
1

CHAPTER FOUR: TYPE SHIFTING

4.1. Montague’s fixed type assumption

So far we have adopted Montague’s Fixed Type Assumption:

 Fixed Type Assumption.

 The grammar associates with every syntactic category a unique semantic type.

 All syntactic structures of that syntactic category translate as expressions

 of the corresponding semantic type.

We have seen that in several cases the fixed type assumption leads us to adopt translations

for expressions that are more complicated than one would initially assume necessary.

For instance, the assumption that proper names denote individuals, and hence are

expressions of type e seems natural.

We have also seen that we cannot assume that DPs like every girl are of type e.

Since arguably proper names are DPs as well, the Fixed Type Assumption forces us to

choose between these types e and <<e,t>,t> as the type associated with DP,

and since for semantic reasons we cannot choose e, it has to be <<e,t>,t>.

This means that we are forced to give up the nice and simple analysis of proper names.

Fortunately, there is a translation for proper names at the type of generalized quantifiers that

will work as well: λP.P(RONYA) for ronya.

Such considerations have effects in the grammar at many places.

It also seems to be a natural initial assumption that a transitive verb like hug denotes a

relation between individuals of type <e,<e,t>>.

But the above considerations tell us that the type corresponding to TV will have to be at least

<<<e,t>,t>,<e,t>>. We gave hug the translation:

 λTλx.T(λy.HUG(x,y)).

Now, of course, we do get an elegant and general theory here, but it does come at a price:

Montague's strategy is justifiably known as:

 Generalize to the worst case:

 Because the analysis of some expression of category C requires a more complicated

 type than other expressions of that category,

 all expressions of that category are given the more complicated type.

One of the disadvantages of this approach is that, when you are analyzing the simpler cases,

you do get the feeling that you are doing for generality sake what you could have done in a

much simpler way.

So, for generality sake, we decide to apply the complicated translation of hug to the

complication translation of ronya:

 [λTλx.T(λy.HUG(x,y))](λP.P(RONYA))

2

while for that particular case, everything would have worked as well, had we decided not to

use the complicated translations, but just apply the simple translation HUG to the simple

translation RONYA:

 HUG(RONYA)

Thus, for generality sake, we're doing a lot of extra work, and introduce a lot of unnecessary

unreadable translations.

Moreover, things don't stop here.

We have translated verbs like hug and find as relations of type <<<e,t>,t>,<e,t>>.

But hug and find are extensional relations between individuals,

and, as we have seen in Foundations, there are also verbs, like seek, which cannot be

analyzed as extensional relations between individuals:

 Anna seeks a unicorn

Montague introduced IL, Intensional type Logic. We will discuss this in the next chapter.

At this point we can say that Montague introduces types for intensional entities:

as we will see, for every TL type a there is in IL also an intensional type <s,a>.

While so far we can succesfully regard find as a relation of type <<<e,t>,t>,<e,t>>,

the intensionality of seek requires an intensional type, for instance <<s,<<e,t>,t>>,<e,t>>

which means that seek would denote a relation between an individual and an intensional

object.

We will see in the next chapter how this works (the basis of it has already been discussed in

Foundations), but here I draw attention to what it means for Montague’s grammar.

Both seek and find and transitive verbs of category V, verbs, moreover, that can be

conjoined: Anna sought and found a unicorn.

But now the Fixed Type Assumption says that we must interpret both seek and find at the

same type, and this will have to be the higher intensional type.

So we must find for find an interpretation at the intensional type <<s,<<e,t>,t>>,<e,t>>,

even though we would be happy to have it at type <<<e,t>,t>,<e,t>>.

Finding the right interpretation is not a problem:

Once we have formulated the intensional type theory,

we will be able with backwards λ-conversion derive the correct interpretation at the higher

type (as Montague incorporated into his theory).

So, while we can resolve this problem to our satisfaction, we are once more only doing this

work for generality sake:

Nothing in the meaning of find forces this higher interpretation:

translate find this high for the sake of seek.

This going higher and higher may make you a bit queazy.

What guarantee do we have that this process will ever stop?

Maybe we have overlooked another expression of the same category V, or of the category

3

DP, which Vs take as argument that have to be interpreted at a yet higher type.

That will force yet another change in the whole grammar: all our interpretations will have to

be changed to the higher type.

Indeed, that is just what happens in Montague's work.

Remember the discussion of individual concepts and the Trainer paradox in Foundations,

the invalidity of the pattern:

 The trainer is Michels,

 the trainer changes,

 hence Michels changes.

We saw that DP the trainer must sometimes be analyzed as an expression denoting an

individual concept, a function from worlds to individuals.

For Montague, that is an expression of type <s,e>, rather than e.

But if some DPs are interpreted at type <s,e>, then all DPs must be interpreted at type <s,e>,

by the Fixed Type Assumption.

And DPs were not interpreted as type e, but at <<e,t>,t>.

To deal with the trainer, we need to assume that the interpretation type is really

<<<s,e>,t>,t>.

And in fact, to be able to be the complement of an intensional verb, the type must even be

intensional: <s,<<<s,e>,t>,t>>.

And this means that seek is a relation between an intensional entity of this type and an

individual concept: <<s,<<<s,e>,t>,t>>, <<s,e>,t>>.

Or the intension of that.

And that means that a sentence like

 Ronya finds pim

involves an interpretation of ronya and of pim of type <s,<<<s,e>,t>,t>>,

and find of type <<s<<s,<<<s,e>,t>,t>>, <<s,e>,t>>,

and the interpretations must be tailored in such a way that the derived sentence reduces with

λ-conversion to FIND(RONYA,PIM) with FIND ∈ CON<e,<e,t>>.

And indeed, it is a major achievement of Montague’s PTQ that this is exactly what happens

there.

But it shows the problem:

There is no guarantee that the process will stop even here,

and it is not clear that there is a worst type to generalize to.

That makes the theory very instable.

4

4.2. Flexible types, type shifting and type driven translation

An alternative way of setting up the grammar was initiated by Barbara Partee and Mats

Rooth, in Partee and Rooth 1983.

While some earlier work on categorial grammar, notably by Lambek and by Geach, can be

regarded as foreshadowing some of their ideas, the Partee and Rooth paper properly stands at

the beginning of the theory of type shifting rules.

Partee and Rooth give up the Fixed Type Assumption and replace it by what could be called

the Flexible Type Assumption:

Flexible Type Assumption: the grammar associates with every syntactic category C

a set of types.

With the Fixed Type Assumption out of the way, Partee and Rooth adopt a methodological

principle which is practically the opposite of Generalize to the Worst Case:

 Methodological guide for interpretations:

 In setting up the grammar, take the simplest cases as your guide and try to give every

 expression as simple a translation as you can.

 De facto this means: interpret expression at as low a type as you can.

 To adopt to this context a guideline that Emmon Bach suggested for syntax:

 The Partee-Bach’s guideline:

 Interpret everything as low as possible, but not so low that you regret it later.

The methodological guide allows different expressions of the same syntactic category to be

interpreted at different types, e.g. Ronya and Every cat, or find and seek.

It also allows for the possibility of interpreting one expression at different types.

The latter happens in the context of type driven translation.

