
Abstract. This paper proposes a general framework for analyzing a class of
functions called social aggregators, which map profiles of linear orders to a
set of binary relations. This class of aggregators includes aggregators that
yield a preference relation (social welfare functions) and those which yield a
choice of an alternative (social choice functions). Equipped with this frame-
work, I identify a property called Preference Reversal (PR) such that any
Pareto efficient aggregator having this property must be dictatorial. This
allows me to state a general impossibility theorem, which includes Arrow’s
Theorem and the Gibbard Satterthwaite Theorem as two special examples.
Furthermore, I show that monotonicity and IIA are closely linked, by dem-
onstrating that both are actually special cases of PR in specific environments.

1 Introduction

The theory of social choice and welfare has extensively studied the aggrega-
tion of individual preferences or rankings. Two seminal results in this line of
inquiry are Arrow’s Theorem (Arrow ½1�) and the Gibbard-Satterthwaite
Theorem (Gibbard ½9� and Satterthwaite ½14�, henceforth, GS). These two
theorems investigate two particular types of ‘‘social aggregators’’: A social
welfare function (SWF ), which aggregates ‘‘private’’ rankings into a single
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‘‘social’’ preference relation (Arrow), and a social choice function (SCF ),
which aggregates ‘‘private’’ rankings into a single ‘‘social’’ choice (GS). Arrow
and GS introduce two separate frameworks, each geared at the particular
aggregator the authors consider, and two separate axioms, monotonicity and
IIA, establishing the following result: Any Pareto efficient SCF satisfying
monotonicity must be dictatorial, and any Pareto efficient SWF satisfying IIA
must be dictatorial as well.

Given the results of Arrow and GS, the question arises whether other
types of social aggregators with desirable properties must also be dictatorial.
Individual rankings of alternatives can be aggregated in several different
ways. For example, given a list of teachers’ ranking of students according to
their ability, we may be interested in a ‘‘fair’’ allocation of the students into
two universities, where by ‘‘fair’’ we mean that the students of one uni-
versity will not be ranked higher than the students in the other universities
according to the majority of the teachers. Such an aggregator does not yield
a preference relation or a set of alternatives, and therefore does not fit into
the frameworks of Arrow or GS. To analyze such non-standard social
aggregators one must use a framework which accommodates a broad class
of aggregators.

This paper proposes a general framework for analyzing a class of social
aggregators, which includes SCF ’s and SWF ’s. Equipped with this framework,
I identify a property called Preference Reversal (PR) such that any Pareto
efficient aggregator having this property must be dictatorial. This allows me
to state a general impossibility theorem, which includes Arrow’s Theorem and
the GS Theorem as two special examples. Furthermore, I show that mono-
tonicity and IIA are closely linked, by demonstrating that both are actually
special cases of PR in specific environments.

The first step towards a unified approach to aggregating individual
rankings is to speak of a single social aggregator (instead of one function
which chooses an alternative and one function which chooses a preference
ordering). In this paper a social aggregator assigns a binary relation to every
profile of rankings or preferences. Thus, a function which assigns a single
alternative to every preference profile is equivalent to a social aggregator
whose range consists of binary relations having the following property: For
every profile there is a single alternative a that relates to every other alter-
native, but no alternative distinct from a relates to any other alternative
(I denote this class of relations by R0 ). This binary relation can be interpreted
as follows: a relates to b if and only if a is the single chosen alternative.
Similarly, a function which assigns a preference ordering for every preference
profile is equivalent to a binary relation which satisfies completeness and
transitivity.

Given that we can speak of a single aggregator for both theorems, the next
step is to show that monotonicity and IIA can be replaced with a single
property: Preference Reversal (PR). This is shown in the two main results of
this paper:
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1. If there are at least three alternatives, then a monotonic social aggregator
satisfies PR if the range of binary relations is R0.

2. If there are at least three alternatives, then for binary relation satisfying
existence of a first best and acyclicality, any social aggregator that satisfies
Pareto efficiency and IIA must also satisfy PR.

