BOY|=1 

                                             |BOY|=2 

                                       |BOY|=3 

                              <4,0>    |BOY|=4 

                       <4,1>  <5,0>    |BOY|=5 

                  <4,2>  <5,1>  <6,0>   |BOY|=6 

           <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

<4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 

 

rAT MOST 4 

                                                    <0,0>     |BOY|=0 

                                               <0,1>  <1,0>      |BOY|=1 

                                         <0,2>  <1,1>  <2,0>     |BOY|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |BOY|=3 

                             <0,4>  <1,3>  <2,2>  <3,1> <4,0>    |BOY|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>     |BOY|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>    |BOY|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>     |BOY|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>    |BOY|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>    |BOY|=9 

...          ... 

 

rEXACTLY 4 

                                                       |BOY|=0 

                                                 |BOY|=1 

                                              |BOY|=2 

                                      |BOY|=3 

                              <4,0>    |BOY|=4 

                         <4,1>     |BOY|=5 

                   <4,2>    |BOY|=6 

          <4,3>    |BOY|=7 

        <4,4>  |BOY|=8 

<4,5>  |BOY|=9 

...          ... 
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rBETWEEN 2 and 4  

                                                       |BOY|=0 

                                                 |BOY|=1 

                                              |BOY|=2 

                                      |BOY|=3 

                              <4,0>    |BOY|=4 

                         <4,1>     |BOY|=5 

                   <4,2>    |BOY|=6 

          <4,3>    |BOY|=7 

        <4,4>  |BOY|=8 

<4,5>  |BOY|=9 

...          ... 

rMOST 

                                                         |BOY|=0 

                                              <1,0>      |BOY|=1 

                                           <2,0>     |BOY|=2 

                                    <2,1>  <3,0>     |BOY|=3 

                               <3,1>  <4,0>    |BOY|=4 

                        <3,2>  <4,1>  <5,0>    |BOY|=5 

                   <4,2>  <5,1>  <6,0>   |BOY|=6 

          <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 

 

9.3. SYMMETRY AND MONOTONICITY 

 

SYMMETRY 

 Determiner α is symmetric iff for every model M and all sets X,Y  DM: 

 <X,Y>  FM(α)  iff <Y,X>  FM(α) 

 

Pattern:  α(BOY,SING) is equivalent to α(SING,BOY) 

 

   α boy sings iff α singer is a boy 

   α boys sing iff α singers are boys 

 

Technically:  FM(α) only depends on |A  B|:  Symmetry follows from commutativity  

                      of . 

 

  SYMMETRIC 

every  NO 

some  YES   

no  YES 

at least n YES 

at most n YES 

exactly n YES 

most  NO 
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Let us define: vExistbM,g  = DM 

 

Then we have the following for symetric DETS: 

 

DET(A,B)  ,conservativity DET(A,AB) ,symmetry DET(AB,A) 

,conservativity DET(AB,AB) ,  <|(AB)  (AB)|, |(AB) ¡ (AB)|>  rDET   

, <|AB|,0>  rDET  

 

DET(AB,EXIST) ,  <|(AB)  DM|,|(AB) ¡ DM|  rDET  

, <|AB|,0>  rDET   

 

Thus: 

 

D is symmetric iff   DET(A,B) , DET(AB,EXIST) 

 

This means that the truth conditions of DET(A,B) only  depend on the cardinality of 

AB, ie. are completely determined by that. 

 

 

MONOTONICITY. 

Let α be a determiner. 

In α(P,Q) we call P the first argument of α and Q the second argument of α 

 

Terminology: 

α is 1: α is upward monotonic, upward entailing, on its first argument 

α is 1: α is downward monotonic, downward entailing, on its first argument 

α is 1: α is neither upward nor downward monotonic on its first argument 

 

α is 2: α is upward monotonic, upward entailing, on its second argument 

α is 2: α is downward monotonic, downward entailing, on its second argument 

α is 2 α is neither upward nor downward monotonic on its second argument 

 

α is 1 iff for every model M and all sets X1,X2,Y  DM: 

     if <X1,Y>  FM(α) and X1  X2 then <X2,Y>  FM(α) 

 

