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1 Introduction

Eliaz and Spiegler (2011) (henceforth, ES) proposed a model of competitive
marketing when consumers have limited propensity to consider all feasi-
ble market alternatives. A key result in the paper (Proposition 2) stated
that there always exists a symmetric equilibrium in which firms earn the
max-min profit. This statement turns out to be incorrect, and in this cor-
rigendum we provide a necessary condition on the "consideration function"
for the existence of an equilibrium with max-min payoffs for any "admissi-
ble" cost structure. Interestingly, this condition is based on the well-known
mathematical concept of a "Helly family". We illustrate that the necessary
condition is not sufficient, and also that the sufficient condition provided in
Proposition 4 of ES is not necessary.

In this corrigendum we also address another, more minor mistake in ES.
When costs are sufficiently small, firms earn max-min payoffs in any sym-
metric equilibrium, for essentially any consideration function. Proposition 6
in ES provided a bound on costs, below which firms earn max-min payoffs.
The proof that appeared in ES contained a mistake, and here we restate the
result with a slightly modified bound.

We begin by recalling the model of ES, using slightly different notation
that would be useful for our current objective. Let X be a finite set of prod-
ucts, and let D be a finite set of “marketing devices”. Two firms facing a
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single consumer play the following simultaneous-move game with complete
information. A pure strategy for a firm is a pair (x,M), where x ∈ X and
M ⊆ D. Let cx > 0 and cm > 0 denote the fixed costs of x and m, respec-
tively, and let c(x,M) ≡ cx +

P
m∈M cm be the fixed cost of (x,M). Faced

with the strategy profile (xi,M i)i=1,2, the consumer chooses according to a
procedure based on two primitives: a strict preference relation Â on X and a
consideration function f : D→ 2X\{x

∗}, where x∗ is the Â-maximal element
in X, and f(m) is interpreted as the set of products from which m attracts
attention. The consumer initially draws a firm i at random. He switches
to firm j (and subsequently consumes xj) if and only if (xj ,M j) “beats”
(xi,M i), which occurs whenever xi ∈ ∪m∈Mjf(m) and xj Â xi. Each firm
tries to maximize its probability of being chosen minus the fixed cost of its
strategy. We focus on symmetric Nash equilibria. Given an equilibrium σ
let Supp(σ) denote its support. Let βσ(x) denote the probability that x is
played in σ, namely βσ(x) =

P
M σ(x,M).

The following conditions are imposed on the primitives. First, cx ≥ cy
whenever x Â y, with a strict inequality when x = x∗. Second, c(x∗,D) < 1

2 .
Third, ∪m∈Df(m) = X. These conditions imply that the max-min payoff in
the game is 12 − cx∗ . This naturally raises the question of whether firms are
able to earn payoffs above this level in symmetric Nash equilibrium. This is
an important question, for two reasons. First, the max-min payoff is also the
equilibrium payoff that firms earn if consumers are fully rational in the sense
that they always consider the entire feasible set of market alternatives, inde-
pendently of the firms’ marketing strategies. Second, max-min equilibrium
payoffs imply an interesting corollary regarding consumers’ conversion rates
on the equilibrium path, a property referred to as the Effective Marketing
Property.

Proposition 2 in ES stated that for a tuple (c, f,Â) with the above prop-
erties, there exists a symmetric mixed-strategy Nash equilibrium in which
firms earn max-min payoffs. However, the constructive proof of this claim
failed to take into account certain deviations to pure strategies outside the
support of the putative equilibrium strategy.

2 Necessary condition

For every non-empty Y ⊆ X, denote fY (m) = f(m) ∩ Y . A collection
{Xk}k=1,...,K of subsets of X is a Helly family, if whenever Xk ∩Xk0 6= ∅
holds for any k, k0 ∈ {1, ...,K}, then ∩k=1,...,KXk 6= ∅.1 We say that a

1See http://en.wikipedia.org/wiki/Helly_family.
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consideration function f satisfies the Helly property if for every non-empty
subset of marketing devices {m1, ...,mK} ⊆ D and every non-empty subset
of products Y ⊆ X\{x∗}, the collection of subsets {fY (mk)}k=1,...,K is a
Helly family.