From the above results follows a single impossibility theorem: If there are at
least three alternatives, then for binary relations satisfying acyclicality and
existence of a first best, any social aggregator which satisfies Pareto efficiency
and PR must be dictatorial. This theorem together with the two results quoted
above imply that Arrow’s Theorem and the GS Theorem are both special
cases of a single theorem. Note also that this single theorem relies on a social
choice function which maps preference profiles to binary relations which need
not be complete or asymmetric. Thus, it may be possible to show that
impossibility results for correspondences (see Barberá et al. ½5� and Benoı̂t ½6�)
are also special cases of this one theorem.

2 Related literature

Ever since the two theorems of Arrow and GS have been written there has
been a growing feeling in the profession that these two theorems are closely
connected. Early attempts to connect the two theorems relied on Muller-
Satterthwaite ½11� who showed that strongly monotonic social choice func-
tions must be dictatorial (see Moulin ½10� and Peleg ½12�).

The last couple of years have seen a revival of interest in the two classical
theorems of Arrow and GS. The recent comeback of Arrow and GS was
largely inspired by Geanakoplos [8], who found an ingenious procedure to
simplify the proof of Arrow’s Theorem. Roughly speaking, Geanakoplos’s
insight was that a dictator can be identified by making a series of changes in a
profile of identical preferences. Following Geanakoplos [8], Benoı̂t [7] showed
that Geanakoplos’s procedure can be adapted to provide a simple and elegant
proof of GS. Most recently Reny [13] demonstrated that Geanakoplos’s idea
can be used to construct a single step-by-step procedure with which one can
prove both theorems. Our proof of Theorem 1 relies on Reny’s adaptation of
Geanakoplos’s procedure.

Another line of recent research, which includes Sen [15] and Svensson [16],
uses a different approach to provide a simple direct proof of GS. This
approach, which builds on a technique that was introduced in Barberà [3] and
in Barberá and Peleg [4], relies on induction on the number of individuals.

Despite the works cited above there still remains a gap between the two
theorems in the sense that the two are treated separately. That is, all previous
works have used two separate frameworks to prove two separate theorems:
(1) If a function that assigns a single alternative to a profile of preferences
(a social choice function, SCF ) satisfies monotonicity and Pareto efficiency,
then this function must be dictatorial (Gibbard-Satterthwaite), and (2) If a
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function that assigns a preference ordering to a profile of preferences (a social
welfare function, SWF ) satisfies Independence of Irrelevant Alternatives (IIA)
and Pareto efficiency, then this function must be dictatorial (Arrow). Thus,
although Reny uses the same method of proof for both theorems, each the-
orem is based on two separate sets of definitions and two distinct pairs of
properties: Pareto efficiency and monotonicity for Arrow and Pareto effi-
ciency and IIA for GS.

An exception to the above is a recent paper by Barberà [2]. This paper
proves a general theorem on preference aggregation, which implies, as cor-
ollaries, the two theorems of Arrow and GS, as well as other well known
results in social choice theory. In that sense, the paper by Barberà emphasizes,
as my paper does, the fact there is an underlying meta-theorem from which
Arrow and GS are obtained as special cases. However, the approach taken by
Barberà is completely different than the one that I take in this paper. In
particular, Barberà does not rely on the Geanakoplos procedure. Instead,
Barberà builds on his earlier works cited above to show that if one agent can
affect the outcome of the aggregation process ‘‘locally’’, i.e., at some profile,
then he must be able to affect the outcome ‘‘globally’’, i.e., at any profile. For
further details, the reader is encouraged to consult this paper.

3 The framework

Let A denote a finite set of at least three alternatives. Consider a set N of n � 3
individuals. Let �¼ �1; . . . ;�nð Þ, a profile of n strict linear orders on A, and
let P denote the set of all such profiles. We interpret � to be the profile of
preferences of the members of N . Let R denote a set of binary relations on A.
Note that R need not be complete. An element in R will be denoted by R.
Given some R 2 R and a; b 2 A the notation aRb means that a relates to b
according to the binary relation R. A function F : P ! R will be called a
social aggregator. Given a pair of alternatives a; b 2 A and a preference profile
�2 P I will write aF �ð Þb for ‘‘a relates to b when the preference profile is �’’,
and a7 F �ð Þb for ‘‘a does not relate to b when the preference profile is �’’. I
will refer to the binary relation F ð�Þ between any two alternatives a and b as
the ‘‘social relation’’ between those two alternatives.

