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In this paper we investigate the implementation problem arising when some of the players are
“faulty” in the sense that they fail to act optimally. The planner and the non-faulty players only know
that there can be at mostk faulty players in the population. However, they know neither the identity of
the faulty players, their exact number nor how faulty players behave. We define a solution concept which
requires a player to optimally respond to the non-faulty players regardless of the identity and actions of
the faulty players. We introduce a notion of fault tolerant implementation, which unlike standard notions
of full implementation, also requires robustness to deviations from the equilibrium. The main result of
this paper establishes that under symmetric information any choice rule that satisfies two properties—k-
monotonicity and no veto power—can be implemented by a strategic game form if there are at least three
players and the number of faulty players is less than1

2n − 1. As an application of our result we present
examples of simple mechanisms that implement the constrained Walrasian function and a choice rule for
the efficient allocation of an indivisible good.

1. INTRODUCTION

Implementation theory studies the problem of a planner who faces a set of agents and wishes
to associate a set of outcomes with each possible profile of the agents’ preferences (the
correspondence that assigns a set of outcomes to each profile of the agents’ preferences is called
a choice rule). The standard approach implicitly assumes that each agent is able to correctly
choose his most preferred action. A question arises as to how robust are the conclusions reached
by standard models to slight deviations from the full rationality assumption. If we believe that
decision makers might err, we may be interested in constructing mechanisms that are immune to
possible mistakes that some of the players might make.

This paper explores the question of implementation that is robust to the potential of having
a limited number of agents who make mistakes. An agent who makes mistakes is viewed as a
decision maker who has well defined preferences that are known to others, but who fails for one
reason or another to behave optimally. We refer to such an agent as beingfaulty. For an observer
who knows the preferences of a faulty player, it would seem as if the player was not acting in
accordance to his preferences.

We concentrate on two aspects of error-prone behavior. First, incorrect decisions are hard
to predict. There are also many potentially incorrect decisions that may be made. Second, the
tendency to make mistakes is usually an unobservable feature of a decision maker. We may have
a very good idea of what the preferences are of an individual (more money is preferred to less,
less pain is preferred to more), but we may have no clue as to how successful this individual is in
making the correct decisions.

The presence of faulty players introduces several complications to the problem of imple-
mentation. If players are aware of the possibility that some players might err, they may take that
into account when considering their course of action. For example, players may wish to exploit
the potential faultiness of some of the players. Thus, the strategic reasoning of the players may
be affected by the mere knowledge that some players may be faulty. In addition, different players
may entertain different beliefs over the identity and behavior of the faulty players. This raises the
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question of what is an appropriate notion of equilibrium in such a setting. An equilibrium may
at best describe some stable pattern of behavior by players who are potentially non-faulty. The
planner must take into account that ultimately, the players who turn out to be faulty will behave
in an unpredictable manner and may choose an action contrary to their incentives.

Our objective is to enable a planner to implement choice rules even if some of the agents he
faces are faulty players. We consider the simple case in which the planner is restricted to using
only strategic game forms, and where the agents know their own and other agents’ true profile of
preferences but the planner does not. We view the preferences of an individual and his tendency
to make mistakes as two independent characteristics in the sense, that one cannot infer an agent’s
tendency to make mistakes from observing his preferences. We therefore assume that the planner
and the non-faulty players only know that there can be at mostk faulty players in the population.
However, they know neither the identity of faulty players, their exact number nor how faulty
players behave. Assuming that the non-faulty players’ behavior conforms with an appropriate
solution concept, the planner’s objective is to construct a game form such that for every possible
profile of the agents’ preferences and regardless of the actions of the faulty players the following
is satisfied. The set of outcomes, in which any subset with at leastn − k players execute their
equilibrium strategies, equals the set of outcomes that the choice rule associates with the profile
of preferences. A game form having this property is said to achievefault tolerant implementation
of the choice rule.

It is important to note that faulty players do not necessarily represent players who make
mistakes. The two central features of faulty players are the unpredictable nature of their behavior
and their unknown identity. Thus, faulty players may also be interpreted as “malicious” agents
who wish to prevent the planner from attaining his goal. The malicious agents cannot be
identified by the planner or by the normal agents as their preference for harming the mechanism
is unobservable to others. Another interpretation of faulty players is that of a minority with
unknown preferences. This interpretation considers the non-faulty players to be the “majority”,
a homogeneous group of agents with identical preferences, who only know the preferences of
their own type. From their point of view, any agent who does not share their preferences may
have any preferences.

Fault tolerant implementation can be interpreted as a criterion of robustness against the
worst possible mistakes, mistakes, which would cause some player to deviate from truth-telling.
An alternative interpretation is that the planner requires robustness toany possible beliefs that
players might have about the behavior of faulty players. By imposing such a strong robustness
requirement, we do not need to make explicit assumptions on the set of possible mistakes and on
the probabilities of making mistakes and of being faulty.

Fault tolerant implementation can be relevant in several contexts. Some examples include
the following.

(1) Costly analysis of possible scenarios—A fault tolerant mechanism may be preferred in
situations which require robustness to mistakes where it is costly for the planner to identify
all the reasonable mistakes and all the reasonable beliefs that players may have about the
faultiness of others.

(2) Robustness to players with preferences over a richer domain—There may be situations
in which the preferences of some of the players may be defined over a domain, which is
richer than the set of alternatives offered by the mechanism. For example, in the recent
Israeli elections there were only two possible outcomes: Ehud Barak or Ariel Sharon.
Since Barak represented the pro-peace movement led by the left wing, the Israeli Arabs
clearly preferred Barak to Sharon. Therefore, the decision of the Israeli Arabs not to vote
(which in effect is a decision to vote for Sharon) was clearly inconsistent with this group’s
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preferences over the set of candidates. However, the Israeli Arabs preferred an outcome,
which was not offered by the voting mechanism, to their most preferred election outcome:
they preferred to display their ability to punish a government official who mistreated them
(Barak) even at the cost of having their least preferred candidate win the elections. Thus,
fault tolerant implementation offers robustness against the possibility that the behavior of
some players may not be rationalized by their ranking of the alternatives offered by the
mechanism.

(3) Discriminatory mechanisms—There are situations in which a planner cares about the
preferences of only a subset of all the agents in the sense that his choice rule is defined
on the preferences of only the agents in this subset. The agents in this “privileged”
subset share some common unobservable characteristics such that each member of this
subset cannot be identified by the planner or by the other privileged agents. For example,
these characteristics might be the religion of the agents, their political affiliation or their
preferences on objects, other than the ones selected by the mechanism. In most cases the
planner may not be able to condition participation in the mechanism on having certain
characteristics (these characteristics may not be verifiable). Under certain conditions (see
the discussion in the final section of this paper), fault tolerant implementation allows a
planner to design a mechanism, which is robust to the behavior of the non-privileged
agents.

The study of fault tolerant implementation requires a new notion of equilibrium and a new
notion of implementation. Most equilibrium notions for strategic game forms require a player
to optimally respond to the equilibrium strategies of the other players. However, if a player
knows that some of the other players might not follow their equilibrium strategies, he may
wish to deviate from his own equilibrium strategy. The presence of faulty players requires a
different notion of strategic stability, one that takes into account possible deviations of players
from their associated equilibrium strategies. We therefore define the notion of ak-fault tolerant
Nash equilibrium(k-FTNE), which is viewed as a suggested course of action for each player
in the game and which is stable in the following sense. Each non-faulty player has no incentive
to deviate from the action suggested to him, regardless of the identity and actions of the faulty
players, as long asn − k − 1 non-faulty players adhere to the actions suggested to them.

The notion ofk-FTNE captures the following considerations. Ak-FTNE strategy is a best
response of a player foranybelief over the faulty players. For any realization of faulty players
in the population, any player who turns out to be non-faulty has no incentive to deviate from
his associatedk-FTNE strategy. Thus, the notion ofk-FTNE is independent of the beliefs that
players might hold regarding the faulty players, it does not require any assumptions regarding
the nature of faulty behavior and it applies to any distribution of faultiness in the population.

The standard notion of implementability assumes that each player chooses his associated
equilibrium strategy. However, even if we assume that every non-faulty player chooses his
associated equilibrium action, a faulty player does not act according to the equilibrium. Thus,
the set of possible outcomes in a game with at mostk faulty players is not equal to the set of
k-FTNE outcomes. It also contains the set of outcomes corresponding to action profiles in which
the faulty players deviate from their equilibrium strategies. Therefore, the standard definition of
full implementation does not guarantee that the only possible outcomes in a mechanism are the
“desirable” ones.