α is 1 iff for every model M and all sets X1,X2,Y  DM: 

     if <X2,Y>  FM(α) and X1  X2 then <X1,Y>  FM(α) 

 

α is 1 iff α is not 1 and α is not 1 

 

α is 2 iff for every model M and all sets X,Y1,Y2  DM: 

     if <X,Y1>  FM(α) and Y1  Y2 then <X,Y2>  FM(α) 

 

α is 2 iff for every model M and all sets X,Y1,Y2  DM: 

     if <X,Y2>  FM(α) and Y1  Y2 then <X,Y1>  FM(α) 

 

α is 2 iff α is not 2 and α is not 2 
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  ARGUMENT 1 ARGUMENT 2 

every      

some        

no      

at least n     

at most n     

exactly n     

most      

 

 

9.4. SYMMETRY AS A PATTERN ON THE TREE OF NUMBERS 
 

 α is symmetric iff rα is symmetric. 

 

 rα is symmetric iff for every n,m≥0:  <n,m>  rα iff <n,0>  rα 

 

i.e. 

FACT:  if α satisfies EXT, CONS, QUANT, then 

α is symmetric iff for every M for every X,Y:  whether <X,Y> is in FM(α) or not 

depends only on |X  Y|. 

 

In terms of the tree of numbers this means that: 

 rα is symmetric iff for every n:  either for every m: <n,m>  rα 

                                                                                              or       for every m:  <n,m>  rα 

 

In terms of the tree of numbers this means the following. 

For number n, {<n,k>:k  N} is a diagonal line in the tree going from left below to 

right up: 

Like, for n = 3: 

 

                                                    <0,0>     |BOY|=0 

                                               <0,1>  <1,0>      |BOY|=1 

                                         <0,2>  <1,1>  <2,0>     |BOY|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |BOY|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |BOY|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |BOY|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |BOY|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 

 

rα is symmetric iff every such diagonal line is either completely inside rα or 

completely outside rα. 

 

With this we can check straighforwardly in the trees which rα's are symmetric: 
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revery is not symmetric: 

 

rEVERY 

                                                    <0,0>     |BOY|=0 

                                                 <1,0>      |BOY|=1 

                                          <2,0>     |BOY|=2 

                                    <3,0>     |BOY|=3 

                               <4,0>    |BOY|=4 

                        <5,0>    |BOY|=5 

<6,0>   |BOY|=6 

            <7,0>   |BOY|=7 

<8,0>   |BOY|=8 

 <9,0>  |BOY|=9 

...          ... 

 

rsome is symmetric: 

 

rSOME 

                                                         |BOY|=0 

                                                 <1,0>      |BOY|=1 

                                           <1,1>  <2,0>     |BOY|=2 

                                    <1,2>  <2,1>  <3,0>     |BOY|=3 

                              <1,3>  <2,2>  <3,1>  <4,0>    |BOY|=4 

                         <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |BOY|=5 

                 <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |BOY|=6 

             <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

  <1,8>  <2,7>  <3,6>  <4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...    

rno is symmetric: 

 

rNO 

                                                    <0,0>     |BOY|=0 

                                               <0,1>        |BOY|=1 

                                         <0,2>     |BOY|=2 

                                   <0,3>      |BOY|=3 

                             <0,4>      |BOY|=4 

                       <0,5>     |BOY|=5 

                 <0,6>     |BOY|=6 

           <0,7>     |BOY|=7 

      <0,8>   |BOY|=8 

<0,9>    |BOY|=9 

...          ... 

 

It is easy to check that r≤n, r≥n, r=n are symmetric, but that rmost is not symmetric. 
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9.5.  MONOTONICITY PATTERNS ON THE TREE OF NUMBERS 
 

rα is 2 iff if <n,m>  rα then <n+1,m¡1>  rα and if n+m = p+q and p≥n and q≤m  

then <p,q>  rα 

 

This means that rα is 2 iff if <n,m>  rα then any point to the right on that same 

line is also in rα 

 

Example:  r4 is 2: 

 

rAT LEAST 4 

 

