
 228

PART 9: SEMANTIC AUTOMATA

Sections 9.1 – 9.5 are background from the class notes Quantification and Modality.

9.1. GENERALIZED QUANTIFIERS

DET = {EVERY, SOME, NO, n, AT MOST n, AT LEAST n, EXACTLY n,

 BETWEEN n AND m, MOST} where n,m  N and m > n.

ABSTRACTION:

 If x  VAR and φ  FORM, then λxφ  PRED
1

QUANTIFICATION:

 If D  DET and P,Q  PRED
1
, then D(P,Q)  FORM

For model M = <DM,FM> and assignment function g:

 For every D  DET: vDbM,g = FM(D)

 If x  VAR and φ  FORM, then:

 vλxφbM,g = {d  DM: vφbM,gx
d
 = 1}

 If D  DET and P,Q  PRED
1
, then:

 vD(P,Q)bM,g = 1 iff < vPbM,g, vQbM,g >  vDbM,g

This leaves the specification of the lexical items, the determiners:

 For every D  DET: FM(D)  pow(DM)  pow(DM)

 Every determiner is interpreted as a relation between sets of individuals.

FM(EVERY) = {<X,Y>: X,Y  DM and X  Y}

FM(SOME) = {<X,Y>: X,Y  DM and X  Y  Ø}

FM(NO) = {<X,Y>: X,Y  DM and X  Y = Ø}

FM(AT LEAST n) = {<X,Y>: X,Y  DM and |X  Y| ≥ n}

nFM(AT MOST n) = {<X,Y>: X,Y  DM and |X  Y| ≤ n}

FM(n) = FM(AT LEAST n)

FM(EXACTLY n) = {<X,Y>: X,Y  DM and |X  Y| = n}

FM(BETWEEN n AND m)= {<X,Y>: X,Y  DM and n  |X  Y|  m}

FM(MOST) = {<X,Y>: X,Y  DM and |X  Y| > |X  Y|}

 229

9.2. GENERAL CONSTRAINTS ON DETERMINER INTERPRETATION.

With some notorious problematic cases, discussed in the literature (eg. few, many),

natural language determiners all satisfy the following principles of extension,

conservativity and quantity (van Benthem 1983).

EXTENSION
 Determiner α satisfies extension iff for all models M1, M2 and

for all sets X,Y such that X,Y  DM1 and X,Y  DM2:

 <X,Y>  FM1(α) iff <X,Y>  FM2(α)

Let FM1(P) = FM2(P) = X and FM1(Q) = FM2(Q) = Y.

If α satisfies extension, then the truthvalue of α(P,Q) depends only on what is in

XY, not on what is in DM1  (XY) or in DM2  (XY).

The intuition is the following:

If α satisfies extension then, if we only specify of a model FM(BOY) and FM(SING),

the truth value of α(BOY,SING) in M is already determined.

This is a natural constraint on natural language determiners:

The truth value of every boy/some boy/no boy/most boys…sing(s) does not depend on

the presence or absence of objects that are neither boys nor singers.

CONSERVATIVITY

Determiner α is conservative iff for every model M and

for all sets X,Y  DM:

 <X,Y>  FM(α) iff <X,XY>  FM(α)

There is another formulation of conservativity and extension, which is useful:

 Determiner α satisfies extension and conservativity iff

for all models M1,M2, and all sets X1,Y1,X2,Y2 such that

X1, Y1  DM1 and X2, Y2  DM2 :

 If X1  Y1 = X2  Y2 and X1  Y1 = X2  Y2 then

 <X1,Y1>  FM1(α) iff <X2,Y2>  FM2(α).

Let FM1(P) = X1 and FM2(P) = Y1 and FM1(Q) = X2 andFM2(Q) = Y2.

If α satisfies extension, and conservativity, then the truthvalue of α(P,Q) depends only

on what is in X1  Y1 (= X2  Y2) and in X1  Y1 (= X2  Y2).

The intuition is the following:

If α satisfies extension and conservativity, then if we specify of a model M, not even

what FM(BOY) and FM(SING) are, but only what FM(BOY)  FM(SING) and

FM(BOY)  FM(SING) are, then still the truth value of α(BOY,SING) in M is already

determined.

This is a natural constraint on natural language determiners:

 230

The truth value of every boy/some boy/no boy/most boys…sing(s) does not depend on

the presence or absence of objects that are neither boys nor singers, and also not on

the presence or absence of singers that are not boys: it only depends on what is in the

set of boys that sing, and what is in the set of boys that don't sing.

Conservativity can be checked in the following pattern:

 α is conservative iff α(BOY,WALK) is equivalent to

α(BOY,λxBOY(x)  WALK(x))

α boy walks iff α boy is a boy that walks

α boys walk iff α boys are boys that walk.

cf:

 Every boy walks iff Every boy is a boy that walks

 Most boys walk iff Most boys are boys that walk.

QUANTITY (Independent definition in terms of permutations, see van Benthem).

 Determiner α satisfies extension and conservativity and quantity iff

for all models M1,M2, and all sets X1,Y1,X2,Y2 such that

X1, Y1  DM1 and X2, Y2  DM2 :

 If |X1  Y1| = |X2  Y2| and |X1  Y1| = |X2  Y2| then

 <X1,Y1>  FM1(α) iff <X2,Y2>  FM2(α).

Let FM1(P) = X1 and FM2(P) = Y1 and FM1(Q) = X2 andFM2(Q) = Y2.