We introduce a notion of implementability that is robust to the deviations of faulty players
from thek-FTNE action profile. A game form implements a choice rule ink-FTNE if it satisfies
two requirements. The first requirement is the standard definition of full implementation, which
applies to the case in which none of the players are faulty. For every profile of preferences the
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set of allk-FTNE outcomes must equal the set of outcomes selected by the choice rule. The
second requirement calls for robustness to deviations from an equilibrium. For every profile
of preferences and for everyk-FTNE the set of outcomes selected by the choice rule must
include the set of outcomes resulting from action profiles that differ from thek-FTNE by at
mostk actions.

Equipped with this framework for fault tolerant implementation, we can characterize the
choice rules that can be implemented ink-FTNE. The necessary and sufficient conditions for
k-FTNE implementation are closely related to the conditions found by Maskin (1999) to be nec-
essary and sufficient for Nash implementation. We show that any choice rule that isk-monotonic
and satisfiesno-veto-powercan be implemented ink-FTNE as long as the following conditions
are met: (1) there are at least three agents participating in the mechanism and (2) a non-faulty
player cannot form a majority by joining the set of all faulty players(k < 1

2n−1). Conversely, any
choice rule that is implementable ink-FTNE must satisfyweak k-monotonicity. The two notions
of k-monotonicity are equivalent when applied to choice functions. Thus,k-monotonicity is both
necessary and sufficient fork-FTNE implementation of choice functions that satisfy no-veto-
power. With regards to well-known choice rules, the constrained Walrasian correspondence is
(n − 1)-monotonic, whereas the Core is at least 1-monotonic.

The paper is organized as follows. Section 2 reviews the related literature. Section 3
introduces thek-FTNE solution concept and the notion of implementation ink-FTNE. In
Section 4 we present the main results concerning the sufficient and necessary conditions required
for k-FTNE implementation. Section 5 is devoted to applications of the concept ofk-FTNE
implementation in specific settings. We present a simple mechanism for implementing the
constrained Walrasian function in a simple exchange economy setting. We also provide an
example of a specific setting, in which a simplek-FTNE mechanism implements the efficient
allocation of an indivisible good amongn agents. We close with concluding remarks.

2. RELATED LITERATURE

Our work draws from the computer science literature on fault tolerant computation. This strand of
literature investigates the design of protocols that allow parallel processing networks to continue
carrying out correct computation, even if some of the processors are faulty. Faulty processors
are either assumed to act in a totally unpredictable manner (for example, they can transmit false
information), or they are assumed to be of limited computational complexity. There are two
common interpretations of faulty processors of the first type (the type related to this paper): (a)
parts of a network that do not function properly because of some technical problem or mistakes
on part of the operators, and (b) components in the mechanism that are operated (perhaps in
cooperation) by “malicious” agents who wish to bring down the network.

Most of the computer science literature focuses on increasing the efficiency of fault tolerant
protocols and on raising the upper bound on the number of faulty processors in a network, above
which the protocols cease to be fault tolerant. As long as the upper bound is met, the protocols
are guaranteed to work with certainty, regardless of the exact number and identity of the faulty
processors in the network (see Linial, 1994 for a survey of the main results in the theory of fault
tolerant computation and their relevance to economics and game theory).

Note the main difference between the computer science approach to the design of
protocols and the economic theory approach to the design of mechanisms: non-faulty processors
are programmed according to a protocol and are assumed to follow the programmer’s
instructions; however, individuals participating in a mechanism cannot be programmed. To
ensure compliance, a social planner must provide the agents with sufficient incentives to induce
them to follow the prescribed course of action.
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This paper attempts to respond to some of the criticism raised with respect to the reliance
of classical implementation theory (see Moore, 1992) on substantive unbounded rationality
of the agents. Thus, this paper represents a step towards incorporating a model of bounded
rationality into implementation theory. Only a few works have addressed this issue. Sjostrom
(1993) considers trembling-hand perfect implementation, which offers a different approach to
modeling mistakes in implementation theory. Hurwicz (1986) studies Nash implementation when
the agents’ preferences are intransitive, cyclic or incomplete. Bartholdiet al. (1989) show that
a certain class of voting schemes require excessive computation to determine the winner. An
analysis of the implementation problem, which incorporates the theory of learning in games, has
been carried out by Cabrales (1999), Cabrales and Ponti (2000) and Hon-sniret al. (1998). The
idea that individuals may fail to respond in a contractual environment has been discussed in Segal
(1999). He considers a principal-agent framework in the context of takeovers. He shows that if
agents fail to respond to the principal’s offer with a small probability, they become asymptotically
non-pivotal and inefficiency obtains.

3. PRELIMINARIES

The triple〈N, C, P〉 represents theenvironmentin which the planner operates. LetN be a set
of players{1, . . . , n}, C a set of consequences, andP a set of preference profiles overC. An
element ofP will be denoted byp, a profile of preferences of a subset of playersM ⊆ N will
be denoted bypM , and a preference relation of a single playeri ∈ N by pi . We use the notation
c %i b (c �i b) to indicate that agenti weakly (strictly) prefers the outcomec to the outcome
b. A choice rulethat assigns a subset ofC to each profile inP will be denoted byf , such that
f : P → 2C

\{φ}.
The planner controls the rules of the game, formalized as a game form. Astrategic game

form with consequences in Cis a triple 〈N, (Ai ), g〉, where Ai is the set of actions available
to player i , andai ∈ Ai is a single action of this player. We letA = A1 × · · · × An with
a ∈ A denoting a profile of actions for then players. The third component of the game form,
g : A → C, is anoutcome functionthat associates an outcome with every action profile.

Faulty players

A player who does not act according to incentives will be calledfaulty. That is, given the actions
chosen by the other players, a faulty player does not choose an action that leads to his most
preferred outcome.

In the standard implementation framework, given a game form, an instance is a profile of
the players’ preferences. The players play the game induced by the given game form and the
profile of preferences. We define an instance as a pair(p, k) wherek is an upper bound on the
number of faulty players inN. Given a profile of preferences, any subset of at mostk players
might play in an unpredictable manner. A non-faulty player knows that he is not faulty. However,
he cannot tell whether another player is faulty or not, and he does not know the exact number
of faulty players inN. He only knows that there cannot be more thank faulty players inN. The
instance(p, k) is assumed to be common knowledge among the non-faulty players.

Given an instance(p, k), the planner only knows that there can be at mostk faulty players.
He cannot distinguish between the faulty players and the non-faulty players inN.

An equilibrium notion

We now introduce an equilibrium notion for a strategic game in the presence of at mostk faulty
players. An equilibrium is viewed as a suggested course of action for each player in the game,
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that is stable in the following sense. Given an instance(p, k), each non-faulty player has no
incentive to deviate from the action suggested to him, regardless of the identity and actions of
the faulty players, as long as there aren − k − 1 non-faulty players who adhere to the actions
suggested to them.

Definition1. A k-FTNE for the instance(p, k) is a profile of actionsa∗
∈ A having the

property that∀i ∈ N

g(a∗

i , a∗

N\M∪{i }, aM ) %i g(ai , a∗

N\M∪{i }, aM )

∀ai ∈ Ai , ∀aM ∈ AM and∀M ⊆ N such that|M | ≤ k.

We let Ek(G, p) denote the set ofk-fault tolerant Nash equilibria of the game(G, p).
To understand the intuition underlying this equilibrium notion, consider the following

scenario. Imagine that the agents about to participate in a mechanism all sit in separate rooms,
each in front of his own computer screen. The agents cannot communicate with one another and
can only receive messages from the planner. The planner e-mails the agents a common message
explaining the rules of the game they are about to play and also suggests the course of action that
each agent should take. Suppose that each agent knows that there could be up tok players, who
might not have received the message or might not have paid close attention to it or might have not
fully understood it (these are the so-calledfaultyplayers). Each non-faulty player then concludes
that up tok players might not follow the planner’s advice. However, if the profile of actions
that the planner suggested is ak-FTNE, then each non-faulty player will arrive at the following
conclusion. As long as all the other non-faulty players (who ever they might be) decide to act
according to the planner’s advice, I should also follow his advise regardless of who the faulty
players are, what they decide to do and how many of them there are.

Implicit in the notion ofk-FTNE are the following considerations. Different players may
entertain different beliefs regarding the faultiness of others (who the faulty players are, how many
of them there are and what actions they choose). Our solution concept requires that a player have
no incentive to deviate from his equilibrium strategy foranybeliefs over the faultiness of players
(given that there are at mostk faulty players). A less demanding solution concept would imply
that the planner knows the beliefs held by each non-faulty player over the faultiness of others.