                                                         |BOY|=0 

                                                    |BOY|=1 

                                             |BOY|=2 

                                       |BOY|=3 

                              <4,0>    |BOY|=4 

                       <4,1>  <5,0>    |BOY|=5 

                  <4,2>  <5,1>  <6,0>   |BOY|=6 

           <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

<4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 

 

 

rα is 2 iff if <n,m>  rα then and <n¡1,m+1>  rα and if n+m = p+q and p≤n and 

q≥m then <p,q>  rα 

 

This means that rα is 2 iff if <n,m>  rα then any point to the left on that same line 

is also in rα 

 

Example: r4 is 2: 

 

rAT MOST 4 

                                                    <0,0>     |BOY|=0 

                                               <0,1>  <1,0>      |BOY|=1 

                                         <0,2>  <1,1>  <2,0>     |BOY|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |BOY|=3 

                             <0,4>  <1,3>  <2,2>  <3,1> <4,0>    |BOY|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>     |BOY|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>    |BOY|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>     |BOY|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>    |BOY|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>    |BOY|=9 

...          ... 
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 rα is 1 iff if <n,m>  rα then <n+1,m>, <n,m+1>  rα 

 

This means that rα is 1 iff if <n,m>  rα then the whole triangle with top <n,m> is 

in rα. 

 

Example:  r4 is 1: 

 

rAT LEAST 4 

 

                                                         |BOY|=0 

                                                    |BOY|=1 

                                             |BOY|=2 

                                       |BOY|=3 

                              <4,0>    |BOY|=4 

                       <4,1>  <5,0>    |BOY|=5 

                  <4,2>  <5,1>  <6,0>   |BOY|=6 

           <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

<4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 

 

rα is 1 iff if <n,m>  rα then <n1,m>, <n,m1>  rα   

(when n or m is 0, set n1, m1 to 0 as well) 

 

This means that rα is 1 iff if <n,m>  rα then the whole inverted triangle with 

bottom <n,m> is in rα. 

 

Example: r4 is 1: 

 

rAT MOST 4 

                                                    <0,0>     |BOY|=0 

                                               <0,1>  <1,0>      |BOY|=1 

                                         <0,2>  <1,1>  <2,0>     |BOY|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |BOY|=3 

                             <0,4>  <1,3>  <2,2>  <3,1> <4,0>    |BOY|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>     |BOY|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>    |BOY|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>     |BOY|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>    |BOY|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>    |BOY|=9 

...          ... 
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It is easy to check that r=3 is none of the above:  

 

rEXACTLY 4 

                                                       |BOY|=0 

                                                 |BOY|=1 

                                              |BOY|=2 

                                      |BOY|=3 

                              <4,0>    |BOY|=4 

                         <4,1>     |BOY|=5 

                   <4,2>    |BOY|=6 

          <4,3>    |BOY|=7 

        <4,4>  |BOY|=8 

<4,5>  |BOY|=9 

...          ... 

 

The same for between 2 and 4. 

 

revery is 2, because trivially every point to the right is in (since there are no points to 

the right). 

revery is clearly not 1, since the downward triangles are not preserved. 

revery is 1, since the upward inverted triangle is just the right edge. 

 

rEVERY 

                                                    <0,0>     |BOY|=0 

                                                 <1,0>      |BOY|=1 

                                          <2,0>     |BOY|=2 

                                    <3,0>     |BOY|=3 

                               <4,0>    |BOY|=4 

                        <5,0>    |BOY|=5 

<6,0>   |BOY|=6 

            <7,0>   |BOY|=7 

<8,0>   |BOY|=8 

 <9,0>  |BOY|=9 

...          ... 

 

 

rno is 2 because, again, trivially every point to the left is in. 
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rno is again clearly not 1, but it is 1, because, again, the upward inverted triangle is 

just the left edge.  

 

rNO 

                                                    <0,0>     |BOY|=0 

                                               <0,1>        |BOY|=1 

                                         <0,2>     |BOY|=2 

                                   <0,3>      |BOY|=3 

                             <0,4>      |BOY|=4 

                       <0,5>     |BOY|=5 

                 <0,6>     |BOY|=6 

           <0,7>     |BOY|=7 

      <0,8>   |BOY|=8 

<0,9>    |BOY|=9 

...          ... 