The key ideas of type driven translation are clearly present in Partee and Rooth 1983,

approach was explicitly formulated in Klein and Sag 1985, and has been explored in much

other work, like Partee 1987, in Maria Bittner's work (e.g. Bittner 1993), and in my own

work (Landman 2000, 2004), and many others.

I will call the general approach: Type Mismatch Grammar.

5

Type mismatch grammar

Assume, as before, a binary structure C interpreted via functional application, say, of α

to β.

 α β

Assume, with the methodological guide that α and β are interpreted as α’ and β’ at the

lowest type.

We may even know independently the lowest type for C as well, and the interpretation of C

at that type.

 C, c, C’

 α, a, α’ β, b, β’

What happens if there is type mismatch, i.e. (α(β)) = C’ doesn’t hold,

in particular, if (α(β)) is not a wellformed expression of type c?

Montague:

The grammar crashes, and you have to assign new, higher types to α and/or β
and compute with backward λ-conversion what the new interpretations of α and
β at the new types are.

i.e. you set up the grammar in such a way that this doesn’t happen.

Type Mismatch grammar:

Type mismatch is completely normal and to be expected.

Type mismatch is not a problem, if the type mismatch can be resolved.

The grammar contains a type mismatch resolution mechanism in the form of a set of

Type Shifting Operations.

 A type shifting operation T shifts interpretation α at type a to interpretation T[α] at

 type T[a].

A resolution of the type mismatch would take the form:

 C, c, (T[α’](S[β’]))

 α, T[a], T[α’] β, S[b], S[β’]

α’ cannot apply to β’ to given a wellformed expression of type c.

But the type shifting theory contains two rules T and S, such that T[α’], the result of shifting

α’ with T applies to S[β’], the result of shifting β’ with S to to give a wellformed expression

of type c.

(We will include ID: a → a, for any type a among our type shifting rules, so this actually

allows also doing only one shift.)

6

So this is the general idea:

Type Mismatch Grammar

-Interpret everything as low as you can.

-Try to get away which combining expressions into complexes without doing anything

special.

-You do something special when you get a type mismatch:

 In that case you try to resolve the type mismatch with type shifting operations.

If you can, that is the interpretation you derive.

If you can’t, then the derivation crashes.

I have used functional application as an example, but the same would be true for other

semantic operations, like the operation of coordination, or function composition.

Just to get the flavour of it, let us look at ronya and every kitten.

we have assumed:

ronya → RONYA of type e

every kitten → λP.∀x[KITTEN(x) → P(x)] of type <<e,t>,t>

and → AND where AND = λUλTλP.T(P) ∧ U(P)

 < DP (AND(DP2’))(DP1’) >

 DP1 CON DP2

 and

This gives:

AND(λP.∀x[KITTEN(x) → P(x)]) =

λTλP.T(P) ∧∀x[KITTEN(x) → P(x)]

But:

λTλP.T(P) ∧∀x[KITTEN(x) → P(x)](RONYA)

is not wellformed, because the function λTλP.T(P) ∧∀x[KITTEN(x) → P(x)]

is of type <<<e,t>,t>,<<e,t>,t>> but the argument RONYA is of type e.

So we have a type mismatch.

We check whether there is a type shifting principle in the set that belongs to our grammar

that resolves the type mismatch.

And yes, there is:

Argument Lift: LIFT: e → <<e,t>,t>

for all α ∈ EXPe: LIFT[α] = λP.P(α)

7

 [P a variable that doesn’t occur free in α]

So we resolve the infelicity of

λTλP.T(P) ∧∀x[KITTEN(x) → P(x)](RONYA)

by lifting RONYA to λP.P(RONYA), and applying the function to (an alphabetic variant of)

that:

λTλP.T(P) ∧∀x[KITTEN(x) → P(x)](LIFT[RONYA])) =

λTλP.T(P) ∧∀x[KITTEN(x) → P(x)](λQ.Q(RONYA))) =

λP.[λQ.Q(RONYA)](P) ∧ ∀x[KITTEN(x) → P(x)] =

λP.P(RONYA)) ∧ ∀x[KITTEN(x) → P(x)]

The huge advantage comes in ronya purrs:

We assumed that the verb was function on the subject,

and purr is interpreted as PURR ∈ CON<e,t>.

That means that we can revert back to the simplest grammatically analysis of ronya purrs

ronya purrs → PURR(RONYA)

No type shifting is needed, because the types fit perfectly to the lowest interpretations.

8

4.3. A semantically interpreted X’-grammar with type shifting

Up to now, I have basically ignored the fact that most of the syntactic rules that I discussed

in the context of example grammars have essentially the same form, or the fact that they

have essentially the same semantic interpretation.

Moreover, I have not engaged in any attempt to separate what might be universal, common

to all languages, from what must be specific, particular to the language in question, English.

As a consequence, many things are stipulated again and again in each rule, that might more

economically be stipulated once, i.e. the rules have a lot of redundancy in them.

As is well known, a lot of linguistic thought has gone into developing a format for

grammatical theory which does not contain this kind of redundancy.

In syntax, X-bar theory is an obvious example of an attempt of providing (part of) a

framework for syntax which tries to be non-redundant and inspires you to think about how to

localize and minimize the bits of grammar that must be particular.

We need not here enter into the debate whether there is an empirical issue at stake here or

not (most X-bar syntacticians will tell you that this is obviously so, but see Pullum 199?).

Nevertheless, the heuristic advantage of a format of grammar that separates the universal

from the particular is uncontested.

That is, a redundant grammar format may contain the same information as a non-redundant

format,

there may even be a procedure extracting the universals or the particulars from the redundant

grammar,

but if the material is presented from the start in the form of a general set of constraints on

structure and interpretation plus a set of particular constraints and options for the language,

or language group, in question,

 the format can force or inspire us from the start to think about universals and particulars,

which, as we all agree, is a linguistic virtue.

9

X-bar syntax

Let us take X-bar theory as an example. (And note, it's only an example, I'm not arguing for

a particular version of X-bar theory, or even X-bar theory itself, here.)

Let us make the following universal assumptions about syntax.

Categories come in bar-levels X, X', XP, where XP dominates X' and X' dominates X.

Lexical items are sitting under X.

We will directly make the assumption that unary branches are pruned to the highest

category. So, our X'-theory may allow the following tree:

 XP

 YP XP

 │ │

 Y' X'

 │ │

 Y X

 │ │

 α β

By the Principle of Saving the Rainforest, this tree is pruned to:

 XP

 YP XP

 │ │

 α β

The set of categories CAT will include the categories A and N of adjectives and nouns.

We define three syntactic operations, complementation, specification, and modification:

operations that map pairs of categories onto syntactic triangles of the following form:

Let X, Y  CAT

 COMP[X,Y] = X'

 X YP

 SPEC[X,Y] = XP

 X' YP

 MOD[X,Y] = XP

 XP YP

10

In these triangles, we call the category at the left bottom corner of the triangle the head,

hence each of these operations specifies a head.

TRIANGLE = {COMP[X,Y], SPEC[X,Y], MOD[X,Y]: X,Y  CAT}

What we will base the syntax on is the set of pairs <α,π>, where α is a triangle and π is one

of the symbols in {l,r}: head-left, head-right:

 BASE= { <α,π>: α  TRIANGLE and π  {l,r} }

A syntax for language L is a subset SYNL  BASE

We assume the following realization principle relating objects in SYNL to trees:

REALIZATION:

 If <COMP[X,Y],l>  SYNL then L licences a complementation tree with the head X

 as left daugher:

 X'

 X YP

 If <COMP[X,Y],r>  SYNL then L licences a complementation tree with the head X

 as right daugher:

 X'

 YP X

Similarly for the other triangles.