If α satisfies extension, and conservativity and extension , then the truthvalue of

α(P,Q) depends only on the cardinality of X1  Y1 (= |X2  Y2|) and the cardinality

of X1  Y1 (= |X2  Y2|).

The intuition is the following:

If α satisfies extension and conservativity and quantity, then if we specify of a model

M, not even what FM(BOY) and FM(SING) are, and not even what

FM(BOY)  FM(SING) and FM(BOY)  FM(SING) are, but only what

|FM(BOY)  FM(SING)| and |FM(BOY)  FM(SING)| are

then still the truth value of α(BOY,SING) in M is already determined.

This is a natural constraint on natural language determiners:

The truth value of every boy/some boy/no boy/most boys…sing(s) does not depend on

the presence or absence of objects that are neither boys nor singers, and also not on

the presence or absence of singers that are not boys; it doesn't even depend on what

is in the set of boys that sing, and what is in the set of boys that don't sing, but only

on how many things there are in the set of boys that sing and on how many things

there are in the set of boys that don't sing.

For determiners that satisfy extension, conservativity and quantity we can set up the

semantics in the following more general way.

 231

We let the model M associate with every determiner α that satisfies extension,

conservativity and quantity a relation rα between numbers, r  N  N.

We associate for every model the same relation rα with α.

In terms of this, we define FM(α):

 FM(α) = { <X,Y>: X,Y  DM and <|XY|,|XY|)>  rα }

Given this, the meaning of the determiner α is now reduced to the relation rα between

numbers. These meanings we specify as follows:

 rEVERY = {<n,0>: n  N}

 rSOME = {<n,m>: n,m  N and n>0}

 rNO = {<0,m>: m  N}

 rAT LEAST k = {<n,m>: n,m  N and n≥k} for k  N

 rAT MOST k: = {<n,m>: n,m  N and n≤k} for k  N

 rEXACTLY k: = {<k,m>: m  N} for k  N

 rBETWEEN k AND p= {<q,m>: q,m  N and k  q  p} for k,p  N, k < p

 rMOST : = {<n,m>: n,m  N and n>m}

9.3 DETERMINERS AS PATTERNS ON THE TREE OF NUMBERS
(van Benthem 1983)

If |BOY| = 3, then there are four possibilities for the cardinalities in

<|BOY  SING|, |BOY  SING|>:

<0,3> means: |BOY  SING| = 0 and |BOY  SING| = 3

<1,2> means: |BOY  SING| = 1 and |BOY  SING| = 2

<2,1> means: |BOY  SING| = 2 and |BOY  SING| = 1

<3,0> means: |BOY  SING| = 3 and |BOY  SING| = 0

We can write down a tree of numbers which shows for each cardinality of BOY, all

the possibilities for the cardinalities of <|BOY  SING|, |BOY  SING|>:

 <0,0> |BOY|=0

 <0,1> <1,0> |BOY|=1

 <0,2> <1,1> <2,0> |BOY|=2

 <0,3> <1,2> <2,1> <3,0> |BOY|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |BOY|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |BOY|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

We can now study the pattern that each determiner meaning rα makes on the tree of

numbers, by highlighting (bold italic) the extension of rα:

 232

rEVERY

 <0,0> |BOY|=0

 <1,0> |BOY|=1

 <2,0> |BOY|=2

 <3,0> |BOY|=3

 <4,0> |BOY|=4

 <5,0> |BOY|=5

<6,0> |BOY|=6

 <7,0> |BOY|=7

<8,0> |BOY|=8

 <9,0> |BOY|=9

... ...

rSOME

 |BOY|=0

 <1,0> |BOY|=1

 <1,1> <2,0> |BOY|=2

 <1,2> <2,1> <3,0> |BOY|=3

 <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <1,4> <2,3> <3,2> <4,1> <5,0> |BOY|=5

 <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |BOY|=6

 <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

 <1,8> <2,7> <3,6> <4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

...

rNO

 <0,0> |BOY|=0

 <0,1> |BOY|=1

 <0,2> |BOY|=2

 <0,3> |BOY|=3

 <0,4> |BOY|=4

 <0,5> |BOY|=5

 <0,6> |BOY|=6

 <0,7> |BOY|=7

 <0,8> |BOY|=8

<0,9> |BOY|=9

... ...

 233

rAT LEAST 4

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> <5,0> |BOY|=5

 <4,2> <5,1> <6,0> |BOY|=6

 <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

<4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

rAT MOST 4

 <0,0> |BOY|=0

 <0,1> <1,0> |BOY|=1

 <0,2> <1,1> <2,0> |BOY|=2

 <0,3> <1,2> <2,1> <3,0> |BOY|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> |BOY|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> |BOY|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> |BOY|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> |BOY|=8

<0,9> <1,8> <2,7> <3,6> <4,5> |BOY|=9

... ...

rEXACTLY 4

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> |BOY|=5

 <4,2> |BOY|=6

 <4,3> |BOY|=7

 <4,4> |BOY|=8

<4,5> |BOY|=9

... ...