 

rmost is 2, but neither 1 nor 1: for no point in rmost is the downward triangle 

completely in rmost and for no point is the upward triangle completely in rmost  (because 

<0,0> is not). 

 

rMOST 

                                                         |BOY|=0 

                                              <1,0>      |BOY|=1 

                                           <2,0>     |BOY|=2 

                                    <2,1>  <3,0>     |BOY|=3 

                               <3,1>  <4,0>    |BOY|=4 

                        <3,2>  <4,1>  <5,0>    |BOY|=5 

                   <4,2>  <5,1>  <6,0>   |BOY|=6 

          <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 
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9.6 SEMANTIC AUTOMATA (van Benthem 1987) 

 

Let  be a string in alphabet , L a language in . 

 

 is a permutation of  iff ()=() 

 

A permutation of  is a string with the same length characteristics:  the same number 

of each symbol, but possibly in a different order. 
 
()  = {  

*
: ()=()} 

 The permutation closure of string  is the set of all permutations of . 

             (more properly, the permutation closure of {}.)  

 

 (L) = {():   L}  

 The permutation closure of language L is the union of the permutation  

closures of the strings in L. 

 

L is permutation closed iff L = (L) 

 

We will call a permutation closed language a -language. 

 

We will be interested in permutation closed languages in alphabet {0,1}, i.e. 

permutation closed subsets of {0,1}.  

We will call these languages -{0,1} languages. 

 

Look at the tree of numbers: 

 

                                                    <0,0>     |BOY|=0 

                                               <0,1>  <1,0>      |BOY|=1 

                                         <0,2>  <1,1>  <2,0>     |BOY|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |BOY|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |BOY|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |BOY|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |BOY|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 

 

We associate with each pair of numbers a set of strings: 

 

 l (<n,m>) = (1
n
0

m
) 

 

So, for example: l (<2,1>)  (110) = {110, 101, 011} 

                 l (<3,2>)  (11100) =  

{11100,  11010, 10110, 01110, 11001, 10101, 01101, 10011, 01011, 00111} 

 

Let T be the domain of the tree of numbers. Let X   T:    

l (X) =  {l (<n,m>): <n,m>  X} 
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The intuition is the following:  <3,2> indicates that on a domain with five individuals 

three individuals are in X Y and two individuals are in X ¡ Y.  On entering X Y  

an individual is given a T-shirt with a 1, on entering X ¡ Y, an individual is given a 

T-shirt with a 0.  In checking the domain, we are not assuming that the objects are 

given in any preferred order, but, because of quantity, the order doesn’t matter:  

quantifiers are not order-dependent (i.e. we are assuming that  the first five in the first 

five boys is not a quantifier in the sense we are studying here, nor every other boy).   

 

- l  associates with each pair in the tree a finite -{0,1} language. 

- l  associates with each set of pairs in the tree a -{0,1} language.  

 

We have associated with quantifiers characteristic patterns on the tree of numbers, 

highlighting for each quantifier  the extension of relation r as a set of pairs of 

numbers. 

With the move to l  we can now interpret the extension of relation r as a -{0,1} 

language.   

 

And this means that we can  now ask questions like:  how complex are the relations r 

corresponding to natural language quantifiers? 

 

[Note:  we are not at all entering into the far more complex questions of the 

complexity of interactions between quantifiers.  Here we are interested in the basic 

quantifiers.] 
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rEVERY 

                                                    <0,0>     |BOY|=0 

                                                 <1,0>      |BOY|=1 

                                          <2,0>     |BOY|=2 

                                    <3,0>     |BOY|=3 

                               <4,0>    |BOY|=4 

                        <5,0>    |BOY|=5 

<6,0>   |BOY|=6 

            <7,0>   |BOY|=7 

<8,0>   |BOY|=8 

 <9,0>  |BOY|=9 

...          ... 

 

l (rEVERY) = {  {0,1}*: |0| = 0} = 1
n
, n  0 

 

                            1 

 

         

         0          0, 1 

            S0            S1  

             

 

rSOME 

                                                         |BOY|=0 

                                                 <1,0>      |BOY|=1 

                                           <1,1>  <2,0>     |BOY|=2 

                                    <1,2>  <2,1>  <3,0>     |BOY|=3 

                              <1,3>  <2,2>  <3,1>  <4,0>    |BOY|=4 

                         <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |BOY|=5 

                 <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |BOY|=6 

             <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

  <1,8>  <2,7>  <3,6>  <4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...    

