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Abstract A collection of large traders holds heterogeneous prior beliefs regarding
market fundamentals. This gives them a motive to engage in speculative trade with
respect to market prices. Rather than assuming a particular institution or market for
speculative trade, we take a mechanism-design approach by attempting to characterize
the mechanism that maximizes the traders’ gains from speculative trade, subject to
the incentive constraints that result from the traders’ ability to manipulate market
prices. Within a stylized market model, we show that this mechanism affects price
volatility without destroying ex-post efficient allocations. We also characterize the
implementability of optimal speculative trade when the traders’ prior beliefs are private
information.
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1 Introduction

When traders have heterogeneous beliefs about the future price of some commodity,
they can make speculative gains by betting on the price. Such bets can be made in
a forward market, where traders sign contracts that specify monetary transfers as
a function of the future price. Different forms of contracts may generate different
levels of speculative gains. Therefore, in order to understand the role of these financial
instruments in speculative trade, it is important to have a theoretical benchmark that
identifies the limits to the speculative gains that can be made using such instruments.
This paper takes a first step towards this goal, adapting a theoretical framework first
presented in Eliaz and Spiegler (2007).

A major obstacle to the analysis of speculative trade in the presence of heteroge-
neous beliefs is that speculative gains may be unbounded. This is because risk-neutral
traders with different prior beliefs would be willing to take infinite bets on the future
price. We circumvent this problem in this paper by focusing on an imperfectly com-
petitive market with large traders who can affect market prices. This ability to affect
prices, and hence, to manipulate the outcome of bets places restrictions on its stakes.1

There are a number of important commodity markets in which there are only a few
participants with significant market power, who are also active in the futures market
associated with that commodity. Notable examples of such commodities include elec-
tricity, natural gas, crude oil and grains (see Newbery 1984; Dong and Liu 2005; Haigh
et al. 2005). Indeed, there have been public concerns with regards to the possibility
that large participants in these commodity markets would abuse their market power
by trying to affect the price of the commodity in order to reap gains in the forward
market (for concerns regarding the grain market, see Pirrong 2004, and for concerns
regarding the electricity market, see Borenstein et al. 2005; FERC 2003).

In our focus on imperfectly competitive markets, we also follow a convention in
the literature on speculative trade (most notably, Kyle 1984, 1985, 1989; Harris and
Raviv 1993; Kyle and Wang 1997; Odean 1998). The main difference between these
works and the present paper is that we do not assume that speculation is achieved by
trading an exogenously given set of financial instruments in some forward market of
a particular structure. Rather, we ask the following question: if the traders themselves
could design a mechanism or institution that maximizes their total surplus (including
speculative gains due to different priors), subject to the incentive constraints that result
from their ability to influence market prices, what would that mechanism be?

We analyze this question in the context of a highly stylized market model. There are
two time periods. In period 2, a commodity is traded in a market with identical sellers
having a unit supply, and identical buyers having a unit demand. In addition to these
traders, there is an external demand that may either be zero or high. The realization
of this external demand is known to the buyers and sellers when they trade in the
commodity market. Trade is carried out according to a complete-information market

1 Bounded bets could also be generated by alternative assumptions, such as risk aversion or liquidity
constraints. For a survey of some recent works on speculative trade which employ these assumptions, see
Scheinkman and Xiong (2003).
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game adapted from Dubey (1982). In the absence of betting, Nash equilibrium (NE)
induces the competitive outcome in each state.

In period 1, the traders have different prior beliefs regarding the size of external
demand. We assume that neither the level of external demand nor the traders’ actions
in period 2 are verifiable. Therefore, the traders can give an expression to their hete-
rogenous beliefs only by betting on the future market price. A bet is a contract that
assigns transfers among traders conditional on whether trade takes place and at what
price. Each bet modifies the payoffs in the market game, and therefore its NE need to
be recalculated.2 A bet is optimal if it is (constrained) interim Pareto efficient—that
is, if it maximizes the sum of the traders’ interim expected utilities, calculated accor-
ding to their individual priors, subject to the constraint that a NE of the market game
(modified by the bet) is played.

After presenting the model in Sect. 2, we analyze the structure of constrained
interim-efficient bets in Sect. 3. We show that they can be interpreted as non-linear
futures contracts. While in some cases the efficient bet affects market prices and
introduces price volatility which would not exist in the absence of bets, it does not
destroy ex-post efficiency. The transfers administered by the bet assume the role of
prices and provide the incentives that restore ex-post efficiency.