 234

rBETWEEN 2 and 4

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> |BOY|=5

 <4,2> |BOY|=6

 <4,3> |BOY|=7

 <4,4> |BOY|=8

<4,5> |BOY|=9

... ...

rMOST

 |BOY|=0

 <1,0> |BOY|=1

 <2,0> |BOY|=2

 <2,1> <3,0> |BOY|=3

 <3,1> <4,0> |BOY|=4

 <3,2> <4,1> <5,0> |BOY|=5

 <4,2> <5,1> <6,0> |BOY|=6

 <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <5,3> <6,2> <7,1> <8,0> |BOY|=8

 <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

9.3. SYMMETRY AND MONOTONICITY

SYMMETRY

 Determiner α is symmetric iff for every model M and all sets X,Y  DM:

 <X,Y>  FM(α) iff <Y,X>  FM(α)

Pattern: α(BOY,SING) is equivalent to α(SING,BOY)

 α boy sings iff α singer is a boy

 α boys sing iff α singers are boys

Technically: FM(α) only depends on |A  B|: Symmetry follows from commutativity

 of .

 SYMMETRIC

every NO

some YES

no YES

at least n YES

at most n YES

exactly n YES

most NO

 235

Let us define: vExistbM,g = DM

Then we have the following for symetric DETS:

DET(A,B) ,conservativity DET(A,AB) ,symmetry DET(AB,A)

,conservativity DET(AB,AB) , <|(AB)  (AB)|, |(AB) ¡ (AB)|>  rDET

, <|AB|,0>  rDET

DET(AB,EXIST) , <|(AB)  DM|,|(AB) ¡ DM|  rDET

, <|AB|,0>  rDET

Thus:

D is symmetric iff DET(A,B) , DET(AB,EXIST)

This means that the truth conditions of DET(A,B) only depend on the cardinality of

AB, ie. are completely determined by that.

MONOTONICITY.

Let α be a determiner.

In α(P,Q) we call P the first argument of α and Q the second argument of α

Terminology:

α is 1: α is upward monotonic, upward entailing, on its first argument

α is 1: α is downward monotonic, downward entailing, on its first argument

α is 1: α is neither upward nor downward monotonic on its first argument

α is 2: α is upward monotonic, upward entailing, on its second argument

α is 2: α is downward monotonic, downward entailing, on its second argument

α is 2 α is neither upward nor downward monotonic on its second argument

α is 1 iff for every model M and all sets X1,X2,Y  DM:

 if <X1,Y>  FM(α) and X1  X2 then <X2,Y>  FM(α)

α is 1 iff for every model M and all sets X1,X2,Y  DM:

 if <X2,Y>  FM(α) and X1  X2 then <X1,Y>  FM(α)

α is 1 iff α is not 1 and α is not 1

α is 2 iff for every model M and all sets X,Y1,Y2  DM:

 if <X,Y1>  FM(α) and Y1  Y2 then <X,Y2>  FM(α)

α is 2 iff for every model M and all sets X,Y1,Y2  DM:

 if <X,Y2>  FM(α) and Y1  Y2 then <X,Y1>  FM(α)

α is 2 iff α is not 2 and α is not 2

 236

 ARGUMENT 1 ARGUMENT 2

every  

some  

no  

at least n  

at most n  

exactly n  

most  

9.4. SYMMETRY AS A PATTERN ON THE TREE OF NUMBERS

 α is symmetric iff rα is symmetric.

 rα is symmetric iff for every n,m≥0: <n,m>  rα iff <n,0>  rα

i.e.

FACT: if α satisfies EXT, CONS, QUANT, then

α is symmetric iff for every M for every X,Y: whether <X,Y> is in FM(α) or not

depends only on |X  Y|.

In terms of the tree of numbers this means that:

 rα is symmetric iff for every n: either for every m: <n,m>  rα

 or for every m: <n,m>  rα

In terms of the tree of numbers this means the following.

For number n, {<n,k>:k  N} is a diagonal line in the tree going from left below to

right up:

Like, for n = 3:

 <0,0> |BOY|=0

 <0,1> <1,0> |BOY|=1

 <0,2> <1,1> <2,0> |BOY|=2

 <0,3> <1,2> <2,1> <3,0> |BOY|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |BOY|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |BOY|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

rα is symmetric iff every such diagonal line is either completely inside rα or

completely outside rα.

With this we can check straighforwardly in the trees which rα's are symmetric:

 237

revery is not symmetric:

rEVERY

 <0,0> |BOY|=0

 <1,0> |BOY|=1

 <2,0> |BOY|=2

 <3,0> |BOY|=3

 <4,0> |BOY|=4

 <5,0> |BOY|=5

<6,0> |BOY|=6

 <7,0> |BOY|=7

<8,0> |BOY|=8

 <9,0> |BOY|=9

... ...

rsome is symmetric:

rSOME

 |BOY|=0

 <1,0> |BOY|=1

 <1,1> <2,0> |BOY|=2

 <1,2> <2,1> <3,0> |BOY|=3

 <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <1,4> <2,3> <3,2> <4,1> <5,0> |BOY|=5

 <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |BOY|=6

 <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

 <1,8> <2,7> <3,6> <4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

...

rno is symmetric:

rNO

 <0,0> |BOY|=0

 <0,1> |BOY|=1

 <0,2> |BOY|=2

 <0,3> |BOY|=3

 <0,4> |BOY|=4

 <0,5> |BOY|=5

 <0,6> |BOY|=6

 <0,7> |BOY|=7

 <0,8> |BOY|=8

<0,9> |BOY|=9

... ...

It is easy to check that r≤n, r≥n, r=n are symmetric, but that rmost is not symmetric.