 

l (rSOME) = {  {0,1}*: |1| > 0} 

  

                           0    

        1 

                0, 1 

            S0            S1  
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rNO 

                                                    <0,0>     |BOY|=0 

                                               <0,1>        |BOY|=1 

                                         <0,2>     |BOY|=2 

                                   <0,3>      |BOY|=3 

                             <0,4>      |BOY|=4 

                       <0,5>     |BOY|=5 

                 <0,6>     |BOY|=6 

           <0,7>     |BOY|=7 

      <0,8>   |BOY|=8 

<0,9>    |BOY|=9 

...          ... 

 

l (rNO) = {  {0,1}*: |1| = 0} = 0
n
, n  0 

 

 

                            0 

 

         

         1          0, 1 

            S0            S1  

             

 

(From this is obvious what the automaton for rNOT EVERY would look like:   

l (rNOT EVERY) = {  {0,1}*: |0| > 0} 

  

                           1    

        0 

                0, 1 

            S0            S1  

             

 

The Aristotelian square as a square of automata. 
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rAT LEAST 4 

 

                                                         |BOY|=0 

                                                    |BOY|=1 

                                             |BOY|=2 

                                       |BOY|=3 

                              <4,0>    |BOY|=4 

                       <4,1>  <5,0>    |BOY|=5 

                  <4,2>  <5,1>  <6,0>   |BOY|=6 

           <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

<4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

... 

 

          ... 

 

  0   0   0      0 

                                0,1 

         S0         1          S1        1          S2  1   S3 1     S4 

 

  

 

rAT MOST 4 

                                                    <0,0>     |BOY|=0 

                                               <0,1>  <1,0>      |BOY|=1 

                                         <0,2>  <1,1>  <2,0>     |BOY|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |BOY|=3 

                             <0,4>  <1,3>  <2,2>  <3,1> <4,0>    |BOY|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>     |BOY|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>    |BOY|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>     |BOY|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>    |BOY|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>    |BOY|=9 

...          ... 

          ... 

 

  0   0   0      0 

                            0,1 

         S0         1          S1        1          S2  1   S3 1     S4 
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rEXACTLY 4 

                                                       |BOY|=0 

                                                 |BOY|=1 

                                              |BOY|=2 

                                      |BOY|=3 

                              <4,0>    |BOY|=4 

                         <4,1>     |BOY|=5 

                   <4,2>    |BOY|=6 

          <4,3>    |BOY|=7 

        <4,4>  |BOY|=8 

<4,5>  |BOY|=9 

...          ... 

 

          ... 

 

  0   0   0      0           0  

                                 

         S0         1          S1        1          S2  1   S3 1     S4 

 

  
                1  
 

         

                        S5                 0, 1 

    

             

All these quantifiers are first order definable.  

 

Obviously, we turn this into an automatoin for between 2 and 4 by making S2 and S3 

final states as well.  
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Theorem: All first-order definable quantifiers are recognized by finite state atomata. 

 

Proof sketch:  Fraissé proved that all first order definable quantifiers have the 

insensitivity to domain extension described above:  Adding objects to the sets XY 

or X¡Y, may change the truth value of DET(X,Y), but for first order definable 

quantifiers there is a number such that beyond that, adding more elements to XY or 

X¡Y doesn’t change truth value anymore.  In terms of the tree of numbers, the Fraissé 

property means the following:   

 

I will use the tree for exactly 2 as our example:   

Up to some finite level (the top triangle),  the truth values can flip-flop arbitrarily (the 

top triangle)  But at some point (<3,3>) the growth of the sets involved follow the 

pattern indicated:  the truth value of the element <3,3>  determines the truth value of 

the whole triangle it dominates, and to the left and right, the truth values are preserved 

along the diagonals as indicated. 