Potentially any player may be non-faulty. A strategy profile which constitutes ak-FTNE
assigns to each player a strategy with the following property. Any player who turns out to be
non-faulty has no incentive to deviate from his assigned strategy. That is, our equilibrium notion
does not assume that all players are non-faulty. It provides a list of stable strategies forany
subset ofn − k non-faulty players. Thus, if a planner believes that non-faulty players choose
theirk-FTNE strategies, he is not required to know who the non-faulty players are.

Note that fork = 0 we require that the 0-FTNE be a Nash equilibrium (NE), while for
k = n−1 we require that the(n−1)-FTNE be a weakly dominant strategy equilibrium (WDSE).
Thus, for 0< k < n − 1, thek-FTNE lies between NE and WDSE.

Implementation

Suppose a planner wishes to implement some choice rulef . Let f (p) be interpreted as the set
of appropriate outcomes for the profilep. In the standard literature, this planner provides the
agents with a game form having the following property. For every possible profile of the agents’
preferences, the set of outcomes associated with every equilibrium action profile is identical to
the set of outcomes dictated by the choice rule. Assuming that the agents play according to a
particular equilibrium notion, the planner wants to be assured that no matter what the current
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profile of preferences is and regardless of the specific equilibrium that is selected, the desirable
outcome (according to the choice rule) will be realized. In our framework, the planner has the
same objective as in the standard framework, only now he is aware that some of the agents might
be faulty.

Suppose that some of the players are faulty. Even if all the “good” players satisfy the
conditions guaranteeing that they will play their equilibrium strategies, the faulty players will
play otherwise. While we have made sure that for every profile of preferences the outcome of
every equilibrium action profile is also the one selected by the choice rule, this may not be true
for an action profile in which some of the actions are not the equilibrium actions. If the planner
believes that non-faulty players will play according to their equilibrium strategies, and he is
interested in matching an outcome to a profile of preferences according to some choice rule, the
standard notion of implementation is clearly not applicable.

Consider a planner who sets up a second price auction to WDSE-implement the choice
rule f that assigns a good to the player with the highest valuation. Since bidding one’s true
valuation is a weakly dominant strategy,1 it is also ak-FTNE strategy for any 0≤ k ≤ n − 1.
However, even if all the non-faulty players bid their true valuation (their equilibrium strategy),
the action of a single faulty player bidding above the true maximal valuation is enough to cause
the good not to be sold to the highest valuation player (that is, the good will not be allocated
according to the desired choice rule). Note that the notion of implementation in WDSE relies on
the assumption that all the players carry out their equilibrium strategies, whereas our notion of
implementation requires that we consider the possibility that some of the players might deviate
from their equilibrium strategies.

The above example demonstrates that it is not sufficient for a notion of fault tolerant
implementation to require only that the solution concept it relies upon be robust to deviations
by some players. It must also require that the outcomes of a mechanism be robust to deviations
by some players.

Let a, a′
∈ A be a pair of action profiles. We measure thedifferencebetween any pair of

action profiles,d(a, a′), by the number of players who do not choose the same action in both
profiles:

d(a, a′) = |{i ∈ N : ai 6= a′

i }|.

For any profile of actionsa ∈ A, we let B(a, k) denote the set of profiles that are different from
a by not more thank actions:

B(a, k) = {a′
∈ A : d(a, a′) ≤ k}.

We shall refer toB(a, k) as the “k-neighborhood ofa”.

Definition2. Let 〈N, C, P〉 be an environment. The strategic game formG with the
outcome functiong : A → C is said tok-FTNE implement the choice rulef : P → 2C, if
∀p ∈ P, we have

g(Ek(G, p)) = f (p) and g(B(a∗, k)) ⊆ f (p)

for everya∗
∈ Ek(G, p).

That is, a mechanismk-FTNE implements a choice rule if it assigns a “desirable” outcome
to any action profile in which at leastn − k players choose theirk-FTNE action. Furthermore,

1. This is true for a setting with asymmetric information, whereas we are dealing with a symmetric information
setting. The example is given only to illustrate why the standard definition of full implementation needs to be amended
in a setting with faulty players.
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any outcome that the choice rule associates with a profile of preferences can be achieved as the
result of somek-FTNE action profile.

The multiple equilibrium problem

Our “worst-case-scenario” approach, which requires a mechanism to be robust to any beliefs
that players may have about the faulty players, has the cost that fault tolerant mechanisms may
have “undesirable” NE, which are notk-FTNE. Thus, if all the players are non-faulty and each
plays according to an undesirable NE and each believes that all the other players are non-faulty
as well, then no player would have an incentive to deviate; the mechanism would then result in
an undesirable outcome. We therefore face the task of explaining the sense in which undesirable
NE are unstable.

To appreciate the difficulty of this task consider some undesirable NE. On the one hand,
there issomebelief that playeri can have that makes him want to deviate, but on the other
hand, there areother beliefs that hecould have that wouldnot make him want to deviate. This
paper endorses the view that undesirable NE are unstable. A natural criticism of this view is
that it considers some beliefs about the faulty players to be more reasonable than others, or,
alternatively, this view assumes the planner knows which beliefs a player would hold.

In light of this criticism we offer a possible justification of why NE which are notk-FTNE
may not be reasonable. In order to play an equilibrium, which is notk-FTNE, each non-faulty
player would need to know the exact predictions the other non-faulty players are making about
the faulty players. That is, they must know that those predictions are exactly those that would
support the non-k-FTNE. However, since such predictions about other people’s beliefs are
extremely difficult to make, the players may tend to coordinate instead onk-FTNE, which does
not require them to make any predictions (including about other players’ predictions).

One possible solution to the multiple equilibrium problem is to consider the following
implementation notion: a game form implements a choice rulef if every NE is desirable and
every desirable outcome can be obtained as ak-FTNE. Thus, according to this alternative notion
there cannot be any undesirable NE; however, there may very well be undesirablek-FTNE. We
do not pursue this direction in the current paper. This is a topic we leave for future research.

4. NECESSARY AND SUFFICIENT CONDITIONS

Sufficient conditions

We now present the necessary and sufficient conditions that characterize the family of choice
rules that can bek-FTNE implemented in a symmetric information setting, as long as the number
of faulty players is not a majority, in other words it is below1

2n − 1.

Definition3. A choice rule f : P → 2C
\{φ} is k-monotonic(k-MON) if whenever

c ∈ f (p), c /∈ f (p′), then∃M ⊂ N and∃b ∈ C such that|M | ≥ k + 1, everyi ∈ M satisfies
c %i b, and at least one playerj ∈ M satisfiesb �

′

j c.

A choice rule that satisfiesk-MON exhibits the following property. If a formerly chosen
outcome is excluded from the set assigned to a new profile of preferences, then there are more
thank players, each of whom previously considered the chosen outcome to be at least as good as
some given outcome, but according to the new profile at least one of these players reverses this
relation.

The following example demonstrates that the Core correspondence for a pure exchange
economy is at least 1-monotonic.
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Example1. Consider a pure exchange economy in which the set of consequencesC is
given by {x ∈ <

L N
+ :

∑
i xi

≤ ω}, whereω is an aggregate endowment ofL commodities
such that eachωi ∈ <

L
+ and every component of

∑
i ωi is positive. Agenti ’s preferences depend

only on his own consumption bundle and are convex, non-decreasing and continuous in this
bundle. For a given set of playersS ⊆ N let cS denote an outcome “attainable byS”, that is, an
outcome inC which satisfies

∑
i ∈S xi =

∑
i ∈Sωi . The Core is a correspondence that assigns to

every profile of preferencesp the following set of outcomes:

CORE(p) = {c ∈ C : @S ⊆ N and@cS
∈ C such thatcS

�i c for all i ∈ S}.

We now show that the Core is at least 1-monotonic. Letc ∈ C and p, p′
∈ P such that

c ∈ CORE(p) but c /∈ CORE(p′). Then∃S ⊆ N and∃cS
∈ C such thatcS

�
′

i c for all
i ∈ S. Consider somej ∈ S. By our assumptions on the agents’ preferences, there existsb ∈ C
such thatb ∼ j c andb �

′

j c. Sincec ∈ CORE(p), there must be at least one other agenti 6= j
who satisfiesc %i b. Thus, there is an outcomeb and at least two agents who weakly preferc to
b in p, but at least one of them reverses his preferences inp′.