 238

9.5. MONOTONICITY PATTERNS ON THE TREE OF NUMBERS

rα is 2 iff if <n,m>  rα then <n+1,m¡1>  rα and if n+m = p+q and p≥n and q≤m

then <p,q>  rα

This means that rα is 2 iff if <n,m>  rα then any point to the right on that same

line is also in rα

Example: r4 is 2:

rAT LEAST 4

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> <5,0> |BOY|=5

 <4,2> <5,1> <6,0> |BOY|=6

 <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

<4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

rα is 2 iff if <n,m>  rα then and <n¡1,m+1>  rα and if n+m = p+q and p≤n and

q≥m then <p,q>  rα

This means that rα is 2 iff if <n,m>  rα then any point to the left on that same line

is also in rα

Example: r4 is 2:

rAT MOST 4

 <0,0> |BOY|=0

 <0,1> <1,0> |BOY|=1

 <0,2> <1,1> <2,0> |BOY|=2

 <0,3> <1,2> <2,1> <3,0> |BOY|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> |BOY|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> |BOY|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> |BOY|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> |BOY|=8

<0,9> <1,8> <2,7> <3,6> <4,5> |BOY|=9

... ...

 239

 rα is 1 iff if <n,m>  rα then <n+1,m>, <n,m+1>  rα

This means that rα is 1 iff if <n,m>  rα then the whole triangle with top <n,m> is

in rα.

Example: r4 is 1:

rAT LEAST 4

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> <5,0> |BOY|=5

 <4,2> <5,1> <6,0> |BOY|=6

 <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

<4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

rα is 1 iff if <n,m>  rα then <n1,m>, <n,m1>  rα

(when n or m is 0, set n1, m1 to 0 as well)

This means that rα is 1 iff if <n,m>  rα then the whole inverted triangle with

bottom <n,m> is in rα.

Example: r4 is 1:

rAT MOST 4

 <0,0> |BOY|=0

 <0,1> <1,0> |BOY|=1

 <0,2> <1,1> <2,0> |BOY|=2

 <0,3> <1,2> <2,1> <3,0> |BOY|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> |BOY|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> |BOY|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> |BOY|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> |BOY|=8

<0,9> <1,8> <2,7> <3,6> <4,5> |BOY|=9

... ...

 240

It is easy to check that r=3 is none of the above:

rEXACTLY 4

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> |BOY|=5

 <4,2> |BOY|=6

 <4,3> |BOY|=7

 <4,4> |BOY|=8

<4,5> |BOY|=9

... ...

The same for between 2 and 4.

revery is 2, because trivially every point to the right is in (since there are no points to

the right).

revery is clearly not 1, since the downward triangles are not preserved.

revery is 1, since the upward inverted triangle is just the right edge.

rEVERY

 <0,0> |BOY|=0

 <1,0> |BOY|=1

 <2,0> |BOY|=2

 <3,0> |BOY|=3

 <4,0> |BOY|=4

 <5,0> |BOY|=5

<6,0> |BOY|=6

 <7,0> |BOY|=7

<8,0> |BOY|=8

 <9,0> |BOY|=9

... ...

rno is 2 because, again, trivially every point to the left is in.

 241

rno is again clearly not 1, but it is 1, because, again, the upward inverted triangle is

just the left edge.

rNO

 <0,0> |BOY|=0

 <0,1> |BOY|=1

 <0,2> |BOY|=2

 <0,3> |BOY|=3

 <0,4> |BOY|=4

 <0,5> |BOY|=5

 <0,6> |BOY|=6

 <0,7> |BOY|=7

 <0,8> |BOY|=8

<0,9> |BOY|=9

... ...

rmost is 2, but neither 1 nor 1: for no point in rmost is the downward triangle

completely in rmost and for no point is the upward triangle completely in rmost (because

<0,0> is not).

rMOST

 |BOY|=0

 <1,0> |BOY|=1

 <2,0> |BOY|=2

 <2,1> <3,0> |BOY|=3

 <3,1> <4,0> |BOY|=4

 <3,2> <4,1> <5,0> |BOY|=5

 <4,2> <5,1> <6,0> |BOY|=6

 <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <5,3> <6,2> <7,1> <8,0> |BOY|=8

 <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

 242

9.6 SEMANTIC AUTOMATA (van Benthem 1987)

Let  be a string in alphabet , L a language in .

 is a permutation of  iff ()=()

A permutation of  is a string with the same length characteristics: the same number

of each symbol, but possibly in a different order.

() = {  

*
: ()=()}

 The permutation closure of string  is the set of all permutations of .

 (more properly, the permutation closure of {}.)

 (L) = {():   L}

 The permutation closure of language L is the union of the permutation

closures of the strings in L.

L is permutation closed iff L = (L)

We will call a permutation closed language a -language.

We will be interested in permutation closed languages in alphabet {0,1}, i.e.

permutation closed subsets of {0,1}.

We will call these languages -{0,1} languages.

Look at the tree of numbers:

 <0,0> |BOY|=0

 <0,1> <1,0> |BOY|=1

 <0,2> <1,1> <2,0> |BOY|=2

 <0,3> <1,2> <2,1> <3,0> |BOY|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |BOY|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |BOY|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

We associate with each pair of numbers a set of strings:

 l (<n,m>) = (1
n
0

m
)

So, for example: l (<2,1>)  (110) = {110, 101, 011}

 l (<3,2>)  (11100) =

{11100, 11010, 10110, 01110, 11001, 10101, 01101, 10011, 01011, 00111}

Let T be the domain of the tree of numbers. Let X  T:

l (X) = {l (<n,m>): <n,m>  X}

 243

The intuition is the following: <3,2> indicates that on a domain with five individuals

three individuals are in X Y and two individuals are in X ¡ Y. On entering X Y

an individual is given a T-shirt with a 1, on entering X ¡ Y, an individual is given a

T-shirt with a 0. In checking the domain, we are not assuming that the objects are

given in any preferred order, but, because of quantity, the order doesn’t matter:

quantifiers are not order-dependent (i.e. we are assuming that the first five in the first

five boys is not a quantifier in the sense we are studying here, nor every other boy).