  

rEXACTLY 2 

                                                       |BOY|=0 

                                                 |BOY|=1 

                                              |BOY|=2 

                                      |BOY|=3 

                              <4,0>    |BOY|=4 

                         <4,1>     |BOY|=5 

                   <4,2>    |BOY|=6 

          <4,3>    |BOY|=7 

        <4,4>  |BOY|=8 

<4,5>  |BOY|=9 

...          ... 

 

Now, the quantifier will accept a subset of the top triangle, which is a finite set, hence 

regular, plus some of the diagonals, of which there is a finite number, and it is easy to 

see that each diagonal is a regular set, plus possibly the bottom triangle, which is also 

a regular set ((1
n
0

m
) where (in the example) 3  n,m).  Hence the language 

corresponding to any first-order definable quantifier is regular.  

 

You can check that most  does not satisfy the Fraissé characterization, and hence  

most is not first-order definable: 

 

rMOST 

                                                         |BOY|=0 

                                              <1,0>      |BOY|=1 

                                           <2,0>     |BOY|=2 

                                    <2,1>  <3,0>     |BOY|=3 

                               <3,1>  <4,0>    |BOY|=4 

                        <3,2>  <4,1>  <5,0>    |BOY|=5 

                   <4,2>  <5,1>  <6,0>   |BOY|=6 

          <4,3>  <5,2>  <6,1>  <7,0>   |BOY|=7 

       <5,3>  <6,2>  <7,1>  <8,0>  |BOY|=8 

  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |BOY|=9 

...          ... 
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l (rMOST) = {  {0,1}*: |1|  > |0|} 

 

We have seen this language before. It is not a regular language.  We can prove this 

with the pumping lemma for regular languages.  Assume the language is regular, and 

take a string 0
k
1

k+1
 with k>n.  You need to be able to find a division , with ||n 

such that 
i
 is in the language.  But this means that  can only consist of 0’s, and,  

of course, pumping will take you out of the language. We have given a pushdown 

storage automaton for this language, so it is context free. 

 

We have seen that it is not true that only first-order quantifiers are recognized by 

finite state machines:  If we accept an even number of as a quantifier, it is not first-

order definable, but, of course, recognized by a finite state automaton. 

 

rAN EVEN NUMBER OF = {<n,m>: n is even}. 

         1 

     

            S0            S1  

            1 

 

A finite state automaton is acyclic if it contains no loops connecting two or  

more states. 

 

A finite state automaton M is permutation invariant iff for every two states 

Si and Sj in M (and n the number of states), if   R
n

i.,j then ()  R
n

i.,j. 

 

Thus, permutation invariant means, that if  can be accepted between Si and Sj than 

all permutations of  can.  Permutation invariant automata recognize all and only 

permutation closed regular languages.   

 

Van Benthem proves the following theorem: 

 

Theorem: The first-order quantifiers are exactly the quantifiers that are recognized by  

                  permutation invariant acyclic finite state automata. 

 

Proof: omitted. 

 

As can be seen from the list, of rDET above, the arithmetic relations that these 

quantifiers express are very simple:  if n = |XY| and m = |X¡Y| then we get: 

 

  rEVERY  = m=0 

 rSOME  = n0 

 rNO  = n=0 

 rAT LEAST 3 = n3 

 rAT MOST 3: = n3 

 rEXACTLY k: = n=3 

 rBETWEEN 2 AND 4 = 2  n  4 

 rMOST : =  n>m 

 

 rAN EVEN NUMBER OF = k[n = k + k] 
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We can define most as: n > m iff k[k0  n = m+k]  

 

The generalization is:  all these expressions can be seen as first-order formulas in a 

language with constants n and m and addition +:  first-order additive arithmetics. 

 

(i + n  a1 + … k  am  = 

 i + a1 + … + a1 + … + am + … + am, which is additive) 

          n times                  m times            

 

Theorem: Every quantifier rDET whose corresponding -{0,1} language is context  

                  free is first-order additively definable. 

 

Proof: 

This follows from Parikh’s theorem.  Every context free language is semi-linear, 

hence a disjunction of linear languages.  Each of the disjuncts is linear, which means 

that its length profile is of the form i + n1.a1 + nm.am.  Each such length-profile is an 

expression of first-order additive arithmetics.  In other words:  all semi-linear length 

profiles correspond to first-order additively definable k-place relations.  Since all 

relevant languages are permutation closed, the behaviour of the quantifier corresponds 

directly to the behaviour of the length profiles.  This means that the quantifier itself is 

definable in terms the union of the linear length profiles, and hence first-order 

additively definable. 