It is instructive to comparek-monotonicity with the notion of monotonicity defined by
Maskin (1999).2 Monotonicity means that if an outcome chosen by a choice rule moves up
everyone’srankings, then it should continue to be chosen. This property implies that whenever
the choice rule excludes a previously chosen outcome, then at least one player has moved this
outcome down his ranking. That is, if we denote the formerly chosen outcome byc, then at least
one player, who has previously preferred (weakly)c to b now reverses this relation. This does not
imply that at leastk other players have also preferred (weakly)c to b in the former preference
profile. Therefore, as the next example shows, monotonicity does not implyk-monotonicity.
However, as shown in Observation 1 below,k-monotonicity does imply monotonicity.

Example2. N = {1, 2, 3}, C = {a, b, c}, k = 1, P is the set of all strict preferences over
C, and f is a choice rule that chooses an outcome only if it is ranked at the top by some player.
f is monotonic, but it is not 1-MON. To see why, assume thatf is 1-MON and consider the
following pair of preference profiles:

p1 p2 p3
a b b
b a a
c c c

,

p′

1 p′

2 p′

3
b b b
a a a
c c c

f (p) = {a, b} and f (p′) = {b}. Thus,a /∈ f (p′). The only difference betweenp and p′ is that
player 1 preferreda to b in the former but prefersb to a in the latter. Sincef is 1-MON, then it
must be that at least one other player rankeda aboveb in the preference profilep. However, in
p both players 2 and 3 preferb to a, a contradiction. ‖

Observation1. k-monotonicity implies monotonicity.

Proof. If f is k-monotonic for anyk ≥ 1, then it is also 0-monotonic, and 0-monotonicity
is equivalent to monotonicity. ‖

Monotonicity is required for Nash implementation to eliminate unwanted situations in
which all the players coordinate on a non-truthful profile of preferences and the resulting outcome

2. A choice rulef : P → 2C
\{φ} is monotoneif wheneverc ∈ f (p) but c /∈ f (p′) there is some playeri ∈ N

and some outcomeb ∈ C such thatc %i b butb �
′
i c.
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is not the one specified by the choice rule. Suppose that the true profile isp but that all the players
coordinate onp′

6= p, such that the outcome selected by the mechanism isc′ /∈ f (p). If f is
monotonic, then there is always a player who will want the mechanism to take the profilep as
input and who will select an outcome which he prefers toc′, given this profile.

Monotonicity enables us to construct a mechanism that rules outNashequilibria with non-
truthful coordination. However, in some situations, such a mechanism will enable a single player
to determine the outcome. This feature might be problematic if we allow some of the players to
be faulty. To eliminate non-truthful coordination we still need a preference reversal for at least
one player when moving from one profile,p, to another,p′, where f (p) 6= f (p′). In addition,
we need to make sure that if a player challenges the majority view, he will affect the outcome
only in those cases in which he is truthful. This can be achieved if we allow only a minority
having at least one non-faulty player to affect the outcome.

k-monotonicity, by itself, is not sufficient fork-FTNE implementation. For sufficiency we
also require the following property.

Definition4. A choice rulef : P → 2C
\{φ} satisfies no-veto-power ifc ∈ f (p) whenever,

for at leastn − 1 players, we havec % c′ for all c′
∈ C.

Maskin (1999) showed that any choice rule that is monotonic and satisfies no-veto-power is
Nash implementable. Similarly, the next result provides sufficient conditions for a choice rule to
bek-FTNE implementable.

Proposition 1. If n ≥ 3 and k< 1
2n−1, then any choice rule that is k-MON and satisfies

k-no-veto-power is implementable in k-FTNE.

Proposition 1 is proved by showing an example of a mechanism, which implements in
k-FTNE anyk-monotonic choice rule that satisfies no-veto-power. The mechanism we use in
our proof is as follows. Each player simultaneously announces a triple(p, c, x), wherep ∈ P,
c ∈ C andx is an integer. The outcome functiong : A → C is defined as follows:

Rule 1. If at leastn − k players announce(p, c, x) such thatc ∈ f (p), then the outcome isc.
Rule 2. If exactly n − k − 1 players announce(p, c, x) such thatc ∈ f (p), then the outcome

is c, unlessall of the remainingk + 1 players agree on(p′, c′, ·) and for everyone of them
c %i c′, in which case the outcome isc′.

Rule 3. Otherwiseg((pi , ci , xi )i ∈N) = c j , where j is such thatx j ≥ xi for all i ∈ N (in case
of a tie the identity ofj is immaterial).

The intuition behind the above mechanism is the following. First, if all the non-faulty
players coordinate on a “desirable” consequence (that is, a consequence, which the choice rule
associates with the true preference profile), then we would like this consequence to be the
outcome regardless of how the faulty players behave. Since a group with at leastn − k players
may consist of only non-faulty players, Rule 1 allows a consensus reached by at leastn − k
players to determine the outcome.

Rule 2 exploits thek-monotonicity of the choice rule to eliminate “bad” equilibria, in
which all players coordinate on a non-truthful announcement. Given a preference profile,
k-monotonicity guarantees the existence of a player, who prefers some consequence to one
which is not desirable. Thus, if the mechanism allows a majority to determine the outcome,
then whenever the majority coordinates on a non-desirable consequence, there exists a player
who prefers a different consequence.
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There are two obstacles that we need to overcome. First, we need to ensure that when a
consensus reached by the majority of the players is being challenged, the players who disagree
with the majority include at least one non-faulty player. This is why we require that only a group
of k + 1 players may be able to affect the outcome. Second, whenever the majority agrees on
a consequence, the outcome should be determined by the minority if and only if the minority,
and not the majority, is being truthful. This requirement is fulfilled by imposing the restriction
that all k + 1 players (the minority) must agree on a consequence, which they prefer less than
the consequence proposed by the majority according to the preference profile announced by
the majority. Thus, if the majority announces the true preference profile, then no player has an
incentive to affect the outcome.

When the majority of the players disagree among themselves, we have no means of
verifying who is truthful and who is not. Therefore, we would like to prevent action profiles with
disagreement that lead to undesirable outcomes from being equilibria. Whenever the majority of
players choose different actions, Rule 3 guarantees that there exists a player with an incentive to
deviate.

Taken together, Proposition 1 and Observation 1 imply that any choice rule which isk-FTNE
implementable, is also Nash implementable. Ask-FTNE reduces to NE whenk = 0 (there can
be no faulty players), Maskin’s mechanism for Nash implementation can be obtained by letting
k = 0 in the above mechanism. The difference between the two mechanisms lies in the fact that
when some players may be faulty, we cannot allow the outcome to be determined in equilibrium
by a single agent. Since in equilibrium an outcome can only be determined by either Rules 1
or 2, these are the only rules that change when we assume that all players are non-faulty.

We now turn to the formal proof of Proposition 1.

Proof of Proposition 1. If k = 0 thenk-FTNE implementation reduces toNash imple-
mentation. We therefore concentrate on the case wherek > 0 (sincek is an upper bound on the
number of faulty players, the actual number of faulty players might still be nil).

We proceed in two steps. The first step establishes that the set of desirable outcomes is
contained within the set ofk-FTNE outcomes. We show that for any outcomec assigned by the
choice rule to a profile of preferences there exists ak-FTNE having the following properties.
The equilibrium outcome and also the outcome of any action profile, which is different from the
equilibrium by at mostk actions, isc.

The second step establishes that for any profile of preferences, everyk-FTNE satisfies the
following. First, the outcome associated with the equilibrium is desirable (that is, an outcome
which the choice rule associates with the profile of preferences). Second, the outcome of any
action profile, in which no more thank players deviate from the equilibrium, is also desirable.

Proof of Step1: Letc ∈ f (p) for somep ∈ P. Let ai = (p, c, 0) for eachi ∈ N. For every
â ∈ B(a, k) we haveg(â) = c. Then(ai ) is ak-FTNE of the game〈G, p〉 with the outcomec: a
deviation by playerj from â will cause the outcome to change fromc to somec′ only if c % j c′.

Proof of Step 2:Let a∗ be ak-FTNE of the game〈G, p〉 with the outcomec∗. We show that
∀a ∈ B(a∗, k) g(a) ∈ f (p).

We partition the set equilibria into two separate categories. What distinguishes between the
two cases is whether or not the equilibrium satisfies the following property:
(P1): Some player can have beliefs about the faulty players that allow him to win an integer
game.
The first category consists of equilibria that do not satisfy this property. These equilibria are
characterized by unanimous agreement on a profile of preferences (not necessarily the true one)
and a desirable outcome associated with that profile. Unanimity implies that any deviation byk
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players or less does not affect the outcome. Thek-monotonicity of the choice rule allows us to
show that this outcome is also desirable given the true profile of preferences.

