
158

PART 6. SEMANTIC PARSING OF THE VERB CLUSTER IN DUTCH AND

GERMAN

6.1 Basics of functional type theory, semantics of serial verbs

 via function composition.

Basics of functional type theory (ignoring intensionality)

This is rigorously done in Advanced Semantics (warning : the text below is horribly

sloppy on blurring object language-meta language)

Types

e is the type of individuals, t is the type of truth-values

<a,b> is the type of functions from a-entities into b-entities.

<e,t> is the type of functions from individuals into truth values = one-place properties.

Functional application

If α is of type <a,b> and β is of type a, then (α(β)) is of type b. (<a,b> + a  b)

PURR is of type <e,t> one place property

Ronya is of type e individual

(PURR(Ronya)) is of type t truth value

Curried functions
EAT[Pat, Pap] two-place relation between individuals

curried:

EAT is of type <e,<et>>

 function from individuals into one place properties

functional application:

(EAT(pap)) is of type <e,t>, one place property

 the property that you have if you eat pap

Functional application:

((EAT(pap)) (Pat) is of type t

 Pat has the property that you have if you eat pap.

Relational notation: if R is of type <b,<a,c>> and β of type b and α of type a, then

 R(α,β) is relational notation for ((R(β))(α))

EAT(Pat, pap) is relational notation for ((EAT(pap)) (Pat))

Functional abstraction
If x is a variable of type a and β is of type b, then λx.β is of type <a,b>

λx.β is the function that maps all a-entities d onto the interpretation of β[x:d], the

 interpretation of β that sets the interpretation of variable x to d.

159

lambda abstraction allows us to define complex functions.

λxn…x1.β(x1,…,xn)

The lambda prefix λxn…x1.indicates the arguments that go into the function in the

order xn …x1.

β(x1,…,xn) is the description of the function, it tells you what the function does. In

particular,

the order in β(x1,…,xn) indicates the argument (or thematic) structure (who does what

to whom).

Example: S

NP VP

 Pat

V NP

eat pap

eat first combines with the object pap, and the result eat pap combines with the

subject Pat:

eat  λyλx.EAT(x,y) the relation that holds between x and y if x eats y.
 (λyλx.EAT(x,y) (pap))

((λyλx.EAT(x,y) (pap)) (Pat))

λ-conversion:

 (λx.β (α)) = β[α/x] the result of replacing every variable x free in β by α,

 if no variable is bound in β[α/x] that was free in β

(λyλx.EAT(x,y) (pap)) = λx.EAT(x,pap)

((λyλx.EAT(x,y) (pap)) (Pat)) = (λx.EAT(x,pap) (Pat))

(λx.EAT(x,pap) (Pat)) = EAT(Pat, pap)

160

Higher order abstraction
Example: attributive adjectives:

smart  λPλx.P(x)  SMART(x) of type <<e,t>,<e,t>>,

P is a variable of type <e,t>, a variable over properties.

smart denotes a function from one place properties into one place properties

 maps property Q onto the property that you have if you have Q and

you are smart.

NP

ADJ NP

smart cat

smart cat = (λPλx.P(x)  SMART(x) (CAT))

λ-conversion:

(λPλx.P(x)  SMART(x) (CAT)) = λx.CAT(x)  SMART(x)

The property that you have if you are a cat and you are smart.

Small clause analysis for help/let/see… auxiliary verbs:

S (= IP)

NP I'

Sam

 I S small clause (= S without inflection)

 let

 NP VP

 Pat

 V NP

 eat pap

Semantics matching the syntax exactly (simplifying by ignoring intensionality)

let  λpλx.LET(x,p)

p a variable over propositions, for simplicity here identified with sentences (type t,

this is incorrect, but will do for pour purposes here).

Semantics of the small clause: ((EAT(pap)) (Pat))

 = EAT(Pat, pap)

Semantics of the sentence: (LET(EAT(Pat, pap)) (Sam))

 = LET(Sam, EAT(Pat, pap))

Sam stands in the LET relation to the proposition that Pat eats pap.

Lexical semantics of LET: LET(x,p) x allows p to happen (where p is under x's

control, etc.)

161

Semantics:

S

NP I'

Sam

 I S

 let

 NP VP

 Pat

 V NP

 eat pap

two place relation between an individual and a proposition

Non-matching semantics

let  λPλyλx.LET(x,P(y))

Syntactically eat takes a small clause complement and a higher subject.