Proposition 1 If f violates the Helly property, then the rational-consumer
payoff 1

2 − cx∗ is unsustainable in symmetric Nash equilibrium for generic
permissible cost structures.

Proof. We construct a proof by contradiction that proceeds in three steps.
Let σ be a symmetric Nash equilibrium.

Step 1: If f violates the Helly property, then there exists a set of three
marketing devices M3 = {m1,m2,m3} ⊆ D and a set of three inferior
products X3 = {x1, x2, x3} ⊆ X\{x∗} such that {fX3(mk)}k=1,2,3 is not a
Helly family.
Proof : If f violates the Helly property, then there is a set of market-
ing devices M 0 ⊆ D and a set of products Y 0 ⊆ X such that fY 0(m) ∩
fY 0(m

0) 6= ∅ holds for every m,m0 ∈ M 0, but ∩m∈M 0fY 0(m) = ∅. Among
these pairs (M 0, Y 0), select a pair (M,Y ) with a minimal M – that is,
there exists no (M 0, Y 0) as defined above such that M 0 ⊂ M . Therefore,
∩m0∈M\{m}fY (m) 6= ∅ for every m ∈ M . Clearly, |M | , |Y | ≥ 3. Impose an
arbitrary enumeration on M , such that M = {m1, ...,mK}, K ≥ 3. By the
minimality of M , for every mk ∈M there is xk ∈ Y such that xk /∈ fY (m

k)
and xk ∈ ∩m∈M\{mk}fY (m). Define M

3 = {m1,m2,m3} ⊆ M and X3 =

{x1, x2, x3}. By definition, fX3(m1) = {x2, x3}, fX3(m2) = {x1, x3} and
fX3(m3) = {x1, x2}, hence the collection {fX3(mk)}k=1,2,3 is not a Helly
family. ¤

Let ασ(m) denote the probability that a marketing device m is played
in σ, i.e.,

ασ(m) ≡
X

(x,M)∈Supp(σ)|m∈M
σ(x,M)

Step 2: For any � > 0, there exists a generic permissible cost structure such
that for any symmetric Nash equilibrium strategy σ that induces max-min
payoffs, ασ(m) ≤ � for every m /∈M3.
Proof : Denote X{

3 = X\(X3 ∪ {x∗}), and denote M{
3 = D\M3. Let

cxk = c̄ + �k for every xk ∈ X3, where �1 + �2 + �3 = 0, cx∗ > c̄ + 1
3 + � |D|

and let cx ≥ cx∗ − �/2 for every x ∈ X{
3 , where � > 0. Set cmk = c̃ + �k for
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every mk ∈M3, and let cm > 3c̃ for every m ∈M{
3 . Clearly, �, �1, �2, �3 must

all be sufficiently small in order to ensure the cost structure is permissible,
namely that c(x∗,D) < 1

2 and that cx∗ > cx for all x 6= x∗.
Assume there exists a symmetric Nash equilibrium σ in which firms earn

max-min payoffs. Assume that ασ(m) > � for some m ∈ D. Suppose
there exists (x0,M 0) ∈ Supp(σ) such that x0 ∈ fX{

3
(m). By the Effec-

tive Marketing Property (Proposition 5 in ES), (x0,M 0) is beaten by any
(x00,M 00) ∈ Supp(σ) with m ∈ M 00. Hence, by playing (x∗,M 0) instead of
(x,M 0) a player would increase his market share by at least 12ασ(m), while
increasing his cost by less than 1

2� < ασ(m). It follows that for any mar-
keting device m with ασ(m) > �, the only products in f(m) that are played
with positive probability in σ are those in X3. Suppose ασ(m) > � for some
m ∈ M{

3 and consider some (x̂, M̂) ∈ Supp(σ) for which m ∈ M̂. Then, by
switching from (x̂, M̂) to (x̂, (M̂\{m})∪M3), a firm reduces its cost without
lowering its market share. ¤
Step 3: Firms earn more than 1

2 − cx∗ in any symmetric Nash equilibrium
for a generic permissible cost structure.
Proof : Consider the cost structure assumed at the beginning of the proof of
Step 2, and assume that there exists a symmetric Nash equilibrium strategy
σ that induces max-min payoffs. Then, (x∗, ∅) is a best response to σ. Thus,
for any xk ∈ X3, the strategy (xk, ∅) cannot achieve a higher payoff against
σ than (x∗, ∅). This means that if a player switched from playing (x∗, ∅)
against σ to playing (xk, ∅), the expected loss in market share would be
weakly greater than the savings in costs. Therefore,