3.1 Properties of binary relations

Special examples of social aggregators can be obtained by imposing restric-
tions on the set of binary relations R. Consider the following properties of
binary relation sets:

(1) Acyclicality (AC): For all R 2 R and for every three alternatives a; b and c
in A, if aRb and c7Rb, then c7Ra.

(2) Completeness (C): For all R 2 R and for every pair of alternatives a; b 2 A,
either aRb or bRa or both.
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(3) Existence of a best alternative (BA): For all R 2 R there exists an alter-
native a 2 A such that aRb for every b 2 Anfag.

To see the relation between social aggregators and SCF and SWF we need to
specify the domain R. If R satisfies AC, BA and C, then the social aggregator
F : P ! R is equivalent to a SWF . Consider next the domain R0 consisting of
the binary relations Ra ¼ fða; bÞ : b 2 Ag. That is, at Ra, a is the unique best
alternative and the other alternatives are not related. Note that R0 satisfies BA
and AC. The social aggregator F : P ! R0 is equivalent to a SCF . Thus, the
class of aggregators which I consider includes the two types of aggregators
studied by Arrow and GS.

3.2 Properties of aggregators

Social aggregators may have many different properties. Most of the literature
has concentrated on the following properties:

� PAR (Pareto efficiency) - For every pair of alternatives a and b in A, if every
individual i satisfies a �i b, then either aF ð�Þb and b7F ð�Þa, or a and b are
not related according to F ð�Þ.

� IIA (Independence of Irrelevant Alternatives) - If whenever the ranking of a
versus b is unchanged for each i ¼ 1; . . . ; n when individual i’s ranking
changes from �i to �0i , then the relation of a versus b is the same according
to both F ð�Þ and F ð�0Þ.

� MON (Monotonicity)- If a pair of profiles �;�02 P satisfies aF ð�Þx for all
x 2 Anfag, and a �0i b if a �i b for every individual i and for every alter-
native b 2 A, then aF ð�0Þx for all x 2 Anfag.

� D (dictatorship) - 9i 2 N such that 8 �2 P and 8a; b 2 A, b7F ð�Þa when-
ever a �i b .

There is some sense in which a society may be interested in using aggregators
that satisfy the first three properties, but not the fourth one. Since these
properties have been discussed extensively in the literature I will not discuss
their interpretations here.

Note that our definition of dictatorship differs from the standard defini-
tion when we do not restrict the domain R and the class of aggregators.
However, if we restrict R and F : P ! R such that the social aggregator
becomes equivalent to a SCF or to a SWF , then the two definitions coincide.
To see why, consider first the standard definition of a dictatorial SCF : a SCF
is said to be dictatorial if there is an individual i such that for any �2 P , an
alternative a is chosen if and only if a �i x for every x 2 Anfag. Recall that for
R ¼ R0, a social aggregator F : P ! R0 is equivalent to a SCF . We shall say
that F : P ! R0 satisfies DSCF if 9i 2 N such that 8 �2 P we have F ð�Þ ¼ Ra

if and only if a �i x for every x 2 Anfag.

Lemma 1. A social aggregator F : P ! R0 satisfies DSCF if and only if it
satisfies D.
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Proof. Clearly, if F satisfies DSCF , then it also satisfies D. Assume next that F
satisfies D and let i be the dictator. Consider first some �2 P for which a �i x
for every x 2 Anfag. From our choice of domain there must be some y 2 A
such that F ð�Þ ¼ Ry . By dictatorship, no x 2 Anfag can socially relate to a.
Therefore, F ð�Þ ¼ Ra. Consider next some �2 P for which F �ð Þ ¼ Ra. By D,
individual i cannot rank b above a. Therefore, a �i b. j

Consider next the standard definition of a dictatorial SWF : A SWF is
dictatorial if there is an individual i such that 8 �2 P and 8a; b 2 A, the SWF
ranks a above b whenever a �i b . Recall that a social aggregator F : P ! R is
equivalent to a SWF whenever the domain R satisfies AC, BA and C. The
aggregator F is said to satisfy DSWF if there is an individual i 2 N such that for
every �2 P and for every a; b 2 A, aF ð�Þb and b7F ð�Þa whenever a �i b.