Semantically eat accesses the subject of the small class, the predicate of the small

clause and the higher subject, i.e. is a three-place relation, it applies to the the small

clause predicate, the small clause subject and the higher subject.

So:

Small clause predicate:

eat pap  (EAT(pap))

let eat pap  (λPλyλx.LET(x,P(y)) (EAT(pap))

λ-conversion:

 λyλx.LET(x,(EAT(pap)) (y)))

Relational notation:

 λyλx.LET(x, EAT(y,pap))

let Pat eat pap  (λyλx.LET(x, EAT(y,pap)) (Pat))

λ-conversion: λx.LET(x, EAT(Pat,pap))

Sam let Pat eat pap  (λx.LET(x, EAT(Pat,pap)) (Sam))

λ-conversion: LET(Sam, EAT(Pat,pap))

lexical semantics: LET(x, P(y)): x allows it to happen that y has P.

So: Sam lets it happen that Pat eats her pap.

162

-The small clause syntax is for a variety of syntactic reasons better than a syntax

mirroring the semantics.

-The 3-place relational semanrics is for a variety of semantic reasons better than a

semantics mirroring the syntax.

Hence: mismatches between syntax and semantics.

(Other examples: Landman 2000, 2004 on numericals in nominal versus argument or

predicate position, 2016 on measure versus classifier readings).

Semantic argument: the semantics given here allows a very elegant semantics for the

verb cluster in terms of function composition.

function composition:

If f is a function of type <a,b> and g a function of type <b,c>

 then g ∘ f is a function of type <a,c> (<a,b> + <b,c>  <a,c>)

 g ∘ f = λx.g(f(x))

Apply f to variable x of type a: f(x) is of type b

Apply g to the result: g(f(x)) is of type c

Abstract over x: λx.g(f(x)) is of type <a,b>

λx.g(f(x)) The function that maps every x of type a onto the result of applying f

to x and

 then g to the result.

generalized function composition:

Resolve a type mimatch through function composition:

You want to compose function g with function f.

So apply f to a variable x. But f(x) isn’t of the right type to be fed into g.

Solution: continue to apply f to variables (i.e. apply f(x) to a variable y, etc. until the

types match.

Apply g to the result and abstract over all variables you have applies f to:

 COMP[g,f] = λxn…λx1.g(f(x1,…,xn))

(where the types of x1…xn can be anything and f(x1,…xn) should be understood

curried:

(…((f(xn))(xn1))…(x1)))

163

Fact:

Let R
n
 be an n-place relation between individuals (of type <e,…,<e,t>> with n e's).

Let LET = λPλyλx.LET(x,P(y))

Then: COMP[LET, R
n
] is an n+1 place relation between individuals

Proof:

We calculate COMP[LET, R
n
]

Step 1: apply R
n

 to variables x2,…,xn to bring the type down to <e,t>, the type of

variable P:

 R
n
(x2,…,xn) is a one place predicate.

Step 2: apply LET to R
n
(x2,…,xn):

(λPλyλx.LET(x,P(y)) (R
n
(x2,…,xn))

λ-conversion: λyλx.LET(x, R
n
(x2,…,xn) (y))

Relational notation: λyλx.LET(x, R
n
(y,x2,…,xn))

Step 2: abstract over variables x2,…,xn:

λxn…λx2λyλx.LET(x, R
n
(y,x2,…,xn))

Step 3: Rename variables for clarity:

λxn+1…λx2λx1.LET(x1, R
n
(x2,…,xn+1)) an n+1 place relation

With this we understand what happens in the verb cluster:

COMP[LET ,EAT]

λuλv.EAT(v,u) 2-place relation

Apply to a variable z: λuλv.EAT(v,u) (z)

λ-conversion: λv.EAT(v,z) 1-place property

Apply LET: (λPλyλx.LET(x,P(y)) (λv.EAT(v,z))

λ-conversion: λyλx.LET(x, λv.EAT(v,z) (y))

λyλx.LET(x, λv.EAT(v,z) (y))

λ-conversion: λyλx.LET(x, EAT(y,z))

abstract over z: λzλyλx.LET(x, EAT(y,z)) 3-place relation

So given the semantics for let, function composition in the verb cluster of let and two

place relation eat forms three-place relation let eat.

-In phrasal domains (IP (S), VP), the basic meaning composition operation is

function-argument application.