Finally, for triangle α and language L we introduce the following notation:

 α =L
 l iff <α,l >  L  <α,r >  L

 α =L
 r iff <α,r >  L  <α,l >  L

 α =L
 ⊥ iff <α,l >  L  <α,r >  L

 α =L
 0 iff <α,l >  L  <α,r >  L

Thus, for categories V and D, we may specify that COMP[V,D] =ENGLISH l and this means

that in English, verbs take DP complements, and take DP complements to their right, not to

their left. This, in its turn means that the following tree is realized in English:

 V'

 V DP

In general,

if you specify: R[X,Y] =L l, this means the head is left

if you specify: R[X,Y] =L r, this means the head is right

11

if both are specified, the head can be either

if neither is specified, X doesn’t relate to Y by R

It will in fact be usuful to specify, for α  {COMP, SPEC, MOD} and L a language:

 αL = {<X,Y>: α[X,Y]≠L 0}

This allows us to specify, for instance:

 <V,D>  COMPENGLISH

 X,Y  CAT: COMP[X,Y] =ENGLISH l

This would express that verbs take DP complements in English, and that in English all heads

take their complements to the right.

For our purposes we have specified enough of what is universal

Example: Young cat

We're interested in English adjectival modification, and in particular in generating young cat.

In the X-bar perspective given here, what we need to specify in the grammar of English is

the following:

 1. Lexical item: young: category: A

 Lexical item: cat: category: N

 2. MOD[N,A] =ENGLISH r

This is all we need to specify. The grammar will now automatically allow the following tree

to be built:

 NP

 AP NP

 │ │

 A' N'

 │ │

 A N

 │ │

 young cat

And this tree gets pruned to:

 NP

 AP NP

 │ │

12

 young cat

Syntax-semantics map

Let us now consider the semantics and the syntax/semantics map.

We extend the X-bar theory with a semantics. We make some assumptions about the

syntax-semantics map which we would assume to be part of the universal part.

 We first consider the basic categories. In the spirit of the minimalist approach to

interpretation of type shifting theories, let us assume that the interpretation of adjectives and

nouns is as simple as can be. We assume the following universal association:

 A → <e,t>

 N → <e,t>

Secondly, ignoring co-ordination, let us now look at structure building operations. They are

of two kinds: non-branching and binary branching. The universal semantics for non-

branching structure is just identity:

 A → α'

 │

 α → α'

Let us assume that the universal semantics for branching structures is function-argument

application:

 A → APPLY[f,a]

 B C

This means that all three types of branching structures that we have introduced have, at this

level of generality, the same interpretation: apply the function to the argument.

What needs to be specified still is what is the function and what is the argument. I will

assume here that this too is specified universally, but not universally the same for all binary

structures. In particular, I will assume that here the difference between adjuncts and

arguments comes in.

Both the relations COMP(X,Y) and SPEC(X,Y) are typically used for the relation between a

role assigner and a role receiver, a function and an argument. I will assume that this is

reflected in the syntax/semantics map:

 In complementation and specification, the head is the semantic function.

I will assume that it is the other way round in modification:

 In modification, the head is the semantic argument.

13

This gives us the following universal interpretations:

 COMP[X,Y] = X' → APPLY[f,a]

 f = X f = head

 X YP

 SPEC[X,Y] = XP → APPLY[f,a]

 f = X’ f = head

 X' YP

 MOD[X,Y] = XP → APPLY[f,a]

 f = XP f = non-head

 XP YP

Let us assume the following universal specifications

 D → <<e,t>,e>

 N → <e,t>

 V → <e,<e,t>>

 I → <<e,t>,<e,t>>

We assume the following particulars about English (which themselves are, of course,

instances of a more general pattern):

 D, N, V, I ∈ CATENGLISH

 COMP[D,N] =ENGLISH l

 COMP[V,D] =ENGLISH l

 COMP[I,V] =ENGLISH l

 SPEC[I,D] =ENGLISH r

And we add the following lexical items, for English, with their interpretation:

 Lexical item: the

 Category: D

 Interpretation: λP.σ(P)

 Lexical item: cat

 Category: N

 Interpretation: CAT

 Lexical item: girl

 Category: N

 Interpretation: GIRL

14

 Lexical item: e

 Category: I

 Interpretation: λP.P

 Lexical item: hug

 Category: V

 Interpretation: HUG

An example: the girl hugged the cat

Let us show how, with these assumptions, we can generate sentence (1):

 (1) The girl hugged the cat.

With this grammar, we derive the following pruned syntactic tree:

 IP All complements are to the right

 of their head.

 DP I' D takes an NP complement.

 V takes a DP complement.

D NP I VP I takes a VP complement.

 Specifiers are to the left of their head.

the girl e V DP I' takes a DP specifier.

 hug D NP

 the cat

Semantic interpretation:

cat → CAT ( CON<e,t>)

hence: [NP cat] → CAT

the → λP.σ(P)

D is the head of D', the relation is complementation, hence D is the function. Thus we get:

[D' the cat] → APPLY[λP.σ(P),CAT] = σ(CAT)

This is also the interpretation of the DP (inheritance).

hug → HUG ( CON<e,<e,t>>)

V is the head of V', the relation is complementation, hence V is the function. Thus we get:

[V' hug the cat] → APPLY[HUG,σ(CAT)] = (HUG(σ(CAT)))

This is also the interpretation of the VP.

e → λP.P

I is the head of I', the relation is complementation, hence I is the function. Thus we get:

[I' hug the cat] → APPLY[λP.P, (HUG(σ(CAT)))]

 = (HUG(σ(CAT)))

girl→ GIRL ( CON<e,t>)

15

hence: [NP girl] → GIRL

the → λP.σ(P)

D is the head of D', the relation is complementation, hence D is the function. Thus we get:

[D' the girl] → APPLY[λP.σ(P),GIRL] = σ(GIRL)

This is also the interpretation of the DP.

I' is the head of IP, the relation is specification, hence I' is the function. Thus we get:

[IP the girl hug the cat] → APPLY[(HUG(σ(CAT))),σ(GIRL)] =

 HUG(σ(GIRL),σ(CAT))

We have now set up the grammar in such a way that the language specific semantic

assumptions are reduced to a minimum: just the meaning of the lexical items is specified by

the language.

But now we have to face the fact that we will get massive type mismatch. We see that

when we look at the adjective case discussed earlier, and also when we add the universal

determiner every to the language:

 Universal determiners: D → <<e,t>,<<e,t>,t>>

Lexical items:

 Lexical item: young

 Category: A

 Interpretation: YOUNG

 Lexical item: every

 Category: D

 Interpretation: λQλP.x[Q(x) → P(x)]

The tree we got for young cat was:

 NP

 AP NP

 │ │

 young cat

The AP is an NP modifier. In modifier constructions the modifier is the function. Thus the

semantic interpretation for this tree is:

 APPLY[YOUNG,CAT] where YOUNG, CAT  CON<e,t>

We have a type mismatch: the interpretation of the AP should be a function taking the

interpretation of the NP as an argument, and it isn't.