The second category consists of all the equilibria which satisfyP1. What is special about
this class of equilibria is that they all satisfy the following additional property:
(P2): If a single player can have beliefs about the faulty players that allow him to win an integer
game, then n− 2 other players can also have similar beliefs.
By using P2 we can show that for any deviation of faulty players from the equilibrium, the
resulting outcome is the most preferred outcome for at leastn − 1 players. We can then use the
k-no-veto-power property of the choice rule to conclude that for any deviation of faulty players,
the resulting outcome is desirable.

In order to prove this result we distinguish between two subcases on the basis of whether or
not faulty players can trigger the integer game of Rule 3. This distinction is helpful because of
the following observation: a belief about the faulty players, which involves an integer game being
played, implies that every player can enforce his most preferred outcome by deviating from his
equilibrium action. We can then use this observation to prove that every player must satisfy the
following property:
(P3): Any outcome resulting from an action profile in the k-neighborhood of the equilibrium is
at least as good as the player’s most preferred outcome.When faulty playerscannot trigger
an integer game, this property may not hold for one of the players. Still, as long asn − 1
players satisfyP3, then no-veto-power implies that all action profiles in thek-neighborhood
of the equilibrium lead to desirable outcomes.

We now turn to the formal proof of the cases discussed above.
Case 1.Suppose there exists noa ∈ B(a∗, k + 1) such thatg(a) is determined by Rule 3.

This means that the equilibriuma∗ is such that for alli ∈ N, a∗

i = (p∗, c∗, ·) with c∗
∈ f (p∗).

Assume thatc∗
6∈ f (p). Since f is k-MON, there is a subsetM of at leastk + 1 players and a

consequenceb ∈ C that satisfyc∗ %′

i b for all i ∈ M and∃ j ∈ M such thatb � j c∗. It follows
that for a profilea′

∈ A in which k players in the subsetM\{ j } play (p, b, ·) and the rest of the
players playa∗, player j ’s best response is(p, b, ·) and nota∗

j . Since this contradicts our initial

assumption thata∗
∈ Ek(G, p), we conclude thatc∗

∈ f (p).
Supposeg(a) = c∗ for everya ∈ B(a∗, k). This means that the equilibrium outcomec∗

cannot be affected byany deviating minority. Thus, there exists an agentj such that for all
i ∈ N\{ j } we havea∗

i = (p∗, c∗, ·) with c∗
∈ f (p∗), and agentj either announces the outcome

c∗ or an outcomec that satisfiesc �
∗

j c∗.
Case 2.Suppose Rule 3 applies to somea ∈ B(a∗, k + 1). We show that in this case,

(1) at leastn − 1 players weakly preferc∗ to any other outcome, and (2) every player is
indifferent betweenc∗ and anyg(a) with a ∈ B(a∗, k). This implies that for anyg(a) with
a ∈ B(a∗, k), at leastn − 1 players weakly preferg(a) to any other outcome. Thus, by no-veto-
power,g(a) ∈ f (p) for anya ∈ B(a∗, k).

We proceed by considering each of the following cases separately.
Case A.There exists somea′

∈ B(a∗, k) such thatg(a′) is determined by Rule 3, and
g(a′) 6= c∗. Let M ⊂ N be the subset of players who deviate froma∗ in the action profile
a′; that is, M = {i ∈ N : a′

i 6= a∗

i }. Let x be the largest integer announced in the profilea′.
Let ã be an action profile in which all the players inM coordinate on somec ∈ C and on an
integer y > x while ãi = a∗

i for all i ∈ N\M . Then ã ∈ B(a∗, k) and g(ã) = c by Rule
3. Let â be an action profile in which somej ∈ N\M announceŝa j = (·, b, z) wherez > y
and â− j = ã− j . By Rule 3,g(â) = b. Thus, for anyi ∈ N, there is some belief about the
faulty players that would make him want to deviate: Ifi expectsã−i to be played, then he can
profit by announcing his most favorite outcome and an integery > z. Since by assumptiona∗
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is a k-FTNE, no player can have an incentive to deviate. It follows that every player must be
indifferent among all outcomes.

Case B.There exists noa′
∈ B(a∗, k) such thatg(a′) is determined by Rule 3, and

g(a′) 6= c∗.

Claim 1. For all a ∈ B(a∗, k), c∗ vi g(a) for all players.

Proof of Claim1. Note that Case B can only occur if the equilibriuma∗ satisfies the
following: ∃ j ∈ N such that∀i ∈ N\{ j } we havea∗

i = (p∗, c∗, ·) with c∗
∈ f (p∗) while

a∗

j = (·, c j , ·) with c j
6= c∗. It follows that anya ∈ B(a∗, k) with g(a) 6= c∗ must satisfy

g(a) = c j .
Consider somea ∈ B(a∗, k) with g(a) 6= c∗. Let S be the subset ofk players other thanj

who choose the consequencec j in a. Consider then − k − 1 players belonging toN\(S∪ { j }).
Each of these players must be indifferent betweenc∗ andc j . To see why, consider some player
i ∈ N\(S∪ { j }). Let x be the largest integer announced ina∗. Suppose playeri believes that
j is non-faulty, but that the members ofS are faulty. Suppose further thati believes that these
k faulty players deviate from their equilibrium action toa j . Given this belief about the faulty
players, playeri can either enforce the outcomec∗ by deviating froma∗

i to (p∗, c∗, y) where
y > x, or he can decide not to deviate and havec j as the outcome. Sincea∗ is a k-FTNE,
playeri must be indifferent betweenc∗ andc j . It follows that for alli ∈ N\(S∪ { j }) and for all
a ∈ B(a∗, k), c∗ vi g(a). To see that each member inS is indifferent consider a deviation by all
other members inS to a j .

We now turn to consider playerj . If c j
�

∗

j c∗, theng(a) = c∗ for all a ∈ B(a∗, k). Assume

c∗ %∗

j c j . Then there is a belief that playerj can hold about the faulty players that would make
him want to deviate: ifk players other than him coordinate ona∗

j , then playerj would want to
choose the outcomec∗. ‖

Claim 2. At least n− 1 players weakly prefer c∗ to any other outcome.

Proof of Claim2. Consider somei ∈ N\{ j }. By our assumption thatn ≥ 3 and that
k < 1

2n − 1, there exists an action profilẽa ∈ B(a∗, k) in which k players inN\({ j } ∪ {i })
announce the triplet(p′, c′, 0) wherep′

6= p∗ andc′
6= c j . Supposei ’s belief about the faulty

players is such that he expectsã−i to be played· Given this belief about the faulty players, player
i can enforce his most favorite outcomeci by deviating froma∗

i to a∗∗

i = (pi , ci , y) where
pi

6= p∗ andy > x. Sincea∗ is ak-FTNE, playeri has no incentive to deviate froma∗. Thus,
for all i ∈ N\{ j } andc ∈ C we havec∗ %i c.

Note that playerj , unlike the other players, may not be able to achieve his favorite outcome
by means of this deviation since all the other players might be coordinating on the triple
(p, c∗, 0), wherep is the true profile of preferences.‖

By Claim 2 and the no-veto-power off , c∗
∈ f (p). By Claim 1, there are at leastn − 1

players who satisfyg(a) %i c for all c ∈ C anda ∈ B(a∗, k). By the no-veto-power off ,
g(a) ∈ f (p) for all a ∈ B(a∗, k). ‖

A necessary condition

If a social choicefunctionsatisfies no-veto-power, thenk-MON is both necessary and sufficient
for k-FTNE implementation. However, a social choicecorrespondencewhich is implementable
in k-FTNE satisfies a weaker notion ofk-monotonicity.
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Definition5. A choice rule f : P → 2C
\{φ} is weakly k-monotonicif whenever

f (p) * f (p′), then∃M ⊆ N having at leastk + 1 players and∃b ∈ C such that for every
player i ∈ M , there is an outcomeci

∈ f (p) satisfyingci %i b, and for at least one of these
players, sayj , b �

′

j c j .

A choice rule that satisfies weakk-MON exhibits the following property. Whenever a
formerly chosen outcome is excluded from the set associated with a new profile of preferences,
then there are leastk+1 players, each of whom previously considered one of the chosen outcomes
to be at least as good as some given outcome, but according to the new profile at least one of these
players reversed this relation.