- l associates with each pair in the tree a finite -{0,1} language.

- l associates with each set of pairs in the tree a -{0,1} language.

We have associated with quantifiers characteristic patterns on the tree of numbers,

highlighting for each quantifier  the extension of relation r as a set of pairs of

numbers.

With the move to l we can now interpret the extension of relation r as a -{0,1}

language.

And this means that we can now ask questions like: how complex are the relations r

corresponding to natural language quantifiers?

[Note: we are not at all entering into the far more complex questions of the

complexity of interactions between quantifiers. Here we are interested in the basic

quantifiers.]

 244

rEVERY

 <0,0> |BOY|=0

 <1,0> |BOY|=1

 <2,0> |BOY|=2

 <3,0> |BOY|=3

 <4,0> |BOY|=4

 <5,0> |BOY|=5

<6,0> |BOY|=6

 <7,0> |BOY|=7

<8,0> |BOY|=8

 <9,0> |BOY|=9

... ...

l (rEVERY) = {  {0,1}*: |0| = 0} = 1
n
, n  0

 1

 0 0, 1

 S0 S1

rSOME

 |BOY|=0

 <1,0> |BOY|=1

 <1,1> <2,0> |BOY|=2

 <1,2> <2,1> <3,0> |BOY|=3

 <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <1,4> <2,3> <3,2> <4,1> <5,0> |BOY|=5

 <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |BOY|=6

 <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

 <1,8> <2,7> <3,6> <4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

...

l (rSOME) = {  {0,1}*: |1| > 0}

 0

 1

 0, 1

 S0 S1

 245

rNO

 <0,0> |BOY|=0

 <0,1> |BOY|=1

 <0,2> |BOY|=2

 <0,3> |BOY|=3

 <0,4> |BOY|=4

 <0,5> |BOY|=5

 <0,6> |BOY|=6

 <0,7> |BOY|=7

 <0,8> |BOY|=8

<0,9> |BOY|=9

... ...

l (rNO) = {  {0,1}*: |1| = 0} = 0
n
, n  0

 0

 1 0, 1

 S0 S1

(From this is obvious what the automaton for rNOT EVERY would look like:

l (rNOT EVERY) = {  {0,1}*: |0| > 0}

 1

 0

 0, 1

 S0 S1

The Aristotelian square as a square of automata.

 246

rAT LEAST 4

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> <5,0> |BOY|=5

 <4,2> <5,1> <6,0> |BOY|=6

 <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <4,4> <5,3> <6,2> <7,1> <8,0> |BOY|=8

<4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

...

 ...

 0 0 0 0

 0,1

 S0 1 S1 1 S2 1 S3 1 S4

rAT MOST 4

 <0,0> |BOY|=0

 <0,1> <1,0> |BOY|=1

 <0,2> <1,1> <2,0> |BOY|=2

 <0,3> <1,2> <2,1> <3,0> |BOY|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |BOY|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> |BOY|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> |BOY|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> |BOY|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> |BOY|=8

<0,9> <1,8> <2,7> <3,6> <4,5> |BOY|=9

... ...

 ...

 0 0 0 0

 0,1

 S0 1 S1 1 S2 1 S3 1 S4

 247

rEXACTLY 4

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> |BOY|=5

 <4,2> |BOY|=6

 <4,3> |BOY|=7

 <4,4> |BOY|=8

<4,5> |BOY|=9

... ...

 ...

 0 0 0 0 0

 S0 1 S1 1 S2 1 S3 1 S4

 1

 S5 0, 1

All these quantifiers are first order definable.

Obviously, we turn this into an automatoin for between 2 and 4 by making S2 and S3

final states as well.

 248

Theorem: All first-order definable quantifiers are recognized by finite state atomata.

Proof sketch: Fraissé proved that all first order definable quantifiers have the

insensitivity to domain extension described above: Adding objects to the sets XY

or X¡Y, may change the truth value of DET(X,Y), but for first order definable

quantifiers there is a number such that beyond that, adding more elements to XY or

X¡Y doesn’t change truth value anymore. In terms of the tree of numbers, the Fraissé

property means the following:

I will use the tree for exactly 2 as our example:

Up to some finite level (the top triangle), the truth values can flip-flop arbitrarily (the

top triangle) But at some point (<3,3>) the growth of the sets involved follow the

pattern indicated: the truth value of the element <3,3> determines the truth value of

the whole triangle it dominates, and to the left and right, the truth values are preserved

along the diagonals as indicated.

rEXACTLY 2

 |BOY|=0

 |BOY|=1

 |BOY|=2

 |BOY|=3

 <4,0> |BOY|=4

 <4,1> |BOY|=5

 <4,2> |BOY|=6

 <4,3> |BOY|=7

 <4,4> |BOY|=8

<4,5> |BOY|=9

... ...

Now, the quantifier will accept a subset of the top triangle, which is a finite set, hence

regular, plus some of the diagonals, of which there is a finite number, and it is easy to

see that each diagonal is a regular set, plus possibly the bottom triangle, which is also

a regular set ((1
n
0

m
) where (in the example) 3  n,m). Hence the language

corresponding to any first-order definable quantifier is regular.