16

Similarly, we get the following syntactic structure for sentence (2):

 (2) Every girl hugged the cat.

 IP All complements are to the right

 of their head.

 DP I' D takes an NP complement.

 V takes a DP complement.

D NP I VP I takes a VP complement.

 Specifiers are to the left of their head.

every girl e V DP I' takes a DP specifier.

 hug D NP

 the cat

The subject DP gets the following interpretation.

D takes an NP complement, hence the interpretation of D is a function which applies to the

interpretation of NP, and we get, as usual, a generalized quantifier:

[DP every girl] → λP.x[GIRL(x) → P(x)] of type <<e,t>,t>

The interpretation of I' was HUG(σ(CAT)) of type <e,t>.

I' takes a DP specifier, its interpretation is a function on the interpretation of the DP, so we

get as the interpretation of the IP:

 APPLY[HUG(σ(CAT)), λP.x[GIRL(x) → P(x)]]

Again, we have a type mismatch: the interpretation of the I' should be a function taking the

interpretation of the DP as an argument, and it isn't.

Now we are ready to introduce the idea of type shifting. The idea behind the framework of

type driven interpretation is that the semantic interpretation can indeed lead to type mismatch.

In the case of type mismatch, the interpretation blocks (or crashes, as we now say), unless

the type mismatch can be resolved.

What we add to the grammar, in this approach, is a mechanism for resolving type

mismatch. This mechanism is called a type shifting theory, and it consists of a set of type

shifting operations:

 A type shifting operation from type a to type b is an operation SHIFT which takes

 any expression α of type a and maps it onto an expression SHIFT[α] of type b.

 A type shifting theory is a set of type shifting operations, containing for each type a,

 the following trivial type shifting operation:

 ID:a → a

17

 ID[α] = α

(Allowing identity as a typeshifting rule simplifies the general definitions.)

Resolving type mismatch works as follows.

Before we assumed that:

 APPLY[α,β] = (α(β))

But that means, in the present context of type mismatch, that we get an unwellformed

expression, i.e. something that isn't an expression. Rather than assuming that, we redefine

the notion APPLY (and similarly the other operations used in the grammar).

The idea is that the type shifting theory associates with the operation of APPLY and any α

and β a set TS[APPLY,α,β,a] of solutions of the type mismatch of type a. We define:

 TS[APPLY,α,β,a] =

 { ((r(α))((s(β))))  EXPa: r,s  TS}

In general, if the type shifting theory allows more than one resolution for the type mismatch,

we will need a theory ranking resolutions and chosing the highest ranking one. In practice,

for the purpose of these lecture notes we will only assume typeshifiting theories which are

declarative in that the type mismatch can be resolved in only one way, if at all.

So, the idea of type driven interpretation is that you interpret everything as low as you can.

In such a theory you may well get to a situation where you have a type mismatch:

 A τ(A) APPLY[f,a] ?

 f=β

 B C τ(B) τ(C) a=γ β γ

Solving the type mismatch is a bit like solving a little jigsaw puzzle.

We have the interpretations of B and C given (derived).

We may well have the type of the interpretation of A already given (for independent

grammatical reasons).

It may well be given which basic operation must apply here, say functional application (also

for independent grammatical reasons),

and it may well be given which is the function and which is the argument, say, specified as

above.

Above, we set up our little grammar in such a way that this was given by independent

grammatical reasons (but you may not want to follow me in that and change the grammar).

In this context, the type mismatch is resolved if you can find in the type shifting theory a

solution for APPLY[β,γ].

We will build the declarative search for a solution into the definition of generalized

application APPLY. (This is done to get a procedure that is easy to work with for you!)

18

 Generalized functional application: APPLY

 1. If α  EXP<a,b> and β  EXPa then:

 APPLY[α,β] = (α(β))

 If the condition in (1) doesn't hold then:

 2. If r  TS and r[α]  EXP<a,b> and β  EXPa then:

 APPLY[α,β] = (r[α](β))

 If the conditions in (1) and (2) do not hold then:

 3. If s  TS and α  EXP<a,b> and s[β]  EXPa then:

 APPLY[α,β] = α(s[β])

 If the conditions in (1) - (3) do not hold then:

 4. if r,s  TS and r[α]  EXP<a,b> and s[β]  EXPa

 and r[α](s[β]) is the minimal solution, then:

 APPLY[α,β] = r[α](s[β])

 If the conditions in (1)-(4) do not hold then

 APPLY[α,β] is undefined.

Let us now give the (starting) type shifting theory. For the moment it consists of four type

shifting rules. For notational simplicity, I will collapse the names of the operations, and call

all of them: LIFT.

 Type shifting: LIFT

 Let P  VAR<e,t>, T  VAR<<e,t>,t>, x,y  VARe

 1. Argument lift.

 LIFT:EXPe → EXP<<e,t>,t>

 LIFT[α] = λP.P(α)

 2. Subject lift.

 LIFT:EXP<e,t> → EXP<<<e,t>,t>,t>

 LIFT[α] = λT.T(α)

 3. Object lift.

 LIFT:EXP<e,<e,t>> → EXP<<<e,t>,t>,<e,t>>

 LIFT[α] = λTλx.T(λy.[α(y)](x))

 4. Adjunct lift.

 LIFT:EXP<e,t> → EXP<<e,t>,<e,t>>

 LIFT[α] = λPλx.P(x)  α(x)

19

[In all cases, we impose a condition that the variables specified do not occur free in α]

The content of the operations (1)-(3) is familiar by now:

Argument lift lifts a proper name α to an expression denoting the set of all properties of α.

Subject lift lifts an intransitive verb to an expression denoting the property which a set of

properties X has iff α is one of the properties in that set X.

Object lift lifts a transitive verb to an expression denoting the relation between individuals x

and sets of properties X which obtains iff the property of being α-ed by x is one of the

properties in that set of properties X.

Finally, adjunct lift lifts the predicative adjective to the intersective prenominal

interpretation.

We see then that we can now see the operation APPLY as a generalization of functional

application.

Functional application, as an operation, requires that the type of the function and the type of

the arguments match (<a,b> + a ==> b).

The operation APPLY can apply to a function and an argument even if the types of function

and argument do not match,

as long as either the result of lifting the function matches the argument (and you apply the

lifted function to the argument) or the function matches the result of lifting the argument

(and you apply the function to the lifted argument).

The last case, where you lift both function and argument, you can forget about for the

moment, because we will not see an instance of that until much later, when we incorporate

Zimmermann's analysis of seek.

Since, we have given all our operations the same name, LIFT, (and since it can in our

examples always be determined which instance of LIFT is meant), the definition of APPLY

becomes:

20

 Generalized functional application: APPLY

 1. If α  EXP<a,b> and β  EXPa then:

 APPLY[α,β] = (α(β))

 If the condition in (1) doesn't hold then:

 2. If LIFT[α]  EXP<a,b> and β  EXPa then:

 APPLY[α,β] = (LIFT[α](β))

 If the conditions in (1) and (2) do not hold then:

 3. If α  EXP<a,b> and LIFT[β]  EXPa then:

 APPLY[α,β] = α(LIFT[β])

 If the conditions in (1) - (3) do not hold then:

 4. if LIFT[α]  EXP<a,b> and LIFT[β]  EXPa

 and LIFT[α](LIFT[β]) is the minimal solution, then:

 APPLY[α,β] = LIFT[α](LIFT[β])

 If the conditions in (1)-(4) do not hold then

 APPLY[α,β] is undefined.