The main difference between the two notions ofk-monotonicity is the following. A choice
rule which satisfiesk-MON excludes a formerly chosen outcome from a newly chosen set, only
if the ranking ofthisoutcome has changed. On the other hand, a weaklyk-MON choice rule may
exclude a formerly chosen outcome from a newly chosen set, even if only the rankings ofother
chosen outcomes have changed. Thus, if a choice rule isk-MON, then it is also weaklyk-MON.
In addition, for choicefunctionsthe two notions coincide.

The next proposition shows that a social choicecorrespondencewhich is implementable in
k-FTNE must satisfy weakk-monotonicity.

Proposition 2. If a choice rule is k-FTNE implementable, then it is weakly k-MON.

Before we proceed with the proof of Proposition 2 we provide an intuitive explanation for
why an implementable choice correspondence need not bek-MON. Consider an outcomec∗

which is chosen for the profilep but not for p′. This implies thatc∗ is an equilibrium outcome
for p but not for p′. Thus, the action profile that results inc∗ (saya∗) is stable forp but not for
p′. It follows that some playeri has an incentive to deviate froma∗

i . However, this incentive to
deviate is not necessarily a result of a preference reversal betweenc∗ and some other outcome
b (such thatg(a∗) = c∗ andg(ai , a∗

−i ) = b). There might be some deviation of up tok players
that makes a deviation froma∗

i profitable when the profile of preferences isp′.
Let a′

S denote a deviation of a subset of no more thank players. The change fromp to p′

has led playeri to reverse his preferences betweeng(a∗

i , a′

S, a∗

N\({i }∪S)) andg(a′

i , a′

S, a∗

N\({i }∪S)).

Let ci
≡ g(a∗

i , a′

S, a∗

N\({i }∪S)). If the choice rule is implementable, thenci is a member of the
chosen set forp, but it may be different fromc∗. Thus,c∗ may have been excluded from the set
of outcomes chosen forp′ because of a preference reversal between outcomes other thanc∗.

Proof of Proposition 2. Let f : P → 2C
\{φ} be a choice rule that isk-FTNE implemen-

table by a strategic game formG = 〈N, (Ai ), g〉 and let p, p′
∈ P such that f (p) * f (p′).

It follows that ∃c∗
∈ C which is an element inf (p) but not an element inf (p′). SinceG

implements f in k-FTNE there must be an action profilea∗
∈ A satisfying g(a∗) = c∗,

a∗
∈ Ek(G, p) anda∗ /∈ Ek(G, p′).

If a∗ /∈ Ek(G, p′) then there is a subsetS ⊆ N with at mostk players, a playerj ∈ N\S
and an action profile(â j , âS) ∈ A j × AS such that

g(â j , âS, a∗

N\(S∪{ j })) �
′

j g(a∗

j , âS, a∗

N\(S∪{ j })). (1)

Since it might be the case that|S| < k we let Sk
⊆ N\{ j } such thatS ⊆ Sk, |Sk

| = k, and
âSk = ((âi )i ∈S, (a∗

i )i ∈Sk\S). In order to conform to the notations used in the definition of weak
k-MON we let

M ≡ Sk
∪ { j }
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b ≡ g(â j , âM\{ j }, a∗

N\M ) and

ci
≡ g(a∗

i , âM\{i }, a∗

N\M ) for any i ∈ N.

If equation (1) holds, thenb �
′

j c j . Sincea∗
∈ Ek(G, p), then everyi ∈ M satisfiesci %i b.

From the definition ofB(a∗, k) it follows that

ci
∈ B(a∗, k) for all i ∈ M .

SinceG implementsf in k-FTNE, we have

ci
∈ f (p) for all i ∈ M .

It follows that f is weaklyk-MON. ‖

Maskin (1999) showed that any Nash-implementable choice rule must be monotonic. The
set of monotonic choice rules and the set of weaklyk-MON choice rules are two distinct sets.
As the next three examples demonstrate, the two notions of monotonicity have a non-empty
intersection which includes the weakly Pareto efficient choice rule (Example 3). However, there
are weaklyk-MON which are not monotonic (Example 4) and there are monotonic choice rules
which are not weaklyk-MON (Example 5).

Example3. A choice rule f associates the set of weakly Pareto efficient outcomes inC
with a preference profilep if it satisfies

f (p) = {c ∈ C : @b ∈ C such thatb �i c ∀i ∈ N}.

We now proceed to show that fork < n any Pareto efficient choice rulef satisfies weakk-MON.
Let p, p′

∈ P and letc∗
∈ C, such thatc∗

∈ f (p) but c∗ /∈ f (p′). Thus,∃b ∈ C such that
∀i ∈ N, b �

′

i c∗. However, sincec∗
∈ f (p), ∃ j ∈ N who satisfiesc∗ % j b. Let ci (p) denote

the most weakly preferred outcome for agenti when the profile of preferences isp (that is,
ci (p) %i c ∀c ∈ C). Thus,∀i ∈ N ci (p) %i b. From the fact thatf is a Pareto efficient choice
rule it follows that{ci (p)}i ∈N ⊆ f (p).
Therefore, there is a set ofn ≥ k + 1 players (the setN), each of whom has an element inf (p)

(c∗ for player j andci (p) for every i 6= j ) that he weakly prefers to the outcomeb when the
preference profile isp. However, when the preference profile isp′, at least one of these players
(player j ) reverses his preference.

Example4. N = {1, 2, 3}, C = {a, b, c, d}, k = 1 andP is the set of all strict preferences
over C. The choice rulef choosesd only if it is ranked at the top by at least two players.
Otherwise, the chosen set includes any outcome which some player prefers tod. We now check
that f is weaklyk-MON. Supposef (p′) = {d} but d /∈ f (p). It follows that byp′ at least two
players preferredd to any other outcome, but byp at least one of them now ranks a different
outcome at the top. It follows thatf is weaklyk-MON. However, f is not monotonic. To see
why, consider the following pair of preference profiles:

p1 p2 p3

b b b
d d c
c c a
a a d

,

p′

1 p′

2 p′

3

d d a
a a b
b b c
c c d

f (p) = {a, b, c} and f (p′) = {d}. Although the outcomea has moved up everyone’s rankings,
it is excluded fromf (p′). It follows that f is not monotonic.
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Example5. Consider a finite set of consequencesC. Assume each player has a strict
preference relation over the elements in this set. LetP consist of all the possible strict preference
profiles. A choice rulef is dictatorial if it satisfiesf (p) = {c ∈ C : c % j b ∀b ∈ C}, where j is
some player (the dictator) inN. While a dictatorial choice rule is Nash-implementable, it is easy
to see that it violates weakk-MON for any positivek.

With regards to the last example, note that a choice rule, which is implementable in Nash
but not ink-FTNE, must satisfy the following: there is at least one preference profile in which
the outcomec is chosen even thoughn − 1 players agree that a different outcome dominatesc. It
follows that the necessary condition fork-FTNE implementation is not violated by a monotonic
choice rule which does not select an outcome, ifn − 1 players agree that a different outcome is
better.

5. EXAMPLES OF MECHANISMS

The constrained Walrasian function

The canonical mechanism we used in the proof of the necessary and sufficient conditions
was abstract and relied on the usage of integer games. For more concrete settings, such as
exchange economies, we will use a more specific game form that resembles some kind of
trading mechanism. In this section we present a simple mechanism thatk-FTNE implements
the constrained Walrasian function.

Let E = 〈N, ω, p〉 be a pure exchange economy with free disposal, wherep is an element in
the setP of all continuous and strictly convex preference relations (such that for every economy
there is a unique constrained Walrasian allocation) andωi > 0 ∀i ∈ N. An allocationx∗

∈ <
Ln
+

is constrained Walrasianif it satisfies that∃λ∗
∈ <

L
+ with λ∗

6= 0 (the price vector) such that
∀i ∈ N, λ∗x∗

i = λ∗ωi and x∗

i %i xi for all xi ≤
∑

i ∈N(ωi ) such thatλ∗xi ≤ λ∗ωi . The
pair (λ∗, x∗) will be called thecompetitive equilibriumof the exchange economy. The set of
constrained Walrasian allocations of an exchange economyE will be denoted byCW(E); the
set of all its competitive equilibria will be denoted byC E(E).

Consider the following game formG. Each playeri ∈ N simultaneously announces a pair
ai

= (λi , xi ), whereλi
∈ <

L
+ (the vector of prices) andxi

∈ X(E) (an allocation of goods).3

The outcome functiong : <
L
+ × <

Ln
+ → <

Ln
+ is defined as follows:

Rule (G1): If at leastn − k traders agree on(λ∗, x∗) andλ∗x∗

i ≤ λ∗ωi ∀i ∈ N, thenx∗ is
implemented.