You can check that most does not satisfy the Fraissé characterization, and hence

most is not first-order definable:

rMOST

 |BOY|=0

 <1,0> |BOY|=1

 <2,0> |BOY|=2

 <2,1> <3,0> |BOY|=3

 <3,1> <4,0> |BOY|=4

 <3,2> <4,1> <5,0> |BOY|=5

 <4,2> <5,1> <6,0> |BOY|=6

 <4,3> <5,2> <6,1> <7,0> |BOY|=7

 <5,3> <6,2> <7,1> <8,0> |BOY|=8

 <5,3> <6,3> <7,2> <8,1> <9,0> |BOY|=9

... ...

 249

l (rMOST) = {  {0,1}*: |1| > |0|}

We have seen this language before. It is not a regular language. We can prove this

with the pumping lemma for regular languages. Assume the language is regular, and

take a string 0
k
1

k+1
 with k>n. You need to be able to find a division , with ||n

such that 
i
 is in the language. But this means that  can only consist of 0’s, and,

of course, pumping will take you out of the language. We have given a pushdown

storage automaton for this language, so it is context free.

We have seen that it is not true that only first-order quantifiers are recognized by

finite state machines: If we accept an even number of as a quantifier, it is not first-

order definable, but, of course, recognized by a finite state automaton.

rAN EVEN NUMBER OF = {<n,m>: n is even}.

 1

 S0 S1

 1

A finite state automaton is acyclic if it contains no loops connecting two or

more states.

A finite state automaton M is permutation invariant iff for every two states

Si and Sj in M (and n the number of states), if   R
n

i.,j then ()  R
n

i.,j.

Thus, permutation invariant means, that if  can be accepted between Si and Sj than

all permutations of  can. Permutation invariant automata recognize all and only

permutation closed regular languages.

Van Benthem proves the following theorem:

Theorem: The first-order quantifiers are exactly the quantifiers that are recognized by

 permutation invariant acyclic finite state automata.

Proof: omitted.

As can be seen from the list, of rDET above, the arithmetic relations that these

quantifiers express are very simple: if n = |XY| and m = |X¡Y| then we get:

 rEVERY = m=0

 rSOME = n0

 rNO = n=0

 rAT LEAST 3 = n3

 rAT MOST 3: = n3

 rEXACTLY k: = n=3

 rBETWEEN 2 AND 4 = 2  n  4

 rMOST : = n>m

 rAN EVEN NUMBER OF = k[n = k + k]

 250

We can define most as: n > m iff k[k0  n = m+k]

The generalization is: all these expressions can be seen as first-order formulas in a

language with constants n and m and addition +: first-order additive arithmetics.

(i + n  a1 + … k  am =

 i + a1 + … + a1 + … + am + … + am, which is additive)

 n times m times

Theorem: Every quantifier rDET whose corresponding -{0,1} language is context

 free is first-order additively definable.

Proof:

This follows from Parikh’s theorem. Every context free language is semi-linear,

hence a disjunction of linear languages. Each of the disjuncts is linear, which means

that its length profile is of the form i + n1.a1 + nm.am. Each such length-profile is an

expression of first-order additive arithmetics. In other words: all semi-linear length

profiles correspond to first-order additively definable k-place relations. Since all

relevant languages are permutation closed, the behaviour of the quantifier corresponds

directly to the behaviour of the length profiles. This means that the quantifier itself is

definable in terms the union of the linear length profiles, and hence first-order

additively definable.

All semi-linear sets correspond to first-order additively definable k-place relations.

Ginsburg and Spanier proved in 1966 that for one place predicates and two place

predicates the inverse also holds:

Theorem: The one place predicates and two place relations that are definable in first-

 order additive arithmetics are exactly the semilinear sets in a one-symbol

` – two-symbol alphabet.

Proof: Difficult.

van Benthem proves the following theorem:

Theorem: The first-order additively definable quantifiers are exactly the quantifiers

 whose corresponding -{0,1} language is context free.

First-order additive arithmetics is a fragment of arithmetics which is complete and

decidable. The incompleteness and undecidability come in with multiplication.

Given this theorem, it seems that standard natural language quantifiers, including ones

like most that are not first-order definable, are definable in first-order additive

arithmetics, and hence stay below the Gödel-boundary.

The theorem follows as a corrollary from the following theorem that van Benthem

proves:

Theorem: Every semi-linear -{0,1} language is context free.

[Note that the restriction to a two-symbol alphabet is crucial. We saw before the

language MIX = ((abc)*).]

 251

Proof:

Since the union of context free languages is context free, you only need to prove that

every linear -{0,1} language is context free.

Let L be such a language. We need a pushdown storage automaton that will accept

every string in L.

For each such string , () = <i1,i2> + n1<a11,a12> + …+nk<am1,am2>,

with <i1,i2>  I and <a11,a12> …<am1,am2>  A, where the first element of the pairs

counts 0s while the second element of the pairs counts 1s.

If we can define a push-down storage automaton that computes these additions

correctly, that automaton will recognize the strings in the language. This is, because

the language is permutation closed, which means that recognizing the length-

characteristics is sufficient to recognize the language.

Van Benthem defines such a pushdown automaton.

-The states are determined by the maximal number k among the i1,i2, a11…am2 in

I  A: the states are all pairs <i,j>, <i,j>
#
 such that i,j  k.

You start in state <0,0> and end in <0,0>
#
 with empty stack.