Example: young cat

Let us come back to the example of the X-bar based grammar.

The only language specific assumptions we made were the specification of the lexical items,

and some decisions about the left-right order of heads. We generated a syntactic structure

for young boy. But the derivation got stuck because we got a type mismatch in:

 APPLY[YOUNG,CAT] where YOUNG, CAT  CON<e,t>

The type shifting theory LIFT and the new definition of APPLY, now tells us that this type

mismatch is resolved as follows:

 APPLY[YOUNG,CAT] =

 LIFT[YOUNG](CAT) =

 λPλx.P(x)  YOUNG(x) (CAT) =

 λx.CAT(x)  YOUNG(x)

Similarly, in the derivation of sentence (2):

 (2) Every girl hugged the cat

we got stuck, because at the level of the interpretation of the IP we got the type mismatch:

21

 APPLY[HUG(σGIRL), λP.x[GIRL(x) → P(x)]]

Again, this type mismatch now gets resolved as follows:

 APPLY[HUG(σCAT), λP.x[GIRL(x) → P(x)]] =

 LIFT[HUG(σCAT)] (λP.x[GIRL(x) → P(x)]) =

 λT.T(HUG(σCAT)) (λP.x[GIRL(x) → P(x)]) =

 λP.x[GIRL(x) → P(x)] (HUG(σCAT)) =

 x[GIRL(x) → HUG(σCAT) (x)] =

 x[GIRL(x) → HUG(x,σCAT)]

22

3.4. A little grammar

In this fragment we give the basic analysis of noun phrases, intransitive verb phrases,

(extensional) transitive verb phrases and the transitive verb be. For be we will at first follow

Montague’s analysis, and change that in a later chapter.

The categories of our fragment are D,N,V,I:

 D,N,V,I  CAT

The type assignments to the categories are as follows:

 D → e, <<e,t>,e>, <<e,t>,<<e,t>,t>>

 N → <e,t>

 V → <e,t>, <e,<e,t>>

 I → <<e,t>,<e,t>>

Complements and specifiers are just as before. We specify:

 <D,N>,<V,D>,<I,V>  COMPENGLISH

 <I,D>  SPECENGLISH

And we specify:

 for all <X,Y>  COMPE: COMP[X,Y] =E l

 for all <X,Y>  SPECE: SPEC[X,Y] =E r

The grammar contains the following lexical items:

Let RONYA, ANNA  CONe, CAT, GIRL, PURR  CON<e,t>,

HUG  CON<e,<e,t>> x,y  VARe, P,Q  VAR<e,t>.

 Lexical item: ronya

 Category: D

 Interpretation: RONYA

 Lexical item: anna

 Category: D

 Interpretation: ANNA

 Lexical item: the

 Category: D

 Interpretation: λP.σ(P)

 Lexical item: every

23

 Category: D

 Interpretation: λQλP.x[Q(x) → P(x)]

 Lexical item: a

 Category: D

 Interpretation: λQλP.x[Q(x)  P(x)]

 Lexical item: no

 Category: D

 Interpretation: λQλP.¬x[Q(x)  P(x)]

 Lexical item: cat

 Category: N

 Interpretation: CAT

 Lexical item: girl

 Category: N

 Interpretation: GIRL

 Lexical item: purr

 Category: V

 Interpretation: PURR

 Lexical item: hug

 Category: V

 Interpretation: HUG

 Lexical item: be

 Category: V

 Interpretation: λyλx.x=y

 Lexical item: e

 Category: I

 Interpretation: λP.P

The semantic interpretation is specified as before. In non-branching cases we get identity, in

branching cases APPLY[f,a], where f is the head in complementation and specification, and

the non-head in modification.

24

EXAMPLES

In all the following examples I will take alphabetic variants where useful, without

mentioning it.

(1) Ronya purrs

From the lexical items ronya, e and purr we generate:

 <DP, RONYA> <I, λP.P> <VP, PURR>

 │ │ │

 ronya e purr

The I takes the VP as a complement, which gives:

< I' , APPLY[λP.P, PURR]>

 I VP

│ │

e purr

APPLY[λP.P, PURR]

= λP.P[PURR] [def. APPLY]

= PURR [λ-conversion]

So we get:

< I' , PURR>

 I VP

│ │

e purr

The I' takes the DP as a specifier, which gives:

< IP , APPLY[PURR, RONYA]>

 DP I'

 │

ronya I VP

 │ │

25

 e purr

APPLY[PURR, RONYA]

= PURR(RONYA) [def. APPLY]

So we get:

< IP , PURR(RONYA)>

 DP I'

 │

ronya I VP

 │ │

 e purr

26

(2) Every cat purrs.

From the lexical items every and cat we get:

< D , λQλP.x[Q(x) → P(x)]> <NP, CAT>

 │ │

 every cat

The determiner takes the NP as a complement:

 DP

 D NP

So we get:

< DP , APPLY[λQλP.x[Q(x) → P(x)], CAT]>

D NP

│ │

every cat

APPLY[λQλP.x[Q(x) → P(x)], CAT]

= λQλP.x[Q(x) → P(x)] (CAT) [def. APPLY]

= λP.x[CAT(x) → P(x)] [λ-con.]

So we get:

< DP , λP.x[CAT(x) → P(x)]>

D NP

│ │

every cat

This DP can be the specifier of the following I':

< I' , PURR>

 I VP

│ │

e purr

27

So we get:

< IP , APPLY[PURR, λP.x[CAT(x) → P(x)]]>

 DP I'

 D NP I VP

 │ │ │ │

every cat e purr

APPLY[PURR, λP.x[CAT(x) → P(x)]]

= LIFT[PURR] (λP.x[CAT(x) → P(x)]) [def. APPLY]

= λT.T(PURR) (λP.x[CAT(x) → P(x)]) [def. LIFT]

= λP.x[CAT(x) → P(x)] (PURR) [λ-con.]

x[CAT(x) → PURR(x)] [λ-con.]

So we get:

< IP , x[CAT(x) → PURR(x)]>

 DP I'

 D NP I VP

 │ │ │ │

every cat e purr

28

(3) Anna hugs Ronya.

from the lexical items hug and ronya we get:

< V, HUG> <DP, RONYA>

 │ │

 hug ronya

The transitive verb can take the DP as a complement, V' and VP get identified, and we get:

< VP , APPLY[HUG, RONYA]>

 V DP

 │ │

hug ronya

APPLY[HUG, RONYA]

= HUG(RONYA) [def. APPLY]

So we get:

< VP , HUG(RONYA)>

 V DP

 │ │

hug ronya

I takes the VP as a complement:

< I' , APPLY[λP.P, HUG(RONYA)]>

 I VP

│

e V DP

 │ │

 hug ronya

which is:

< I' , HUG(RONYA)>

 I VP

29

│

e V DP

 │ │

 hug ronya

This I' can take as a specifier:

 <DP, ANNA>

 │

 anna

which gives:

< IP , APPLY[HUG(RONYA), ANNA]>

 DP I'

 │

anna I VP

 │

 e V DP

 │ │

 hug ronya

APPLY[HUG(RONYA), ANNA]