Rule (G2): If exactlyn − k − 1 traders agree on(λ∗, x∗) andλ∗x∗

i ≤ λ∗ωi ∀i ∈ N, thenx∗ is
still implementedunlessall the remainingk + 1 traders announce a pair(λ∗, y) satisfying
the following two properties, in which casey is implemented:

• λ∗yi ≤ λ∗ωi ∀i ∈ N.
• For all of thesek + 1 tradersyi 6= x∗

i .

Rule (G3): In all other casesg((λi , xi )i ∈N) = x̂, wherex̂i = x̂M
i if there is aunique maximal

subsetM ⊆ N of at leastk + 1 traders containingi , such that all the members ofM agree
on the allocation̂xM that satisfies

∑
j ∈M (x̂M

j ) =
∑

j ∈M (ω j ) and x̂M
j 6= ω j ∀ j ∈ M .

Otherwise,x̂i = ωi . In other words, trade takes place only within the largest mutually
disjoint sets of agents who agree to exchange their initial endowments.

3. Note the difference between a superscript and a subscript. For example,xi
j denotesj ’s bundle of goods in the

allocation proposed by playeri .
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Proposition 3. The game form G implements the constrained Walrasian function of the
economy E in k-FTNE as long as0 < k < 1

2n − 1.

The proposed mechanism has the same general structure as the canonical mechanism of the
proposition. It is less abstract since it exploits the special features of the particular environment
in which it is set. This is best demonstrated in the last two rules of the mechanism.

Rule G2 has two objectives. First, it relies on thek-monotonicity of the Walrasian function
to eliminate “bad” equilibria, in which all players coordinate on a non-truthful announcement.
Second, it guarantees that whenever the majority agrees on a feasible allocation, the outcome
should be determined by the minority if and only if the minority, and not the majority, is being
truthful. This requirement is fulfilled by imposing the restriction that allk + 1 players (the
minority) agree on an allocation and a price vector which satisfy two conditions; the prices
must be identical to the ones announced by the majority; the allocation is different from the one
announced by the majority in the bundles of goods assigned to each member of the minority.
Since for each profile of preferences there is a unique Walrasian allocation; and since this
allocation is optimal for each player given a vector of prices; no player would have an incentive
to affect the outcome, if that outcome assigns a Walrasian allocation to the economy.

Rule G3 takes on the role of the integer game used in the proof of Proposition 2. It treats
action profiles in which the majority of players disagree and the resulting outcome is undesirable.
To prevent such action profiles from being equilibria we need to be able to construct a deviation
by k players which would motivate some other player to deviate as well. Using Rule G3 we can
find a group ofk players that satisfy the following. Either a player, who is not trading in the
current action profile, would want to imitate the action of thesek players, (if, for example, they
deviate from their current action profile and offer him a sufficient amount of goods for free);
or a player, who is currently trading, would want to change his action, so that he could still be
a member of a set of players that are allowed to trade among themselves (if, for example, a
deviation ofk players changes the set of players who agree to trade among themselves).

Proof of Proposition 3. See Appendix. ‖

Allocation of an indivisible good

Consider a planner who has to decide whether to allocate an indivisible good to one agent in
a group ofn or whether to keep the good in his possession. LetI be the set ofn + 1 possible
allocations of the good. For each agenti we denote byvi the value that he associates with owning
the good. LetV be the set of all possible profiles of valuations such thatV ⊆ <

n
+ . The profile

of valuations is known to the agents but not to the planner.
The n agents have a preference relation defined overI × V . Let i ∗(v), ∀v ∈ V , denote

the agent whose valuation is the highest. Let(i, v) denote the outcome in which the profile of
valuations isv ∈ V and the good is allocated to agenti . In the allocation(∅, v) the planner
keeps the good.∀v ∈ V each agenti satisfies(i, v) %i (i ∗(v), v) with strict preference in case
i 6= i ∗(v). In addition(∅, v) �i ( j, v), where j ∈ N\({i } ∪ {i ∗(v)}).

The preferences of the agents can be described as follows. Each agent would like to own the
good. However, if an agent does not receive the good, he would like the good to be given to the
agent who values it the most. Each agent prefers that the good will not be allocated at all to the
allocation in which it falls to the hands of an undeserving agent (any agent besides himself who
is not the highest valuation agent). These preferences capture a situation in which the agents care
about who owns the good. An example where such preferences may prevail is the allocation of a
prize (say, an apartment): each of the participants would like to receive the prize, but if he does
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not win, then he would prefer the prize to be given to a needy homeless person (rather than to his
next door neighbor).

The planner wishes tok-FTNE implement the following choice rule:f (v) = (i ∗(v), v)

∀v ∈ V .4

Proposition 4. If 0 < k < 1
2n − 1, then the following mechanism G implements f in

k-FTNE. Each agent i announces a pair ai = ( ji , Si ), such that ji ∈ N and Si ⊆ N.

Rule 1: If at least n− k agents agree on agent j , the object is given to him.
Rule 2: If exactly n− k − 1 agents agree on agent j , then the object still goes to him, unless

the remaining subset M of k+ 1 agents all agree on h such that h/∈ M, in which case h
receives the good.

Rule 3: Otherwise, the object remains with the planner unless there is a unique maximal S⊆ N
satisfying:

1. |S| ≥ k + 1.
2. All agents in S agree that agent j should get the good and j∈ S.
3. a j = ( j, S).

The innovation of the above mechanism lies in its third rule, which applies to action profiles
in which there are at least three different views as to who should receive the good. Given such an
action profile, Rule 3 allows us to construct a deviation ofk players such that some player would
have an incentive to deviate.

Suppose the action profile satisfies that the planner keeps the good for himself. If a group of
k players deviate from their current action profile by announcing that the good should be given
to player j , who is not a member of this group; playerj would want to deviate from his chosen
action by declaring that he should receive the good and by naming thek deviators (recall that
Rule 3 requires the recipient of the good to name himself and the set of players who chose him).
Suppose, on the other hand, that the action profile satisfies that a playeri receives the good.
Playeri would have an incentive to deviate and change the set of players in his announcement,
if a player, who has not choseni as the rightful owner of the good in the current action profile,
now decides to do so.

The proof of Proposition 4 is omitted as it follows the same line of argument as the proof of
Proposition 3 (a detailed proof may be found in Eliaz, 1999).

6. CONCLUDING REMARKS

In this section we suggest and discuss some interpretations and extensions of our framework.
First, we discuss how our framework needs to be amended such that our results will also hold
when we interpret faulty players as players whose preferences are unknown. Next, we present
an interpretation of our model, in which faulty players are viewed as players who need to learn
how to choose optimal actions in a game. An interpretation of our non-Bayesian approach is also
discussed; followed by a suggestion as to how our framework could be revised to allow for a
Bayesian analysis of fault tolerance. We close with a summary of our main results.

Faulty players as players with unknown preferences

Throughout our analysis we have interpreted the unpredictable behavior of faulty players as the
result of mistakes. An alternative interpretation would be that faulty players are agents whose

4. A related problem is the design of auction with externalities, which is discussed in Jehielet al. (1996, 1999).
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preferences are unknown. However, we still want to retain the assumption that the exact number
and identity of the faulty players are not known. In order for this assumption to be consistent
with our alternative interpretation we can assume that all the non-faulty players share the same
preferences. That is, ifi and j are non-faulty players, then∀p ∈ P we havepi = p j = p∗.
Furthermore, playeri knows that any player who is non-faulty also has that preference relation
p∗, but i cannot identify such a player. In this setup, a player whose actions are inconsistent with
p∗ (and is thus faulty) might simply have different preferences that are not known. The planner
knows that all the non-faulty players have the same preference relation, but he knows neither
this relation nor the identity of the non-faulty players (that is, he only knows the structure of the
profile of preferences).

In this setup the terms “faulty” and “non-faulty” might not seem appropriate. It is more
natural to consider a population in which a minority of “outsiders” or “foreigners” is assimilated
among the “natives” or “locals”. The planner wishes to associate a set of outcomes with the
preference relation of the native population. Although the domain of the choice rule is the set
of preference profiles of the natives exclusively, the planner cannot prevent the foreigners from
participating and affecting any mechanism that he constructs.