3.3 Preference reversal

Consider two preference profiles �;�0 in P . Suppose a social choice function
F C chooses the alternative a for � but it chooses b for �0. Suppose also that
for � the social welfare function F W ranks a above b, but for �0 it reverses the
ranking. It seems reasonable to conclude that at least one individual raises b
above a when we move from � to �0:
9i such that a �i b and b �0i a ð�Þ

However, even if we assume that F C is monotonic and F W satisfies IIA,
condition (*) does not immediately follow: One must provide a proof that
indeed this condition holds. I therefore introduce a property of social
aggregators called Preference Reversal, such that if F C and F W were to satisfy
this property, then condition (*) would hold.

Definition 1. A social aggregator F satisfies Preference Reversal (PR) if for
every pair of alternatives a and b in A, if aF ð�Þb, b7F �ð Þa but bF ð�0Þa, then
there must be an individual i that satisfies a �i b and b �0i a.

Preference Reversal means that if the ‘‘social relation’’ between any two
alternatives has been reversed, then someone must have exhibited the same
reversal in his preferences. Thus, it is a property which is relatively easy to
describe in words. In the context of a social choice (where F is a SCF ), PRmeans
that wheneverwe replace one alternativewith another, then someonemust have
changed his preferences by preferring the latter to the former. In the context of a
social preference relation (where F is a SWF ), PRmeans thatwhenever the social
preference between a pair of alternatives has been reversed, then there must be
someone who exhibited the same preference reversal.

4 A single theorem

This section presents the main results which imply that Arrow’s Theorem and
the GS Theorem are both special cases of a single theorem.
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Proposition 1. A monotonic social aggregator F : P ! R0 satisfies PR.

Proof. Consider some monotonic social aggregator F : P ! R0. Let �;�02 P
be a pair of preference profiles with the following property: There is a pair of
distinct alternatives, a and b, that satisfy aF ð�Þx for all x 2 Anfag and
bF ð�0Þy for all y 2 Anfbg. Assume the following:

9= i 2 N satisfying a �i b and b �0i a ðAÞ
Consider a profile �002 P with the property that for all i,

If a �ib; then a �00i b �00i x for all x 2 Anfa; bg
If b �ia; then b �00i x and a �00i x for all x 2 Anfa; bg and �00i jfa;bg¼�0ijfa;bg

Note that �00 is well defined since by ðAÞ, it is never the case that a �i b and
b �0i a for some i 2 N .

When we move from � to �00 none of the individuals lower a in their
ranking. Thus, by MON , aF ð�00Þx for all x 2 Anfag. Note also that when we
move from �0 to �00none of the individuals lower b in their ranking. Thus, by
MON , bF ð�00Þx for all x 2 Anfbg. It follows that aF ð�00Þb and bF ð�00Þa, in
contradiction to the definition of R0. j

Proposition 2. If R satisfies AC, BA and C, then any social aggregator that
satisfies PAR and IIA also satisfies PR.

Proof. Let R satisfy AC, BA and C. Let F be a social aggregator that satisfies
PAR and IIA. Assume F violates PR. Then there exist a pair of profiles � and
��and a pair of elements a and b that satisfy the following:

(P1) aF ð�Þb and b7F ð�Þa
(P2) bF ð��Þa
(P3) 9= i 2 N who satisfies a �i b and b ��i a

If the social relation between a and b changes when the preference profile
changes from � to ��, then by IIA there must be at least one individual j 2 N
who changes his ranking of a versus b when his preference relation changes
from �j to ��j . By (P3), j must satisfy:

b �j a but a ��j b ð1Þ

If aF �ð Þb but b �j a, then by PAR there must be some other individual k who
satisfies a �k b. By (P3), this individual must satisfy a ��k b. Thus,

a �k b and a ��k b ð2Þ
As both j and k rank a above b in the profile ��, then from PAR in order for
bF ��ð Þa there must be yet another individual l=2fj; kg who satisfies b ��l a. By
(P3) this individual must satisfy b �l a. Thus,

b �l a and b ��l a ð3Þ
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From (3)–(5) we can represent the relative rankings of a versus b by indi-
viduals j, k and l according to � and ��:

�j �k �‘
b a b
a b a

aF ð�Þb and b7F ð�Þa

��j ��k ��‘
a a b
b b a

bF ð�� aÞ
Since A has at least three elements, 9c 2 Anfa; bg. By IIA, as long as no
individual changes his ranking of a versus b, the social ranking of those two
elements remains the same regardless of how individuals change their ranking
of a versus c and b versus c. Consider then the profile ��� in which every
individual’s ranking of a versus b is exactly the same as in ��. The only
possible difference between ��� and �� is that ��� satisfies the following
properties:

ðP ��1Þ If a ��i b and a �i b then a ���i c ���i b
ðP ��2Þ If a ��i b but b �i a then a ���i b ���i c
ðP ��3Þ If b ��i a, then b ���i a ���i c

where i ¼ 1; . . . ; n (note that by (P3), if b ��i a then b �i a). We can therefore
depict the rankings of the alternatives a , b and c by individuals j, k and l as
follows:

���j ���k ���l
a a b
b c a
c b c

By ðP ��1Þ � ðP ��3Þ, every individual i satisfies a ���i c. Thus, by PAR and C:
aF ð���Þc and c7F ð���Þa. Since bF ��ð Þa, then by IIA: bF ���ð Þa. We claim
that the following must be true:

bF ���ð ÞaF ð���Þc and c7F ð���Þb ð4Þ
To see why, note that bF ���ð Þa and c7F ð���Þa. Hence, by AC, c7F ð���Þb and
by C, bF ���ð Þc.

Consider next a profile �00 with the following properties:

P 001ð Þ c �00i a �00i b for any i who satisfies a �i b.
P 002ð Þ b �00i c �00i a for any i who satisfies b �i a.

We can therefore depict the rankings of the alternatives a, b and c by indi-
viduals j, k and l as follows:

�00j �00k �00l
b c b
c a c
a b a

Note that c �00i a for i ¼ 1; . . . ; n, which implies, by C and PAR,

cF �00ð Þa and a7F �00ð Þc ð5Þ
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Note that the ranking of a versus b is unchanged for each i ¼ 1; . . . ; n
when individual i’s ranking changes from �i to �00i . Thus, by IIA: aF ð�00Þb
and b7F �00ð Þa. Because cF �00ð Þa by 5ð Þ, and because we have just concluded
that b7F �00ð Þa, it must be, by AC, that b7F �00ð Þc. Hence, by C we have that
cF �00ð Þb. Because the ranking of b and c is the same under ���i and �00i , this
contradicts 4ð Þ. j

Theorem 1. Let R satisfy BA and AC. If a social aggregator F : P ! R satisfies
PAR and PR, then it must be dictatorial.

Proof. We adjust Reny’s method of proof 1 (see Reny [13]) to our framework.

Step 1. Consider any two distinct alternatives a; b 2 A and a profile of
rankings �0 in which a is ranked highest and b lowest for every i 2 N . By BA
and PAR,

aF �0
� �

x and x7F �0
� �

a for every x 2 Anfag ð6Þ

Consider now changing individual 1’s ranking by raising b in it one position
at a time. By PR, so long as b is below a in 1’s ranking, b cannot socially relate
to a. Since no individual has changed his ranking of a and any c 2 Anfa; bg, c
cannot socially relate to a . By BA, a must still socially relate to any other
alternative. Once b rises above a in 1’s ranking, then by PR, no alternative, but
perhaps b, relates to a. If b remains unrelated to a, then begin the same
process with individual 2 and 3, etc. until for some individual k, b relates to a
when b rises above a in k’s ranking (by BA and PAR, there must be such an
individual k). Let �ð1:1Þ denote the preference profile in which b reaches the
second position in k ’s ranking, and let �ð1:2Þ denote the profile in which b
rises to the top of his ranking. The two profiles are depicted in Fig. 1.1 and
1.2 below.