The trick about the automaton is that you can encode the number of 0s read as a

progression of state transitions: <0,j>  <1,j>  <2,j>  …, and the same for the

number of 1s: <i,0>  <i,1>  <i,2>  …,

and you can stack 0s and 1s on the stack without changing state. So, while you move

for 0s, you can stack 1s.

And, you can at any point switch between these perspectives:

-loading 1s on the stack, by counting the relevant number of states back (on the

second argument of the state-pairs),

-taking 1s off the stack, by counting the relevant number of states forward.

With only 2 symbols to keep track of, this creates enough computational power to

prove the result.

Definition of the Pushdown Automaton:

Reading rules:

i <k (0,<i,j>,e)  (<i+1,j>,e) (0,<i,j>,e)  (<i,j>,0)

k (0,<k,j>,e)  (<k,j>,0)

j <k (1,<i,j>,e)  (<i,j+1>,e) (1,<i,j>,e)  (<i,j>,1)

k (1,<i,k>,e)  (<i,k>,1)

Empty rules:

 (e,<i+1,j>,e)  (<i,j>,0)

i<k (e,<i,j>,0)  (<i+1,j>,)

 (e,<i,j+1>,e)  (<i,j>,1)

j<k (e,<i,j>,1)  (<i,j+1>,)

 252

Lowering rules:

Let <m1,m2> be one of the pairs in I  A

and let m1  i and m2  j:

 (e,<i,j>,e>  (<i¡m1,j¡m2>,e)

All these rules are the same for
#
-states:

Reading rules:

i <k (0,<i,j>
#
,e)  (<i+1,j>

#
,e) (0,<i,j>

#
,e)  (<i,j>

#
,0)

k (0,<k,j>
#
,e)  (<k,j>

#
,0)

j <k (1,<i,j>
#
,e)  (<i,j+1>

#
,e) (1,<i,j>

#
,e)  (<i,j>

#
,1)

k (1,<i,k>
#
,e)  (<i,k>

#
,1)

Empty rules:

 (e,<i+1,j>
#
,e)  (<i,j>

#
,0)

i<k (e,<i,j>
#
,0)  (<i+1,j>

#
,)

 (e,<i,j+1>
#
,e)  (<i,j>

#
,1)

j<k (e,<i,j>
#
,1)  (<i,j+1>

#
,)

Lowering rules:

Let <m1,m2> be one of the pairs in I  A

and let m1  i and m2  j:

 (e,<i,j>
#
,e>  (<i¡m1,j¡m2>

#
,e)

Crossing:

Let <m1,m2> be one of the pairs in I  A

and let m1  i and m2  j:

 (e,<i,j>,e)  (<i¡m1,j¡m2>
#
,e)

van Benthem argues that you can prove, by inspecting the rules of the automaton, that

the following holds:

Claim 1:
-at each stage in the computation in state <i,j> there are numbers x1…xm such that:

i + the number of symbols 0 in the stack at <i,j> =

 the number of 0’s read ¡ x1.a11 ¡ … ¡ xm. am1

and

j + the number of symbols 1 in the stack at <i,j> = =

 the number of 1’s read ¡ x1.a12 ¡ … ¡ xm. am2

Similarly:

-at each stage in the computation in state <i,j>
#
 there are numbers x1…xm such that

i + the number of symbols 0 in the stack at <i,j> =

 the number of 0’s read ¡ i1 ¡ x1.a11 ¡ … ¡ xm. am1

and

j + the number of symbols 1 in the stack at <i,j> =

 the number of 1’s read ¡ i2 ¡ x1.a12 ¡ … ¡ xm. am2

(Here <i1,i2>  I, so these numbers have nothing to do with i in <i,j>.)

 253

This means that in <0,0> with empty stack:

 the number of 0’s read ¡ x1.a11 ¡ … ¡ xm. am1 = 0

and the number of 1’s read ¡ x1.a12 ¡ … ¡ xm. am2 = 0

hence:

in <0,0> with empty stack:

 the number of 0’s read = x1.a11 +… + xm. am1

 the number of 1’s read = x1.a12 + … + xm. am2 = 0

and in <0,0>
#
 with empty stack:

 the number of 0’s read = i1 + x1.a11 +… + xm. am1

 the number of 1’s read = i2 + x1.a12 + … + xm. am2 = 0

This means that indeed only for  such that for some i, a1…,am, n1…nm:

() = i + x1.a1 + … + xm. am does the computation get to <0,0>
#
.

This means that the language recognized is a subset of L.

Conversely, we need to prove that every string in L is recognized.

Claim 2:

-If the automaton is in state <0,0> and the stack consists of 0s only or of 1s only

and b1 = the number of 0s in the stack + the number of 0s still to read

and b2 = the number of 1s in the stack + the number of 1s still to read

and <b1,b2> = <i1,i2> + n1<a11,a12> + …+nk<am1,am2>,

then the automaton will continue to recognize the string.

-If the automaton is in state <0,0># and the stack consists of 0s only or of 1s only

and b1 = the number of 0s in the stack + the number of 0s still to read

and b2 = the number of 1s in the stack + the number of 1s still to read

and <b1,b2> = n1<a11,a12> + …+nk<am1,am2>,

then the automaton will continue to recognize the string.

From the fact that L is semi-linear and the stack is empty in <0,0> at the beginning of

the computation for   L, if the claim is true, it follows that the automaton will

recognize , and with that, the theorem.

Proof of the claim: Even with the appendix, this proof is hard to follow.