All of our previous results continue to hold in this special set up. Here, instead of announcing
an entire profile of preferences, a player would be asked to report a single preference relation.
Thus, if in equilibrium, each native truthfully reveals his own preference relation, then regardless
of the actions of the foreigners (as long as their number is below half the size of the total
population minus one), the desired outcome will be implemented.

Faulty players as players who learn how to play

An underlying assumption in the standard theory of implementation is that the players’ behavior
is consistent with some game theoretic solution concept. That is, the players execute the
equilibrium strategies. Suppose a mechanism is set up and repeatedly played for an indefinite
period of time. Suppose further that the players are myopic in the sense that they care only about
the outcomes in each constituent game. However, not all the players instantaneously arrive at
the equilibrium of the constituent game. Some need to participate in the mechanism for several
periods in order to gain experience and eventually learn how to play the game. In such a setting,
even if a mechanism fully implements a choice rule in the standard sense, the players may not
play the equilibrium strategies right from the start, but only after a significant amount of time.

In an environment where some players learn how to play, the planner needs to worry about
the path of play. If we conceive of a faulty player as a player who learns, we can reinterpret
our result in a way that fits this dynamic setting. If the number of learners is strictly less than
1
2n − 1, the planner can guarantee in each and every period of any learning process the full
implementation of anyk-MON choice rule that satisfies no-veto-power.5

5. Recently, several papers attempt to answer the question whether agents who learn how to play a mechanism
will actually arrive at the desired equilibrium. Cabrales (1998) studies the equilibrating process of several implementation
mechanisms using naive adaptive dynamics and shows that the dynamics converge and are stable for the canonical
mechanism of implementation inNashequilibrium. However, for more refined equilibrium concepts he shows that the
dynamics converge but are not stable.

Cabrales and Ponti (1998) study the convergence and stability properties of a mechanism that implements most
social choice functions using the solution concept of iterated elimination of weakly dominated strategies. They show that
if the players learn through monotonic dynamics, their strategies may converge toNashequilibria whose outcomes are
different from those desired by the choice rule.

Hon-sniret al. (1998) analyze a repeated first-price auction and show that if every player is using either a belief-
based learning scheme with bounded recall or a generalized fictitious play learning scheme, then the players’ bids will
converge to the equilibrium bids of a one-shot auction in which the types are commonly known.

In these papers, however, the convergence may take a considerable amount of time.
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A Bayesian approach

Although we follow a non-Bayesian approach one may criticize our assumption that an upper
boundk is common knowledge among the planner and the non-faulty agents. This assumption
stems from our view of a planner as a professional who is elected/hired by the agents to construct
a mechanism that can implement a given choice rule (much like a computer engineer who is hired
to construct a computer network). In our framework, when the planner finishes his work he can
approach the agents and credibly announces that his mechanism works only if less than1

2n − 1
of them make mistakes. If the agents can accept this “fault tolerance”, then they should adopt his
mechanism.

One consequence of our reliance on common knowledge of an upper boundk is that our
model is sensitive to the value ofk. A mechanism, which implements a choice rule ink-FTNE
may not implement the same choice rule in(k − 1)-FTNE. Thus, a nice topic for future research
would be to find a mechanism that works fork as well as for anyk′ < k.

It would be interesting to investigate whether our results can also be obtained in a somewhat
Bayesian framework. The model we have in mind is one where there is a small probabilityε that
any player will turn out to be faulty. However, it is still not known what a faulty player might do
(since it seems difficult to come up with a reasonable support for the set of possible behaviors
of a faulty player). The equilibrium and implementation notions then need to be appropriately
amended.

Summary

Many institutions and mechanisms rely on intricate sets of rules that are not always fully
understood by the individuals who must follow them. Consequently, some of the individuals
might fail to choose the optimal course of action. We can therefore ask whether it is possible to
design a mechanism that achieves their objective even if some of the participants make mistakes
and act in an unpredictable manner.

In this paper we have tried to provide a partial answer to this question. We first developed
a theoretical framework for analyzing fault tolerant implementation. This required us to define a
new equilibrium notion,k-FTNE, and a new notion of implementability. Using this framework
we have identified the necessary and sufficient conditions for implementation ink-FTNE.
Since our proof relies on the construction of an abstract mechanism involving integer games,
we presented two examples of simple mechanisms. The first example described a trading
mechanism, in which participants choose prices and allocations, thatk-FTNE implements the
constrainedWalrasian function. In the second example we present a simple procedure for
efficiently allocating an indivisible good.

We have only taken a very small step towards the incorporation of fault tolerance into the
theory of implementation. The next step could be the study of fault tolerant implementation via
extensive game forms. Extensive form games introduce an additional difficulty: unlike strategic
form games if players act in a sequential order, they can update their beliefs regarding the number
and identity of the faulty players in the population (for example, if a non-faulty player acts
following a history which is not on the equilibrium path). In addition, we have only considered
the case of symmetric information among the non-faulty players. A natural extension would
be to analyze implementation ink-fault tolerant Bayesian Nash equilibriumfor settings with
asymmetric information.

APPENDIX

Proof of Proposition 3. The method of proof is the same as in Proposition 1. By arguments similar to those used
in the proof of Proposition 1 it can be shown that ifx = CW(E), ∃a∗

∈ Ek(G, p) such that∀a ∈ B(a∗, k), we have
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g(a) = x. To complete the proof we need to show that ifa∗
∈ Ek(G, p), then∀a ∈ B(a∗, k), g(a) = CW(E). As in

the proof of Proposition 1, we consider three different cases.
The first case covers equilibria with unanimous agreement on a price vector and a feasible allocation. It can be

proven by using essentially the same arguments of the corresponding case in the proof of Proposition 1.
In the second case, exactlyn − 1 players announce the same pair(λ∗, x∗), which satisfiesλ∗x∗

i ≤ λ∗ωi ∀i ∈ N.
We denote the subset ofn − 1 coordinating players byM (such that∀i ∈ M a∗

i = (λ∗, x∗)) and then-th player by j

(such thata∗
j = (λ′, x′)). If a∗

∈ Ek(G, p), thenx∗
= CW(E). Otherwise,(λ∗, x∗) /∈ C E(E). By free disposal, there

exists a playerh ∈ N and an allocationy such thaty �h x∗, λyi ≤ λωi ∀i ∈ N andyi 6= x∗
i ∀i ∈ N. It then follows

that∃a ∈ B(a∗, k) such that givena−h, playerh would want to deviate froma∗
h, a contradiction (takea in which (λ∗, y)

is announced by either playerj andk − 1 players inM\{h} if h ∈ M or byk players inM if h = j ).
It remains to be shown that every equilibriuma∗ covered by Case 2 satisfies that∀a ∈ B(a∗, k), g(a) = x∗. We

show that ifa∗
∈ Ek(G, p) then it must be that the priceλ∗ announced by then − 1 players inM differs from the

price λ′ chosen byj . Suppose not, soa∗
j = (λ∗, x′). Suppose∃a′

∈ B(a∗, k) such thatg(a′) 6= x∗. Rule G2 of the

mechanism implies the following:a∗
j = (λ∗, x′) where x′

j 6= x∗
j , λ∗x′

i ≤ λ∗ωi ∀i ∈ N, anda′ satisfies thatk players in

M coordinate on(λ∗, x′). From the continuity and strict convexity ofp and from our conclusion thatx∗
= CW(E), it

follows thatx∗
� j x′. Thus, givena′

− j , player j would prefer to deviate froma∗
j to (λ∗, x∗), a contradiction.

We show that a profile, not covered by the previous two cases (either a unanimous agreement on a price-allocation
pair such that at least one player cannot afford his bundle, or at least three players disagree), cannot be ak-FTNE of
the game. Suppose that∃a∗

∈ Ek(G, p) which is not covered by cases 1 or 2. The outcomes of the action profiles in
which k players deviate froma∗ are determined according to rule G3 of the mechanism. We construct an action profile
a ∈ B(a∗, k) having the following properties: a setM of k players coordinate on an allocationx in which some player
j /∈ M receives a bundlex j that is different from the bundle that he announced ina∗

j and which he strictly prefers to
ω j (for example, by adding goods free of charge to his initial bundle). In addition,x is different from any allocation
announced by players outside ofM and satisfies

∑
i ∈M∪{ j }(xi ) =

∑
i ∈M∪{ j }(ωi ). The setM and playerj are chosen

such that in the outcomeg(a), player j does not trade.6 However, givena− j , if j deviates froma∗
j to the announcement

of the players inM , he obtains the bundlex j . By construction, this deviation is profitable, a contradiction.‖
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