-In lexical domains (like V), the basic meaning composition operation is function

composition. (Hoeksema 19??)

164

Claim: The mismatch assumption and the composition assumption are the only

 assumptions that need to be made to get the semantics of the serial verb

 cluster come out right.

Example: (ignoring the modal zal)

 CP

 C S

… NP I'

 Kim VP I

 S V …

 NP VP e

 Sam S V

 NP VP e

 Pat NP V

 haar pap helpen laten eten

 LET  HELP  EAT
Predicted Semantics:

LET = λPλyλx. LET(x, P(y)) EAT = λzλy. EAT(y,z)

LET  EAT = λPλyλx. LET(x, P(y))  λzλy. EAT(y,z) =

λz [λPλyλx. LET(x, P(y))] (λzλxy. EAT(y,z) (z)) =

λz [λPλyλx. LET(x, P(y))] (λy. EAT(y,z)) =

λz [λyλx. LET(x, λy. EAT(y,z) (y))] =

λzλyλx. LET(x, EAT(y,z)) x lets: y eat z

Conclusion:

2 place verb + LET  3-place verb

λzλy. EAT(y,z) LET λzλyλx. LET(x, EAT(y,z))

 1 2 1 2 3

Next:

HELP  (LET  EAT) =

λPλxλu. HELP(u, P(x))  λzλyλx. LET(x, EAT(y,z)) =

λzλy [λPλxλu. HELP(u, P(x))] (λzλyλx. LET(x, EAT(y,z)) (y,z)) =

 λzλy [λPλxλu. HELP(u, P(x))] (λx. LET(x, EAT(y,z))) =

λzλyλxλu. HELP(u, LET(x, EAT(y,z)))

165

3 place verb + HELP 4-place verb

λzλyλx. LET(x, EAT(y,z)) λzλyλxλu. HELP(u, LET(x, EAT(y,z)))

 1 2 3 1 2 3 4

So: helpen laten eten  λzλyλxλu. HELP(u, LET(x, EAT(y,z)))

 u helps x; x lets y, y eats z.

-The basic composition operation in phrasal domains is function-argument

application:

 Type theory:

The left-rightorder in the λ-prefix represents the order of application.

-The meaning of the V helpen laten eten applies to the meaning of haar pap (λz)

-the result applies to the meaning of Pat, (λy),

-the result to the meaning of Sam (λx),

-the result to the meaning of Kim (λu),

giving, the correct meaning for the sentence:

APPLY[, Kim]

 APPLY[, Sam]

 APPLY[, Pat]

 APPLY[HELP  (LET  EAT), Her Porridge]

=

 HELP(Kim, LET(Sam, EAT(Pat,Her Porridge)))

The semantics proposed gets the meanings right within a framework of standard

assumptions about the semantic composition operations applicable in different

domains (composition and application).

Given the meanings of the verbs that enter into the serial verb, composition has the

effect of:

n-PLACE SERIAL VERB FORMATION:

Let α be one of LET, HELP, SEE, HEAR ,…

Let β be an n¡1 place relation, then α  β is an n-place relation.

166

6.2. Semantic Parsing

Bach et. al. 1986 performed a cross-linguistic experiment.

The idea of the experiment was the following: Dutch and German are similar enough

to be able to compare the speed of processing of the Dutch verb cluster by native

speakers of Dutch with that of the German verb cluster by native speakers of German.

What Bach et. al. measured for Dutch and for German was the following.

Let's use the numbers 0,1,2,3,... for 0 embeddings, 1 embedding, 2 embeddings,... as

indicated below:

German:
0 Jan weiβt daβ wir --- das Haus haben wollen malen ---

1 Hans lassen

2 Hans Peter helfen lassen

3 Hans Peter Marie sehen helfen lassen

 NP1 NP2 NP3 V3 V2 V1

 Center embedded dependencies.

Dutch:
0 Jan weet dat we --- het huis hebben willen --- schilderen

1 Hans laten

2 Hans Peter laten helpen

3 Hans Peter Marie laten helpen zien

 NP1 NP2 NP3 V1 V2 V3

 Cross serial dependencies.

Bach et. al. measured, in terms of processing time, in each language, how much

longer type 1 sentences take to process than type 0, how much longer type 2 than type

1, etc. And then they compared the figures they got for Dutch and for German.