By construction, aF ð�ð1:1ÞÞb and b7F ð�ð1:1ÞÞa. In addition, for every
c 2 Anfa; bg, the ranking of a and c by each individual i 2 N is the same in
�0 and �ð1:1Þ. Thus, by PR and ð6Þ,

8x 2 Anfag; x7F ð� 1:1ð ÞÞa ð7Þ
By BA,

8x 2 Anfag; aF ð� 1:1ð ÞÞx ð8Þ
We now show that under �ð1:2Þ,

bF ð1:2Þy for every y 2 Anfbg ð9Þ
and

c7F ð1:2Þb for every c 2 Anfa; bg ð10Þ

1Which is inspired by Geanakoplos [8].
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Note first, that by construction, bF ð�ð1:2ÞÞa. Note next that for every
c 2 Anfa; bg, the ranking of a and c by each individual i 2 N is the same in
�ð1:1Þ and �ð1:2Þ. This means that by PR, c7F ð�ð1:2ÞÞa for c 2 Anfa; bg. We
therefore have that bF ð�ð1:2ÞÞa and c7F ð�ð1:2ÞÞa. Hence, by AC, c7F ð�ð1:2ÞÞb .

It remains to show that bF ð�ð1:2ÞÞc. We shall make use of the following
observation:

Observation 1. Let R be a binary relation on A that satisfies AC. Then for any
three alternatives x; y; z 2 A : If xRy and yRz, then xRz.

Proof. Assume that xRy, yRz but x7Rz. By AC, x7Ry, a contradiction.

Assume b7F ð�ð1:2ÞÞc. Since c7F ð�ð1:2ÞÞa for every c 2 Anfa; bg, alternative
a must, by BA, relate to every other alternative. In particular, aF ð�ð1:2ÞÞc.
Since bF ð�ð1:2ÞÞa we have, by Observation 1, that bF ð�ð1:2ÞÞc, a contradiction.
It follows that ð9Þ must hold.

Step 2. Consider now the profiles �ð2:1Þ and �ð2:2Þ depicted in Figs. 2.1 and
2.2 respectively.

�ð2:1Þ is derived from �ð1:1Þ (and �ð2:2Þ is derived from �ð1:2Þ) by moving
alternative a to the bottom of individual i’s ranking for i < k and moving it to
the second last position in i’s ranking for i > k. We now show that these
changes do not affect the social relation associated with the original prefer-
ence profiles.

First note that no i 2 N has changed his ranking of b and any other alter-
native when the preference profile changed from �ð1:2Þ to �ð2:2Þ. Thus, by PR,

c7F � 2:2ð Þ
� �

b for every c 2 Anfa; bg ð11Þ

Assume that 9y� 2 Anfbg such that b7F � 2:2ð Þ� �
y�. By BA and 11ð Þ,

aF ð� 2:2ð ÞÞx for all x 2 Anfag. In particular, aF ð� 2:2ð ÞÞy� and aF ð� 2:2ð ÞÞb. We
therefore have that aF ð� 2:2ð ÞÞy� and b7F � 2:2ð Þ� �

y�. Hence, by AC,

�ð1:1Þ1 � � � �ð1:1Þk�1 �ð1:1Þk �ð1:1Þkþ1 � � � �ð1:1Þn

b � � � b a a � � � a

a � � � a b ..
.

� � � ..
.

..

. ..
. ..

.
b b

Fig. 1.1. The prefereance profile �ð1:1Þ

�ð1:2Þ1 � � � �ð1:2Þk�1 �ð1:2Þk �ð1:2Þkþ1 � � � �ð1:2Þn

b � � � b b a � � � a

a � � � a a ..
.

� � � ..
.

..

. ..
. ..