= [HUG(RONYA)](ANNA) [def. APPLY]

= HUG(ANNA, RONYA) [rel. notation]

So we get:

< IP , HUG(ANNA, RONYA)>

 DP I'

 │

anna I VP

 │

 e V DP

 │ │

 hug ronya

30

(4) Every girl hugs Ronya

Above we have given the derivation of the DP every cat, so similarly we get every girl:

< DP , λP.x[GIRL(x) → P(x)]>

D NP

│ │

every girl

Also above we have given the derivation of the I' hug Ronya:

< I' , HUG(RONYA)>

 I VP

│

e V DP

 │ │

 hug ronya

This I' can take this DP as a specifier, and we get:

< IP , APPLY[HUG(RONYA), λP.x[GIRL(x) → P(x)]>

 DP I'

D NP I VP

│ │ │

every girl e V DP

 │ │

 hug ronya

APPLY[HUG(RONYA), λP.x[GIRL(x) → P(x)]

= LIFT[HUG(RONYA)] (λP.x[GIRL(x) → P(x)]) [def. APPLY]

= λT.T(HUG(RONYA)) (λP.x[GIRL(x) → P(x)]) [def. LIFT]

= λP.x[GIRL(x) → P(x)] (HUG(RONYA)) [λ-con]

= x[GIRL(x) → [HUG(RONYA)](x)] [λ-con]

= x[GIRL(x) → HUG(x, RONYA)] [rel. notation]

31

So we get:

< IP , x[GIRL(x) → HUG(x,RONYA)] >

 DP I'

D NP I VP

│ │ │

every girl e V DP

 │ │

 hug ronya

32

(5) Anna hugs every cat.

The derivation of the DP every cat was given above:

< DP , λP.x[CAT(x) → P(x)]>

D NP

│ │

every cat

The V hug takes this as a complement, and we get:

< VP , APPLY[HUG, λP.z[CAT(z) → P(z)]] >

 V DP

 │

hug D NP

 │ │

 every cat

APPLY[HUG, λP.z[CAT(z) → P(z)]]

= LIFT[HUG] (λP.z[CAT(z) → P(z)]) [def APPLY]

= λTλx.T(λy.[HUG(y)](x)) (λP.z[CAT(z) → P(z)]) [def LIFT]

= λx.[λP.z[CAT(z) → P(z)]](λy.[HUG(y)](x)) [λ-con]

= λx.z[CAT(z) → [λy.[HUG(y)](x)](z)] [λ-con]

= λx.z[CAT(z) → [HUG(z)](x)] [λ-con]

= λx.z[CAT(z) → HUG(x,z)] [rel not]

So we get:

< VP , λx.z[CAT(z) → HUG(x,z)] >

 V DP

 │

hug D NP

 │ │

 every cat

33

I takes this VP as a complement, the semantics is, as usual identity, and we get:

< I' , λx.z[CAT(z) → HUG(x,z)] >

 I VP

│

e V DP

 │

 hug D NP

 │ │

 every cat

This I' can take the DP anna as a specifier, which gives:

< IP , APPLY[λx.z[CAT(z) → HUG(x,z)], ANNA] >

 DP I'

 │

anna I VP

 │

 e V DP

 │

 hug D NP

 │ │

 every cat

APPLY[λx.z[CAT(z) → HUG(x,z)], ANNA]

= λx.z[CAT(z) → HUG(x,z)] (ANNA) [def APPLY]

= z[CAT(z) → HUG(ANNA, z)] [λ-con]

So we get:

< IP , z[CAT(z) → HUG(ANNA, z)] >

 DP I'

 │

anna I VP

 │

 e V DP

 │

34

 hug D NP

 │ │

 every cat

We will now discuss some examples which show the essence of Montague's analysis of the

verb be.

(7) Ronya is the cat.

From the lexical items the and cat, we get:

< D, λP.σ(P)> < NP, CAT>

 │ │

 the cat

And this gives the DP:

< DP , APPLY[λP.σ(P), CAT]>

D NP

│ │

the cat

APPLY[λP.σ(P), CAT]

= λP.σ(P)(CAT) [by def. APPLY]

= σ(CAT) [by λ. conversion]

The lexical item for be gives us:

< V, λyλx.x=y>

 │

 be

The transitive verb be takes the DP as a complement, and we get:

< VP , APPLY[λyλx.x=y, σ(CAT)]>

 V DP

 │

be D NP

 │ │

 the cat

35

APPLY[λyλx.x=y, σ(CAT)]

= λyλx.x=y (σ(CAT)) [def APPLY]

= λx.x=σ(CAT) [λ-con]

So we get:

< VP , λx.x=σ(CAT)>

 V DP

 │

be D NP

 │ │

 the cat

This gives the I':

< I' , λx.x=σ(CAT)>

I VP

│

e V DP

 │

 be D NP

 │ │

 the cat

This I' takes the DP ronya as a specifier, and we get:

< IP , APPLY[λx.x=σ(CAT), RONYA]>

 DP I'

 │

ronya I VP

 │

 e V DP

 │

 be D NP

 │ │

 the cat

APPLY[λx.x=σ(CAT), RONYA]

= λx.x=σ(CAT)(RONYA) [def APPLY]

= RONYA=σ(CAT) [λ-con]

So we get:

36

< IP , RONYA=σ(CAT)>

 DP I'

 │

ronya I VP

 │

 e V DP

 │

 be D NP

 │ │

 the cat

37

(8) Ronya is a cat.

From the lexical item a we get:

< D, λQλP.x[Q(x)  P(x)]>

 │

 a

This takes the NP cat as a complement, and we get the DP:

< DP , APPLY[λQλP.z[Q(z)  P(z)], CAT]>

 D NP

 │ │

 a cat

APPLY[λQλP.z[Q(z)  P(z)], CAT] [def. APPLY]

= λQλP.z[Q(z)  P(z)](CAT) [λ-con.]

=λP.z[CAT(z)  P(z]

So we get:

< DP , λP.z[CAT(z)  P(z)]>

 D NP

 │ │

 a cat

The transitive verb be takes this as a complement, and we get:

< VP , APPLY[λyλx.x=y, λP.z[CAT(z)  P(z)]>

 V DP

 │

be D NP

 │ │

 a cat

APPLY[λvλu.u=v, λP.z[CAT(z)  P(z)]]

38

= LIFT[λvλu.u=v] (λP.z[CAT(z)  P(z)]) [def APPLY]

= λTλx.T(λy.[[λvλu.u=v](y)](x)) (λP.z[CAT(z)  P(z)]) [def LIFT]

= λTλx.T(λy.[λu.u=y](x)) (λP.z[CAT(z)  P(z)]) [λ-con]

= λTλx.T(λy.x=y) (λP.z[CAT(z)  P(z)]) [λ-con]

= λx.[λP.z[CAT(z)  P(z)]](λy.x=y) [λ-con]

= λx.z[CAT(z)  [λy.x=y](z)] [λ-con]

= λx.z[CAT(z)  x=z] [λ-con]

= CAT [see below]

The last equivalence may require some comment:

This reduction holds because of the following obvious classical logical tautologies:

-If you're a cat, then there is something that is a cat and that is identical to you.

-If there is something that is a cat and that is identical to you, then you are a cat.