 254

BIBLIOGRAPHY

Two classical textbooks on Formal Language Theory:

Hopcroft, John and Jeffrey Ullmann, 1979, Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley, Reading, Massachusets.

Lewis, Harry and Christos Papadimitriou, 1981, Elements of the Theory of

Computation, Prentic Hall, New Jersey.

A critical discussion of all arguments for the non-contextfreeness of natural

languages in the literature up to 1982:

Pullum, Geoffrey and Gerald Gazdar, 1982, 'Natural languages and contextfree

languages,' in: Linguistics and Philosphy 4.

The arguments from Bambara, Mandarin Chinese, and Swiss German:

Culy, Chris, 1985, 'The complexity of the vocabulary of Bambara,' in: Linguistics and

Philosophy 8.

Radzinsky, Daniel, 1990, 'Unbounded syntactic copying in Mandarine Chinese,' in:

 Linguistics and Philosophy 13.

Shieber, Stuart, 1985, 'Evidence against the contextfreeness of natural languages,' in:

Linguistics and Philosophy 8.

The parsing of the verb cluster in Dutch and German:

Bach, Emmon, Colin Brown and William Marslen-Wilson, 1986, 'Crossed and nested

dependencies in Dutch and German,' in: Language and Cognitive Processes 1.

Joshi, Aravind, 1989, 'Processing crossed and nested dependencies,' in: Language

and Cognitive Processes 3.

Tree adjoining grammars:

Joshi, Aravind, 1983, 'How much context sensitivity is necessary for characterizing

structural descriptions,' in: Dowty et. al. (eds.) Natural Language Processing.

Theoretical, Computational and Psychological Perspectives, Cambridge

University Press, Cambridge.

Joshi, Aravind, 1987, 'An introduction to tree adjoining grammars,' in: Manaster-

Ramer (ed.), Mathematics of Language, Benjamins, Amsterdam.

Kroch, Antony, 1987, 'Unbounded dependencies and Subjacency in a tree adjoining

grammar,' in: Manaster-Ramer (ed.), Mathematics of Language, Benjamins,

Amsterdam.

VijayShanker, K., 1988, A Study of Tree Adjoining Grammars, Report MS-CIS-88-03

 LINC LAB 95, Department of Computer Science, University of Pennsylvania.

MCTags and Linear Context-free Rewriting Systems:

VijayShanker,K., Weir, D., and A. Joshi, 1987, 'On the progression from context free

to tree adjoining grammars,' in: Manaster-Ramer (ed.), Mathematics of

Language, Benjamins, Amsterdam.

Kallmeyer, 2013, 'Linear Context-Free Rewriting Systems,' in: Language and

Linguiscs Compass 7,1 pp. 22-38

Weir, David, 1987, From Contextfree Grammars to Tree Adjoining Grammars and

Beyond, Report MS-CIS-87-42, LIC LAB65, Department of Computer

Science, University of Pennsylvania.

 255

Beyond mildly contextsensitive

Manaster-Ramer, Alexis, 1987, 'Dutch as a Formal Language,' in: Linguistics and

Philosophy, 10, 2, pp. 221-246.

Radzinski, Daniel, 1991, 'Chinese number-names, tree adjoining languages,

 and mild context-sensitivity,' in: Computational Linguistics 17, pp. 277–299.

Salvati, Silvain, 2015, MIX is a 2-MCFL and the word problem in Z
2
 is solved by a

 third-order collapsible pushdown atomaton, Journal of Computer and System

Sciences 81, pp. 1252-1277

Stabler, Edward, P., 2010, 'Computational perspectives on minimalism, in: C. Boeckx

(ed), Oxford Handbook of Linguistic Minimalism, pp. 616=641, Oxford

University Press, Oxford.

Categorial grammar.

On type shifting:

Partee, Barbara, 1987, 'Noun phrase interpretation and type-shifting principles,' in:

Groenendijk, J, D. de Jongh, and M. Stokhof (eds.), Studies in Discourse

Representation Theory and the Theory of Generalized Quantifiers, Foris,

Dordrecht.

Landman, Fred, classnotes Advanced Semantics.

On combinatory categorial grammar:

Jacobson, Pauline, 1999, 'Towards variable-free semantics,' in: Linguistics and

Philosophy, 22, pp. 117=184

Steedman, Mark, 1996, Surface Structure and Interpretation, The MIT Press.

Steedman, Mark, 2000, The Syntactic Process, The MIT Press.

Szabolcsi, Anna, 1989, 'Bound variables in syntax (are there any?),' in: Bartsch, R, J.

van Benthem and P. van Emde-Boas, Semantics and Contextual Expression,

pp. 294-318, Foris, Dordrecht.

Proof-theoretic grammar

Lambek, Joachim, 1958, 'The mathematics of sentence structure,' in: American

Mathematical Monthly 65,pp. 154 - 170

Moortgat, Michael, 1997, 'Categorial type logics,' in: van Benthem, J. and A, ter

Meulen (eds.) Handbook of Logic and Languages, ch 2.

Semantic Automata:

van Benthem, Johan, 1983, ‘Determiners and Logic,’ in: Linguistics and Philosophy

6.

van Benthem, Johan, 1986, Essays in Logical Semantics, Kluwer, Dordrecht.

van Benthem, Johan, 1987, ‘Semantic automata,’ in: Groenendijk, de Jongh and

Stokhof (eds.) Studies in Discourse Representation Theory and the Theory of

Generalized Quantifiers, Foris, Dordrecht.