1

2

X
m∈M3\{mk}

ασ(m) +
1

2

X
m∈M{

3

� ≥ cx∗ − c̄− �k

To see why this inequality holds, recall that by Step 2, only marketing
devices in M3 are chosen with a probability strictly greater than � in any
equilibrium with max-min payoffs. Therefore, the left hand side of the above
inequality is an upper bound for the probability that a consumer’s attention
is attracted by the opponent’s marketing strategy, and hence, the left side is
an upper bound for the loss in market share. Summing up these inequalities
over all xk ∈ X3 yieldsX

mk∈M3

ασ(m
k) +

3

2

X
m∈M{

3

� ≥ 3(cx∗ − c̄)

Since cx∗ − c̄ > 1
3 + � |D|, it follows that

P
mk∈M3 ασ(m

k) > 1 + 3
2� |D|.

This means that there exists some M with
P

x∈X|M⊆M 0 σ(x,M 0) > � and
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¯̄
M ∩M3

¯̄
≥ 2 - otherwise, the sum of all elements in Supp(σ) would be

strictly greater than one, a contradiction. Assume w.l.o.g. that {m1,m2} ⊆
M . Recall that in the proof of Step 2, we showed that for any marketing
device m with ασ(m) > �, the only products in f(m) that are played with
positive probability in σ are those in X3. Since fX3(m1) ∪ fX3(m2) = X3,
it follows that M = {m1,m2} - otherwise, a firm could deviate from (x,M)
to (x, {m1,m2}) and lower its cost without lowering its market share.

As firms earn by assumption max-min payoffs, and x3 ∈ f(m1) and
x3 ∈ f(m2) holds, Proposition 3 in ES implies that x3 is not played at all in
σ. But this means that a firm could deviate from (x, {m1,m2}) to (x, {m3})
and lower its cost without lowering its market share. Hence (x, {m1,m2})
is not a best-reply to σ, a contradiction.

Let us now illustrate that the necessary condition for max-min equilib-
rium payoffs is not sufficient, and that the sufficient condition provided by
Proposition 4 in ES, namely that the consideration function is partitional,
is not necessary.

Necessary condition is not sufficient
Let X = {x1, . . . , xK} ∪ {x∗} and D = {m1, . . . ,mK}. Define the consider-
ation function fK as follows:

fK(m
k) = {xkmodK , x(k+1)modK} (1)

Note that f3 violates the Helly property. Hence, symmetric equilibrium
profits exceed the max-min for generic permissible cost structures.

This example also illustrates the non-monotonicity of equilibrium prof-
its with respect to consumer attention. Fix X = {x1, x2, x3} ∪ {x∗} and
D = {m1,m2,m3}. As pointed out in ES, one could imagine a scale that
measures consumers’ resistance to considering new alternatives. At one end
of the scale is the rational consideration function fR(m) = {x1, x2, x3} for all
m ∈ D, and at the other end of the scale there is the partitional consideration
function fP defined by fP (m

k) = {xk}. In both cases, symmetric equilib-
rium profits are equal to the max-min. The function f3 is "in between"
these two extremes (in terms of the consumer’s propensity to consider new
alternatives), and yet it induces equilibrium payoffs above the max-min for
generic permissible cost structures.

Now consider f5. This consideration function vacuously satisfies the
Helly property, and yet it can be shown that symmetric equilibrium payoffs
must exceed the max-min for generic permissible cost structures, using a
construction similar to that in the proof of Proposition 1.
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Sufficient condition is not necessary
Proposition 4 in ES shows that if {f(m)}m∈M is a partition of X\{x∗}, then
firms earn max-min payoffs in every symmetric Nash equilibrium. Consider
the following specification of the model. Let X\{x∗} = {1, 2, 3, 4}, D =
{m1,m2,m3}, f(mk) = {k, 4} for every k = 1, 2, 3. Assume x Â 4 for every
x 6= 4. The consideration function is clearly non-partitional, but it satisfies
the Helly property. Let us now show that firms earn the max-min in every
symmetric Nash equilibrium, for any permissible cost structure.