Given this:

 λx.z[CAT(z)  x=z] = CAT [extensionality]

So we get:

< VP , CAT>

 V DP

 │

be D NP

 │ │

 a cat

We get the I':

< I' , CAT>

I VP

│

e V DP

 │

 be D NP

 │ │

 a cat

39

This takes the DP ronya as a specifier, and we get:

< IP , APPLY[CAT, RONYA]>

 DP I'

 │

ronya I VP

 │

 e V DP

 │

 be D NP

 │ │

 a cat

APPLY[CAT, RONYA]

= CAT(RONYA) [def APPLY]

So we get:

< IP , CAT(RONYA)>

 DP I'

 │

ronya I VP

 │

 e V DP

 │

 be D NP

 │ │

 a cat

We see that while be is interpreted unambiguously as the identity relation, we derive

nevertheless an identity meaning in (7), but a predicative meaning in (8). Moreover, we get

a inclusive reading in (9):

 (9) Every whale is a mammal.

be a mammal gets interpretation MAMMAL.

40

Hence, every whale is a mammal will be derived in the same way from here as every cat

purrs and it will be derived with meaning:

 x[WHALE(x) → MAMMAL(x)]

Thus whereas earlier philosophical literature (e.g. Hintikka) claimed that be was ambiguous,

even threeway ambiguous,

Hintikka assumed a be of identity, a be of predication, and a be of subset:

(10 Whales are mammals WHALE ⊆ MAMMAL

Montague gave a unified analysis for all three readings: identity, predication., subset.

He didn’t talk about the subset reading, but if we assume that the generic in (10) is similar to

(9), then it is not reasonable to encode the subset properties of the generic in the meaning of

be rather than in an implicit generic operation.

One problem with Montague's analysis is that it is too general.

The grammar produces unproblematically sentence (11) with meaning (11'):

 (11) Anna is every professor.

 (11') x[PROFESSOR(x) → x=ANNA]

The problem is that (11) is not a felicitous sentence.

Now, of course, in every situation where there is more than one professor, (11') is

systematically false. So maybe that is why it is infelicitous.

The problem is that also in a situation where there is exactly one professor, Anna, uttering

(11) is infelicitous, but (11') is true.

This problem is discussed in Partee 1987. We will discuss it further in a later chapter.

As Partee argues, the problem is part of a more general problem with the analysis:

be is not a transitive verb, but a copula (an I element).

And it isn’t clear that we want to interpret be as identity, because we get the same

interpretations in languages where the copula is null,

and assigning real lexical content to a null copula is something we want to avoid.

 These problems are addressed in a special part of the type shifting theory call the

Partee Triangle, and we will discuss this later.

41

3.5 Typeshifting theories.

I would like to present you with a general theory of typeshifting principles. But I don't have

such a theory. Not that such theories don't exist. A lot of work has been done in categorial

grammar on developing a logical perspective on typeshifting theories.

The basics of this you can see in the principle of functional application:

 α β (α(β))

 <a,b> + a → b

This type combination principle looks much like the logical principle of modus ponens, and

indeed the interpretation of type combination as a type inference principle forms the basis of

the general logical perspective of categorial grammar:

 a grammatical <a,b>-interpretation for α and a grammatical a-interpretation for β,

 derive a grammatical b-interpretation for the complex.

Type shifting principles similarly are interpreted as principles deriving grammatical

interpretations on different types.

 α λP.P(α)

 a → <a,<a,t>>

 a grammatical a-interpretation for α, derives a grammatical <a,<a,t>> interpretation

 for α as well.

In this perspective, you can then start to formulate logical grammars as systems of axiomas

(like the above type lifting rule) and derivation rules (like functional application, interpreted

as Modus Ponens on types.). In this way, logical axiom system forms the basis of deriving

complex type shifting rules, determining a grammar in a systematic way.

Very beautiful type shifting theories have been developed and studied in this framework.

However, it must also be admitted that, in relation to linguistic puzzles, the puzzles that

interest linguists most, such beautiful theories quite generally overgenerate considerably

(i.e. derive wrong structures with the right meanings, or right structures with wrong

meanings, or just wrong structures with wrong meanings, besides the beauties: right

structures with right meanings).

And the process of curtailing the overgeneralization leads to theories that are rather less

elegant and a lot more stipulative.

42

 I myself tend to treat typeshifting rules more on a one-to-one basis.

In the context of a particular linguistic puzzle, I try to show that a particularly elegant and

simple and cross-linguistically relevant type shifting operation can be used to solve my

problem. That counts, I would then argue, as linguistic support for that particular rule.

 So, it's not that I am against a general theory. I just don't have one, and I am more

concerned with trying to solve the problems, than with formulating a general architecture of

type shifting.

Note that I don't regard this as a virtue, something to be proud of, and I do think we need

more general thinking about type shifting theories, but it does seem to me that the general

theories I am familiar with get away from the linguistic details too easily.

 So, I don't have a theory, but at least I have a sort of field guide: how to recognize a

type shifting principle in the wild.

 Type shifting principles, as practiced in the field, come in four types.

1. Homomorphic typelifting.

This is, in essence, what Montague gave us, and what we have been developing here:

We use type shifting principles to define functions at a higher (resolution) type that do at the

higher type what the corresponding lower function does at the lower type.

2. Domain shifts.

There are many linguistic domains that are naturally paired, and that we assume are linked

via pairs of operators bringing you from the one to the other. These operators are often

regarded as type shifting or sort shifting operators.

-Mass-count

Coffee is a mass noun, the coffee in the cup denotes a mass object, stuff:

 ✓much coffee/#many coffee

 ✓much of the coffee in the cup/#many of the coffee in the cup.

Both, like each is a marker of count DPs: both is each on a domain of two; each in the boys

each sang a song distributes the predicate sang a song to the individual boys. The

'individual' parts of mass objects, if there are such, are not similarly available for the

distributitive operators each and both:

 (1). a. ✓The boys were both blond.

 b. #The mud was both brown/#The muds were both brown.

 c. ✓Both boys were bold/✓Both of the boys were blond.

 d. #Both mud(s) were brown/#Both of the mud(s) were brown.

But the mass object the coffee in the cup can shift to a count object as in (2b):

 (2) a. The coffee in the cup and the coffee in the pot weighed 150 grams.

 b. Both the coffee in the cup and the coffee in the pot contained strychnine.

As (2a) shows, we are grammatically able to regard the interpretation of the coffee in the cup

and the coffee in the pot as a single mass object, an object that weighs 150 grams.

43

But, as (2b) shows, we are also able to regard the interpretation of this expression as a

conjunction of two count objects, since both distributes the predicate contained Strychnine

to those two.

This means that we can shift the interpretation of the coffee in the pot from an interpretation

as a mass entity (stuff) to an interpretation as a count entity (a single object).

This shift is called packaging: treat a non-countable mass entity as a single countable count

entity.

The inverse shift is called grinding, and you find it in English for count nouns in contexts

that do not allow bare singular count nouns. Many of the more gruesome examples are due

to Geoffrey Pelletier, who has studied the phenomenon extensively (the second example is

from Rothstein 20??):

 (3) a. After the accident with the fan, there was chiwawa all over the wall.

 b. After the failed repair attempt, there was watch all over the table.