 

All semi-linear sets correspond to first-order additively definable k-place relations.  

Ginsburg and Spanier proved in 1966 that for one place predicates and two place 

predicates the inverse also holds: 

 

Theorem:  The one place predicates and two place relations that are definable in first- 

                   order additive arithmetics are exactly the semilinear sets in a one-symbol  

`       –  two-symbol alphabet. 

Proof: Difficult. 

 

van Benthem proves the following theorem: 

 

Theorem: The first-order additively definable quantifiers are exactly the quantifiers  

                     whose corresponding -{0,1} language is context free. 

 

First-order additive arithmetics is a fragment of arithmetics which is complete and 

decidable.  The incompleteness and undecidability come in with multiplication. 

Given this theorem, it seems that standard natural language quantifiers, including ones 

like most that are not first-order definable, are definable in first-order additive 

arithmetics, and hence stay below the Gödel-boundary. 

 

The theorem follows as a corrollary from the following theorem that van Benthem 

proves:  

 

Theorem:  Every semi-linear -{0,1} language is context free. 

 

[Note that the restriction to a two-symbol alphabet is crucial.  We saw before the 

language MIX = ((abc)*).] 
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Proof:  

Since the union of context free languages is context free, you only need to prove that 

every linear -{0,1} language is context free.   

Let L be such a language.  We need a pushdown storage automaton that will accept 

every string in L.   

For each such string , () = <i1,i2> + n1<a11,a12> + …+nk<am1,am2>,  

with <i1,i2>  I and  <a11,a12> …<am1,am2>  A, where the first element of the pairs 

counts 0s while the second element of the pairs counts 1s.   

If we can define a push-down storage automaton that computes these additions 

correctly, that automaton will recognize the strings in the language.  This is, because 

the language is permutation closed, which means that recognizing the length-

characteristics is sufficient to recognize the language.   

 

Van Benthem defines such a pushdown  automaton.   

 

-The states are determined by the maximal number k among the i1,i2, a11…am2 in  

I  A:  the states are all pairs <i,j>, <i,j>
#
 such that i,j  k.   

You start in state <0,0> and end in <0,0>
#
 with empty stack.   

 

The trick about the automaton is that you can encode the number of 0s read as a 

progression of state transitions:  <0,j>  <1,j>  <2,j>  …, and the same for the 

number of 1s:       <i,0>  <i,1>  <i,2>  …, 

and you can stack 0s and 1s on the stack without changing state.   So, while you move 

for 0s, you can stack 1s.   

And, you can at any point switch between these perspectives:   

-loading 1s on the stack, by counting the relevant number of states back (on the 

second argument of the state-pairs),  

-taking 1s off the stack, by counting the relevant number of states forward.   

 

With only 2 symbols to keep track of, this creates enough computational power to 

prove the result.  

 

Definition of the Pushdown Automaton: 

 

Reading rules: 

i <k (0,<i,j>,e)  (<i+1,j>,e) (0,<i,j>,e)   (<i,j>,0) 

k     (0,<k,j>,e)  (<k,j>,0) 

j <k (1,<i,j>,e)  (<i,j+1>,e) (1,<i,j>,e)   (<i,j>,1) 

k     (1,<i,k>,e)  (<i,k>,1) 

 

Empty rules:   

 (e,<i+1,j>,e)  (<i,j>,0) 

i<k (e,<i,j>,0)      (<i+1,j>,) 

 (e,<i,j+1>,e)  (<i,j>,1) 

j<k (e,<i,j>,1)      (<i,j+1>,) 
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Lowering rules: 

Let <m1,m2> be one of the pairs in I  A 

and let m1  i and m2  j: 

 (e,<i,j>,e>  (<i¡m1,j¡m2>,e) 

  

All these rules are the same for 
#
-states:  