.
b b

Fig. 1.2. The prefereance profile �ð1:2Þ
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b7F � 2:2ð Þ� �
a. By PR, there must be some i 2 N that satisfies a � 2:2ð Þ

i b and
b �ð1:2Þi a, a contradiction. Therefore,

bF ð� 2:2ð ÞÞy for all y 2 Anfbg ð12Þ
Next, we show that

8x 2 Anfag; aF ð� 2:1ð ÞÞx and x7F ð�ð2:1ÞÞa ð13Þ
First note that no i 2 N changed his ranking of a and b when his preference
ordering changed from �ð1:1Þ to �ð2:1Þ.Therefore, by PR, b7F ð�ð2:1ÞÞa. Note
also that the ranking of b and each c 2 Anfa; bg is the same under �ð2:2Þ and
�ð2:1Þ. By PR, this implies

8c 2 Anfa; bg; c7F ð�ð2:1ÞÞb ð14Þ
From ð14Þ and our conclusion that b7F ð�ð2:1ÞÞa, it follows that according

to F ð�ð2:1ÞÞ alternative a must, by BA, relate to every other alternative. In
particular, aF ð�ð2:1ÞÞb. From ð14Þ and the acyclicality of R, it follows that
every alternative c distinct from a and b must satisfy c7F ð�ð2:1ÞÞa. This proves
that ð13Þ must hold.

Step 3. Let �ð3Þ be the profile depicted in Figure 3, where c is some element in
Anfa; bg.

� 2:1ð Þ
1 � � � � 2:1ð Þ

k�1 � 2:1ð Þ
k � 2:1ð Þ

kþ1 � � � � 2:1ð Þ
n

b � � � b a ..
.

� � � ..
.

..

.
� � � ..

.
b a � � � a

a a ..
.

b b

Fig. 2.1. The prefereance profile �ð2:1Þ

� 2:2ð Þ
1 � � � � 2:2ð Þ

k�1 � 2:2ð Þ
k � 2:2ð Þ

kþ1 � � � � 2:2ð Þ
n

b � � � b b ..
.

� � � ..
.

..

.
� � � ..

.
a a � � � a

a a ..
.

b b

Fig. 2.2. The prefereance profile �ð2:2Þ

� 3ð Þ
1 � � � � 3ð Þ

k�1 � 3ð Þ
k � 3ð Þ

kþ1 � � � � 3ð Þ
n

� � � � � a � � � � �
� � � � � c � � � � �
� � b � �
c c � c c
b b � a a
a a � b b

Fig. 3. The preference profile �ð3Þ
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We claim that

8x 2 Anfag; aF ð� 3ð ÞÞx and x7F � 3ð Þ
� �

a ð15Þ

To see why, assume there exists some x� 2 A that satisfies x�F ð� 3ð ÞÞa. Then
by PR, there must be some individual j for whom a � 2:1ð Þ

j x� but x� � 3ð Þ
j a.

However, no i 2 N has changed his ranking of a versus any other alternative
when the preference profile changed from � 2:1ð Þ to � 3ð Þ. Therefore, no
x 2 Anfag satisfies xF ð� 3ð ÞÞa. Hence, by BA, aF ð� 3ð ÞÞx for all x 2 Anfag.
Step 4. Consider the profile of rankings �ð4Þ depicted in Fig. 4.

This profile is derived from � 3ð Þ by interchanging the ranking of alter-
natives a and b for individuals i > k. Note that no individual has changed his
ranking of a versus any alternative x 2 Anfbg when the preference profile
changed from � 3ð Þ to � 4ð Þ. Hence, by PR,

x7F ð� 4ð ÞÞa for all x 2 Anfa; bg ð16Þ
We would like to show that aF ð�ð4ÞÞx for all x 2 Anfag and that b7F ð�ð4ÞÞa.
Assume that bF ð�ð4ÞÞa. By ð16Þ, c7F ð�ð4ÞÞa. Hence, by AC, c7F ð�ð4ÞÞb. Be-
cause alternative c is ranked above b in every individual’s ranking in Figure 4,
it follows from PAR that b7F ð�ð4ÞÞc. By BA, F ð�ð4ÞÞ must satisfy that some
element socially relates to every other distinct element. Since b does not relate
to c, and since every x distinct from a and b does not relate to a, it must be the
case that aF ð�ð4ÞÞy for all y 2 Anfag. But then we have that bF ð�ð4ÞÞa and
aF ð�ð4ÞÞc, which by Observation 1 implies that bF ð�ð4ÞÞc, a contradiction.
Hence, b7F ð�ð4ÞÞa and by BA,