-Intensional-extensional: Individual concepts. I will only do intensionality in the next

chapter, but we discussed this in Foundations and gave a first introduction to the

operations of intensionalization ∧ and extensionalization ∨ .
These operations are generally taken to be type shifting operations.

Examples:

 CP

 C IP

that

In intensional contexts we want the type of the complement to be a proposition, which,

already in Foundations we assumed to be a function from worlds to truth values (a set of

worlds). Expressions denoting propositions are going to be of type <s,t> in the next chapter.

In the above case, we have a situation in which the IP is of type t and the CP is of type <s,t>.

This suggests that C should be of type <t,<s,t>>.

However, we will show in the next chapter that for solid logical reasons this cannot be the

right type. What we will argue is that the type of C is <<s,t>,<s,t>>, a function from

propositions to propositions and, in fact, that the meaning of that is trivial:

 that → λp.p with p ∈ VAR<s,t>, the identity function.

This is good, because that often is optional here.

But that means that there is a type mismatch: APPLY[λp.p, φ], where φ ∈ EXPt.

This type mismatch is resolved by taking intensionalization to be a type shifting operation:

 INT: a → <s,a>

 INT[α] = ∧α More details in the next chapter.

Now APPLY[λp.p, φ] resolves as λp.p(INT[φ]) = λp.p(∧φ) = ∧φ

The earlier discussion of Montague’s strategy suggests that we want to allow in certain cases

44

composition of type shifting rules to count as type shifting rules in their own right.

Thus, we have LIFT:e → <<e,t>,t> with LIFT[α] = λP.P(α)

But if we assume, with Montague, that the type of SEEK is <<s,<<e,t>,t>>, <e,t>>, then

APPLY[SEEK, RONYA] requires lifting RONYA not just to <<e,t>,t>, but to <s,<<e,t>,t>)>

The function that does that is:

 INT ∘ LIFT: e → <s,<<e,t>,t>>

 INT ∘ LIFT[α] = ∧λP.P(α) apply intensionalization after lifting to <<e,t>,t>

You see here the temptation of a logical theory of type shifting rules: All such theories that I

am familiar with, derive the composition of two type shifting rules as a type shifting rule

from the type shifting logic.

-sums and groups - collective/distributive interpretations

Such shifts have been proposed in Landman 1989 for dealing with the distinction between

collective and distributive readings of plural noun phrases.

(5) The boys met in the park and took off their clothes to swim.

Met in the park is a property of the boys as a group, while took off their clothes to swim is a

property that distributes to the individual boys. In the theory of Landman 1989, you can

shift between the boys as a singular group and the boys as a plurality, a sum, where the

latter associates with distributivity.

Here too there is a parallel with the mass-count case above:

(6) The boys and the girls separated and met in different rooms

 Here it is useful to regard the expression the boys and the girls as a sum of two groups, the

group of boys and the group of girls. This is a gridded interpretation, where distribution is

not to the individuals making up the totality of boys and girls, but to objects at an

intermediate level of grid.

-Kinds and stages of kinds – generic and episodic properties (Carlson 1977)

(7) Beavers build dams and kept me awake yesterday with their noise.

Carlson argues that the bare plural beavers in generic sentence (7) patterns on a battery of

tests with proper names and hence should be analyzed as names of entities, kinds.

He argues that there are two kinds of predicates relating to kinds: individual level predicates

like the generic predicate build dams, which are properties of the kind, and stage level

predicates or episodic predicates which relate the kind to its instances, which Carlson calls

stages of the kind: kept me awake yesterday is a predicate of individuals, but in the

conjunction is predicated of beavers, which denotes a kind.

Type shifting allows us to derive a predicate of kinds:

 The property that a kind has if some of its instances kept me awake last night.

Notice that the semantic analysis of the generic is much more complex. When we state that

beavers build dams, there is of course a relation between dam building and the instances of

45

the kind, but that is not a straightforward relation.

 Dogs have four legs ~ All [non-exceptional] dogs have four legs.

 Frenchmen eat horsemeat ~ Some [not so exceptional] frenchmen eat horsemeat

 Mary deals with letters from Antarctica ~ If ever there are letters from Antarctica,

 which there have never been, Mary would deals with them.

This is different from episodic readings, which are just existential instantiations.

3. The Partee triangle

Partee discusses the set of type shifting principles potentially involved in relating the

argument types e and <<e,t>,t> to each other and to the predicate type <e,t>.

More discussion in a later chapter.

Note that the shifts involved in domain-shift are quite often not interpreted as principles to

resolve mismatches, but more as free principles that allow, in the appropriate contexts, shift

freely. But see Rothstein 2011 (Riga paper) for arguments that grinding in English be

regarded as a mismatch resolution principle.

4. Grammatical Relations (in the sense of Dowty 1982).

These are in many ways among the most interesting candidates for type shifting principles

(in particular in the context of type driven resolution).

Here we are concerned with:

-Operations that in essence come up in linguistic contexts again and again.

-Operations that are usually natural operations from a conceptual mathematical point of

view.

-Operations that arguably are operative in more than one linguistic domain (like both in the

verbal domain and in the nominal domain). In fact, operations that can be lexicalized in one

domain, but not in the other domain, but are semantically available in the other domain as

well.

-Operations that are arguably cross-linguistically relevant, and again, that are not lexicalized

in many languages, but that are lexicalized in others.

The most obvious examples are the interpretations of indefinite and of definite articles:

 -Existential closure: 

 -Definiteness: σ

Thus, for example many languages do not mark (in)definiteness or mark one of them, though

arguably, the semantic operations are operative. English marks definiteness in the

determiner system, but, as Polly Jacobson has argued, a natural analysis of English free

relatives (whoever stole my watch will be found/whoever returns my watch, gets a reward) is

to assume that they denote predicates of type <e,t>, and involve shifting to type e with type

shifting operation σ. Thus, in English relative clauses, σ would be available as a typeshifting

46

operation. It has been argued that this is the natural case in, say, Japanese.

In many domains, existential closure is the natural operation of projection.

 Thus, passive can be regarded as relating to the operation of converse in (8a) and of

first projection in (8b):

 (8) a. Mary was kissed by Jane (KISSC(JANE[by]))(MARY))

 b. Mary was kissed λx.y[KISS(x,y] (MARY)

(Landman 2004 uses conversion as a typeshifting operation in the context of the analysis of

definiteness effects.)

Identifying two arguments of a relation is another operation that is realized in different ways

in the grammar, via reflexive pronouns, clitics, lexical semantics, etc.

 reflexive: α → λx.α(x,x)

In fact, conjunction itself is a natural principle for a type shifting principle. Look at

predicate conjunction:

 λQλPλx.P(x)  Q(x)

To treat this as a type shifting principle, we only need to think of this as a function on the

first conjunct:

 α → λPλx.P(x)  α(x)

But this means that we naturally derive the adjunction typeshifting operation as an instance

of conjunction.

Another natural operation: in the theory of Link 1982, semantic plurality is the natural

operation of closure under sum (see below), and this too has been argued (eg. in Landman

2000) to be a type shifting operation for predicates that do not mark semantic plurality,

namely in the verbal domain.

 Similarly, many aspectual operators, low ones, shifting between verb classes, and

higher ones, like the perfect and the progressive have been studied as potentially type

shifting operations.

 In sum, what Dowty 1982 called grammatical relations are the natural domain to

look for typeshifting principles.