They found that indeed type 0 in Dutch and in German (and in English) take about the

same time (which forms the basis for comparison). Interestingly enough they found

the following:

 Systematically Dutch speakers process n Dutch embeddings FASTER

than German speakers process n German embeddings.

I want to suggest a possible explanation of this result in terms of semantic parsing.

(For an alternative explanation, see Joshi 1989.)

Let's first explain the idea of semantic parsing.

We have an input string which is read symbol by symbol from left to right:

 dat Jan Marie kust [that Jan kisses Marie]

167

In semantic parsing the task is to come up with a semantic interpretation of the

sentence. And we use the types of the input expressions and the type assignment of

the grammar to do that online. Basically the idea is to find the values for the variables

introduced in the parsing process, or equivalently, eliminate the variables. The parse

is done when all variables are eliminated.

We indicate in boldface where we are in the parse:

 Step 1 dat Jan Marie kust

 Semantics: φ [φ  VARt, a sentential variable]

 Task: find the value of φ.

Step 2 dat Jan Marie kust

 Semantics: φ = P
1
(j) [P

1
  VAR<e,t>, a one-place predicate

variable]

 Task: find the value of P
1
.

Step 3 dat Jan Marie kust

 Semantics: φ = P
1
(j)

 P
1
 = P

2
(m) [P

2
  VAR<e,<e,t>, a two place predicate

variable]

This means that we can eliminate P
1
:

 Semantics: φ = P
2
(j,m)

 Task: find the value of P
2
.

Step 4 dat Jan Marie kust

 Semantics: φ = P
2
(j,m)

 P
2
 = KISS

We eliminate P
2
:

Semantics: φ = KISS(j,m)

We eliminate φ:

 Semantics: KISS(j,m)

 Done.

Applying the very same strategy in the verb cluster, we get for Dutch (and for

German) the following partial parse: (LF stands for: 'look for the value of')

dat Kim Sam Pat haar pap zal helpen laten eten.

SEM: φ SEM: P
1
(f) SEM: P

2
(f,s) SEM: P

3
(f,s,d) SEM: P

4
(k,s,p,pap)

LF: φ LF: P
1
 LF: P

2
 LF: P

3
 LF: P

4

So at the point where we reach the verb cluster, the parser is looking for a four-place

relation.

168

We are at the following stage in Dutch:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: P
4
(k,s,p,pap)

 LOOK FOR: P
4

In German we are, similarly at the following stage:

daβ Kim Sam Pat ihr Brei essen lassen helfen wird.

 SEMANTICS: P
4
(k,s,p,pap)

 LOOK FOR: P
4

In both cases, we are looking for a four-place relation P
4
 and we rely on function

composition to find it.

Let's argue the German case first.

We are looking for a four place relation. But essen is a two-place relation.

So we are stuck.

At this point we start a store in which we build a four place relation:

daβ Kim Sam Pat ihr Brei essen lassen helfen wird.

 SEMANTICS: φ = P
4
(k,s,p,pap)

 LF: P
4

 STORE: EAT (a two place relation)

We continue and at the next step we apply function composition in the store:

daβ Kim Sam Pat ihr Brei essen lassen helfen wird.

 SEMANTICS: φ = P
4
(k,s,p,pap)

 LF: P
4

 STORE: LET o EAT (a three-place relation)

 LET o EAT =

 λzλyλx.LET(x,EAT(y,z))

We continue to helfen and again do function composition on the store:

daβ Kim Sam Pat ihr Brei essen lassen helfen wird.

 SEMANTICS: φ = P
4
(k,s,p,pap)

 LF: P
4

 STORE: HELP o (LET o EAT) (a four-place relation)

 HELP o (LET o EAT) =

λuλzλyλx.HELP(x,LET(y,EAT(z,u)))

We have now a four-place relation in store, but the parse continues inside V, so we

continue with function composition:

169

daβ Kim Sam Pat ihr Brei essen lassen helfen wird.

 SEMANTICS: φ = P
4
(k,s,p,pap)

 LF: P
4

 STORE: WILL o (HELP o (LET o EAT)) (a four-place relation)

WILL o (HELP o (LET o EAT)) =

λuλzλyλx.WILL(HELP(x,LET(y,EAT(z,u))))

This completes the parse in the V domain, we match the store and P
4
:

daβ Kim Sam Pat ihr Brei essen lassen helfen wird.