aF ð� 4ð ÞÞy for all y 2 Anfag
Step 5. Consider next an arbitrary profile of rankings � in which individual k
ranks a above b. Note that this profile can be obtained from �ð4Þ without
reducing the ranking of a vs. b in any individual’s ranking. Hence, by PR,
b7F ð��Þa. We may therefore conclude that whenever individual k ranks
a above b, the social aggregator cannot relate b to a. Because the choice of a
and b was arbitrary, we have shown that for each alternative a 2 A, there is
a dictator for a. Since there cannot be distinct dictators for distinct alterna-
tives, there must be a single dictator for all alternatives. j

� 4ð Þ
1 � � � � 4ð Þ

k�1 � 4ð Þ
k � 4ð Þ

kþ1 � � � � 4ð Þ
n

� � � � � a � � � � �
� � � � � c � � � � �
� � b � �
c c � c c
b b � b b
a a � a a

Fig. 4. The preference profile �ð4Þ
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To see that Arrow’s Theorem is a special case of Theorem 1 note that it
can be rewritten as follows:

Arrow’s Theorem. Let F : P ! R where R is a class of complete and transitive
binary relations. If F satisfies PAR and IIA, then F is dictatorial.

By Proposition 2, F must satisfy PR and by Theorem 1 it must be dicta-
torial.

I now turn to show that the GS Theorem is a special case of Theorem 1.
We first need to introduce the following pair of properties.

Definition 2. A social aggregator F is strategy-proof if for every individual i,
every �2 P , and every �0i in �, whenever a pair of distinct alternatives a; b 2 A
satisfy:

aF ð�Þx for all x 2 Anfag; but bF ð�0i;��iÞy for all y 2 Anfbg
then a �i b and b �0i a.

Definition 3. A social aggregator F is onto if for every a 2 A there exists a
profile �2 P that satisfies aF ð�Þx for all x 2 Anfag.

To embed the GS Theorem in our framework, this theorem can be
rewritten as follows:

GS Theorem. If a social aggregator F : P ! R0 is strategy-proof and onto,
then F is dictatorial.

It can be shown (see Reny ½13�) that if F is strategy-proof and onto, then F
is Pareto efficient and monotonic. By Proposition 1, F must also satisfy PR.
Thus, by Theorem 1, F is dictatorial.

5 Concluding remarks

This paper shows that the two theorems of Arrow and Gibbard-Satterthwaite
are actually special cases of one single theorem: There is a single set of defi-
nitions and a single pair of properties, Pareto efficiency and Preference
Reversal, that lead to the dictatorship result. Thus, this paper makes the
following contributions:
1. A single framework – One may think of different ways in which preference

profiles may be aggregated. SCF ’s and SWF ’s are two examples. The
question arises as to whether there is a class of aggregators that must be
dictatorial if and only if they satisfy some conditions. This paper proposes
a general class of aggregators, which includes both SCF ’s and SWF ’s as
special cases. This is done by introducing a mapping from preference
profiles to binary relations. Thus, I show that aggregating profiles to a
single alternative and aggregating profiles to a single ordering are in some
sense ‘‘equivalent’’ operations.
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2. A direct ‘‘meta-theorem’’ – previous work has tried to connect Arrow and
GS by showing that both theorems can be proven with the help of Muller
and Satterthwaite’s (MS) finding that strong monotonicity implies dicta-
torship. However, strong monotonicity is not a property of SWF ’s. To prove
that Arrow’s Theorem is a corollary of MS (see Moulin ½10� pp. 52–56)
requires one to introduce the notion of a SCF (and also the notion of a
‘‘blocking coalition’’), which is a different aggregator than the one to which
the theorem relates. That is, there is no direct link from properties of the
aggregator itself (in this case, a SWF ) to the dictatorship result. In this paper
I show that the single ‘‘meta-theorem’’, from which Arrow and GS follow,
can be proven directly by relying only on the aggregator and its properties.

3. Relating IIA and monotonicity – Since both Arrow and GS require Pareto
efficiency it seems that IIA and monotonicity are closely related. This paper
demonstrates that both are special cases of a single property termed
Preference Reversal.
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