Fix a symmetric equilibrium strategy σ. By Lemma 1 in ES, βσ(x
∗) > 0.

If (x∗,∅) ∈ Supp(σ), we are done. Suppose (x∗,∅) /∈ Supp(σ). If βσ(4) > 0,
then 4 is beaten by every (x∗,M) ∈ Supp(σ). Since 4 is the Â-minimal
product, (4,∅) ∈ Supp(σ) and this alternative does not beat any element in
Supp(σ). It follows that a firm deviates from (4,∅) to (x∗,D), it increases
its market share by at least 12βσ(x

∗)+ 1
2(1−βσ(x∗)) =

1
2 > c(x∗,D)−c(4,∅),

hence the deviation is profitable. Therefore, βσ(4) = 0. But this means that
the equilibrium must be the same as if 4 were eliminated from X, in which
case f would be partitional. By Proposition 4 in ES, symmetric equilibrium
payoffs in this case are equal to the max-min.

3 Max-min payoffs for sufficiently small costs

Proposition 6 of ES stated that if c(x∗,D) < 1/(2|D| + 2), then firms would
earn the max-min payoffs in any symmetric equilibrium. The proof pointed
out that if firms earn above the max-min payoff at some equilibrium σ, then
any (x∗,M) ∈ Supp(σ)must beat some (x0,M 0) ∈ Supp(σ). Since (x0,M 0) is
a best-reply to σ, it cannot be profitable to deviate from (x0,M 0) to (x∗,M).
In ES, we translated this observation to the following inequality:

1

2
σ(x∗,M) +

1

2

X
x≺x∗

βσ(x) ≤ c(x∗,M)− c(x0,M 0)

This inequality, however, is incorrect because it ignores the possibility that
some strategies are beaten by both (x∗,M) and (x0,M 0).

The following result is a restatement of Proposition 6 in ES, with a
slightly lower upper bound on costs. When costs are below this bound,
firms earn the max-min payoff in any symmetric equilibrium.

Proposition 2 Let m∗ be the most costly marketing device. If

(2|D| − 1) · cx∗ + (|X|− 1) · cm∗ <
1

2
(2)
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then firms earn the rational-consumer payoff in any symmetric Nash equi-
librium.

Proof. Assume (2) holds. Let σ be a symmetric Nash equilibrium in which
firms earn above the max-min payoff. By Step 1 of Proposition ??, for every
(x,M) ∈ Supp(σ) with x 6= x∗, there exists (x∗,M 0) ∈ Supp(σ) such that
(x∗,M 0) does not beat (x,M). By assumption (P2) in ES, there exists some
m(x) ∈ D such that x ∈ f(m) and hence, (x∗,M 0 ∪ {m(x)}) would beat
(x,M). Since (x∗,M 0) ∈ Supp(σ), it follows that

1

2
βσ(x) ≤ cm(x)

since otherwise, it would be strictly profitable to deviate from (x∗,M 0) to
(x∗,M 0 ∪ {m(x)}). Summing these inequalities over all x ≺ x∗ yields:

1

2

X
x≺x∗

βσ(x) ≤
X
x≺x∗

cm(x) ≤ (|X|− 1)cm∗ (3)

Let A(x∗,M) denote the set of strategies (x0,M 0) ∈ Supp(σ) that are
beaten by (x∗,M). Let a(x0,M 0) ∈ A(x∗,M). Because firms earn above the
max-min payoffs, A(x∗,M) 6= ∅ for all (x∗,M) ∈ Supp(σ). In addition, for
each (x∗,M) ∈ Supp(σ), it is not profitable to deviate from any a(x∗,M)
to (x∗,M), hence

1

2
σ(x∗,M) ≤ cx∗ − ca(x∗,M)

Since by assumption, (x∗, ∅) /∈ Supp(σ) (firms earn above max-min payoffs),
summing over all strategies (x∗,M) ∈ Supp(σ) we obtain

1

2
βσ(x

∗) < (2|D| − 1) · cx∗ (4)

Summing (3) and (4) yields:

1

2
< (2|D| − 1) · cx∗ + (|X|− 1) · cm∗

a contradiction.
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