 SEMANTICS: φ = P
4
(k,s,p,pap)

 LF: P
4

 = WILL o (HELP o (LET o EAT))

We eliminate variables and get the correct parse:

daβ Kim Sam Pat ihr Brei essen lassen helfen wird.

 SEMANTICS: WILL(HELP(k,LET(s,EAT(p,pap))))

 DONE

In Dutch we have exactly the same option as in German, we can create a store:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: P
4
(k,s,p,pap)

 LOOK FOR: P
4

 STORE: WILL

We continue in the store with function composition:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: P
4
(k,s,p,pap)

 LOOK FOR: P
4

 STORE: WILL o HELP

WILL o HELP =
λP

1
λyλx.WILL(HELP(x,P

1
(y)))

We continue with laten:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: P
4
(k,s,p,pap)

 LOOK FOR: P
4

 STORE: (WILL o HELP) o LET

 (WILL o HELP) o LET =

 λP
1
λzλyλx.WILL(HELP(x,LET(y,P

1
(z))))

We compose with eten:

170

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: P
4
(k,s,p,pap)

 LOOK FOR: P
4

 STORE: ((WILL o HELP) o LET) o EAT

 ((WILL o HELP) o LET) o EAT =

 λuλzλyλx.WILL(HELP(x,LET(y,EAT(z,u))))

We are done in the V-domain, we have the same relation in store as in German, so we

match, eliminate variables and are done:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: WILL(HELP(k,LET(s,EAT(p,pap))))

 DONE

Thus far, there is no difference between the Dutch and the German case. The

difference comes in with the following observation:

 Dutch allows a straightforward alternative parsing strategy that does not

involve a store at all.

 We go back to the point where we switched from functional application to function

composition:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: P
4
(k,s,p,pap)

 LOOK FOR: P
4

We continue the parse by introducing search variable Q
4
 and compose as follows:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: P
4
(k,s,p,pap)

 P
4

 = WILL o Q
4

 LOOK FOR: P
4

So we get:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: [WILL o Q
4
] (k,s,p,pap)

 LOOK FOR: Q
4

And we continue by introducing a search variable P
3
 and compose as follows:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: [WILL o (HELP o P
3
)] (k,s,p,pap)

 LOOK FOR: P
3

 We continue by introducing search variable P
2
 and compose similarly:

dat Kim Sam Pat haar pap zal helpen laten eten.

171

 SEMANTICS: [WIIL o (HELP o (LET o P
2
))] (k,s,p,pap)

 LOOK FOR: P
2

At this point we reach the end of the V and we resolve:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: [WIIL o (HELP o (LET o EAT))] (k,s,p,pap)

The result is the same:

dat Kim Sam Pat haar pap zal helpen laten eten.

 SEMANTICS: WILL(HELP(k,LET(s,EAT(p,pap))))

 DONE

Thus, on this strategy, we just continue to compose on.

In this parse, we do not use a store, and we only need to introduce six search

variables all in all: φ, P
1
,P

2
,P

3
,P

4
, Q

4
 of five different types.

Now, composition is a powerful mechanism, so it shouldn't come as a surprise that

also for German we can find a direct parse that doesn't rely on the store.

The parse in German can continue directly as follows:

P
4
(k,s,p,pap)

LF: P
4

(R
3
 o EAT)(k,s,p,pap) where R

3
 is a variable of type <<e,t>,<e,<e,<e,t>>>>>

LF: R
3

(R
2
 o (LET o EAT))(k,s,p,pap) where R

2
 is a variable of type <<e,t>,<e,<e,t>>>

LF: R
2

(R
1
 o (HELP o (LET o EAT)))(k,s,p,pap) where R

1
 is a variable of type

<<e,t>,<e,t>>

LF: R
1

(WILL o (HELP o (LET o EAT)))(k,s,p,pap)

which is:

WILL(HELP(k,LET(s,EAT(p,pap))))

This parse takes as many steps as the Dutch parse, and doesn't use a store either.

It differs from the Dutch parse, though, in that it introduces more search variables

than the Dutch parse: eight search variables all in all: φ, P
1
,P

2
,P

3
,P

4
,R

3
,R

2
,R

1
 of

eight different types.

If we make the plausible hypotheses that using a store is costly, and that using more

search variables of more different type is costly it follows that both parsing

172

strategies potentially available in German are more costly than the fastest strategy

available in Dutch. And this is what Bach et. al. 1986 found.