Reading rules: 

i <k (0,<i,j>
#
,e)  (<i+1,j>

#
,e) (0,<i,j>

#
,e)   (<i,j>

#
,0) 

k     (0,<k,j>
#
,e)  (<k,j>

#
,0) 

j <k (1,<i,j>
#
,e)  (<i,j+1>

#
,e) (1,<i,j>

#
,e)   (<i,j>

#
,1) 

k     (1,<i,k>
#
,e)  (<i,k>

#
,1) 

 

Empty rules:   

 (e,<i+1,j>
#
,e)  (<i,j>

#
,0) 

i<k (e,<i,j>
#
,0)      (<i+1,j>

#
,) 

 (e,<i,j+1>
#
,e)  (<i,j>

#
,1) 

j<k (e,<i,j>
#
,1)      (<i,j+1>

#
,) 

 

Lowering rules: 

Let <m1,m2> be one of the pairs in I  A 

and let m1  i and m2  j: 

 (e,<i,j>
#
,e>  (<i¡m1,j¡m2>

#
,e) 

  

Crossing: 

Let <m1,m2> be one of the pairs in I  A 

and let m1  i and m2  j: 

 

 (e,<i,j>,e)   (<i¡m1,j¡m2>
#
,e) 

 

van Benthem argues that you can prove, by inspecting the rules of the automaton, that 

the following holds: 

  

Claim 1: 
-at each stage in the computation in state <i,j> there are numbers x1…xm such that: 

 

i + the number of symbols 0 in the stack at <i,j> = 

 the number of 0’s read ¡ x1.a11 ¡ … ¡ xm. am1 

and 

j + the number of symbols 1 in the stack at <i,j> =                                     = 

 the number of 1’s read ¡ x1.a12 ¡ … ¡ xm. am2 

Similarly: 

-at each stage in the computation in state <i,j>
#
 there are numbers x1…xm such that 

i + the number of symbols 0 in the stack at <i,j> = 

 the number of 0’s read ¡ i1 ¡ x1.a11 ¡ … ¡ xm. am1 

and 

j + the number of symbols 1 in the stack at <i,j> = 

 the number of 1’s read ¡ i2 ¡ x1.a12 ¡ … ¡ xm. am2 

(Here <i1,i2>  I, so these numbers have nothing to do with i in <i,j>.)  
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This means that in <0,0> with empty stack: 

 the number of 0’s read ¡ x1.a11 ¡ … ¡ xm. am1 = 0 

and the number of 1’s read ¡ x1.a12 ¡ … ¡ xm. am2 = 0 

hence: 

 

in <0,0> with empty stack: 

 the number of 0’s read = x1.a11 +… + xm. am1  

 the number of 1’s read = x1.a12 + … + xm. am2 = 0 

and in <0,0>
#
 with empty stack: 

 the number of 0’s read = i1 + x1.a11 +… + xm. am1  

 the number of 1’s read = i2 + x1.a12 + … + xm. am2 = 0 

 

This means that indeed only for  such that for some i, a1…,am, n1…nm: 

() = i + x1.a1 + … + xm. am does the computation get to <0,0>
#
. 

 

This means that the language recognized is a subset of L. 

 

Conversely, we need to prove that every string in L is recognized. 

 

Claim 2:  

-If the automaton is in state <0,0> and the stack consists of 0s only or of 1s only 

and  b1 = the number of 0s in the stack + the number of 0s still to read  

and b2 = the number of 1s in the stack + the number of 1s still to read  

and  <b1,b2> = <i1,i2> + n1<a11,a12> + …+nk<am1,am2>, 

then the automaton will continue to recognize the string. 

-If the automaton is in state <0,0># and the stack consists of 0s only or of 1s only 

and  b1 = the number of 0s in the stack + the number of 0s still to read  

and b2 = the number of 1s in the stack + the number of 1s still to read  

and  <b1,b2> =  n1<a11,a12> + …+nk<am1,am2>, 

then the automaton will continue to recognize the string. 

 

From the fact that L is semi-linear and the stack is empty in <0,0> at the beginning of 

the computation for   L, if the claim is true, it follows that the automaton will 

recognize , and with that, the theorem.   

 

Proof of the claim: Even with the appendix, this proof is hard to follow.  
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