In Sect. 4, we assume that prior beliefs are private information (drawn from some
distribution) and ask whether the efficient bet can be implemented by some mechanism.
To answer this question, we apply the mechanism design approach first presented in
Eliaz and Spiegler (2006, 2007). These papers have focused on bilateral speculation
problems, where two agents hold different priors over an unverifiable state of nature,
which affects the outcome of a game they are about to play. The papers characterize
interim-efficient bets and discuss their implementability in terms of the underlying
game’s payoff structure. That characterization relies on a formal analogy between
the problem of implementing interim-efficient bets and the problem of efficiently
dissolving a partnership, which was originally studied by Cramton et al. (1987)—
henceforth, referred to as CGK.

The main result in Sect. 4 establishes that the problem of implementing the interim-
efficient bets in our market model is also equivalent to CGK’s model.3 Using this
equivalence, we show that the answer to the implementability question depends on
asymmetries between buyers and sellers in the basic market game. As the number of
sellers increases, and as the gap between buyers’ and seller’s valuation of the traded
asset diminishes, the efficient bet can be implemented for a larger set of distributions
from which priors are drawn. When the numbers of buyers and sellers are identical,
the efficient bet can always be implemented, using a natural, auction-like mechanism.
Thus, in this case, the institution for speculative trade is designed as a market in which
an option-like asset is sold in an auction.

2 This observation was used by Allaz and Vila (1993) to derive a rationale for forward markets, in an
environment without uncertainty. They show that producers may wish to use forward contracts in order
to improve their situation in a future, imperfectly competitive spot market. In their model, producers first
trade in forward contracts, and then play a Cournot game in which their payoff functions are modified by
the positions they took in the forward market.
3 The equivalence does not follow from Eliaz and Spiegler (2006, 2007). In these papers we provide a
sufficient condition for the equivalence, which is not satisfied in general by our current model.
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Our contribution in this paper is modest, in the sense that the market model we ana-
lyze is based on a number of simplifying assumptions which greatly restrict the model’s
scope of applicability. In Sect. 5 we discuss in detail the role of these assumptions
and the extent to which our results are robust to relaxing them. We wish to emphasize
that the model is not meant to be faithful to any real-life financial market. We do
hope, however, that our exploratory analysis demonstrates the potential fruitfulness of
a mechanism-design approach to speculative trade motivated by non-common priors.

2 The Model

There are two time periods, 1 and 2. In period 2, the following market game is played.
There are S sellers and B buyers. Each seller s ∈ {1, . . . , S} is able to supply a single
unit of an indivisible good at a cost of c ≥ 0. Sellers derive no utility from consuming
the good. Each buyer b ∈ {S + 1, . . . , S + B} is willing to pay 1 for a single unit, and
derives no utility from consuming additional units. There is also an external demand
for ν units at a price of 1. External demand behaves stochastically, depending on the
state of nature, ω. There are two states of nature: ω = l (no external demand) and
ω = h (high external demand), such that ν = 0 in state l and ν = h (abusing notation)
in state h. We assume that h > S.

The market agents trade according to the following simultaneous-move double-
auction, adapted from Dubey (1982). Every agent (buyers and sellers alike) submits
a buy order, consisting of a bid price and a number of demanded units, which may be
any integer from 0 to S. In addition, every seller submits a sell order, namely an ask
price for the unit he is able to produce. Both bid and ask prices must lie in [0, 1]. We
let a denote the profile of actions by the buyers and sellers. The market price is the
highest market-clearing price, given the aggregate supply and demand curves induced
by the agents’ buy and sell orders. If there exists no market-clearing price, the outcome
is “no trade”. If there is excess demand at the market price, then agents are serviced
according to their supply and demand (i.e., on the demand side, agents who submitted
a higher bid get a higher priority, and on the supply side, agents who submitted a lower
ask get a higher priority), and ties are broken by a symmetric lottery.

Agents have quasi-linear utilities. A buyer’s payoff is min(1, q buy) − pqbuy if he
ends up buying q buy units at a price p. A seller’s payoff is (p − c) · qsell − pqbuy if
he ends up selling qsell units to other agents and buying qbuy units from other agents
at a price p (qbuy gets the values 0, 1, 2, . . . , S, and qsell gets the values 0, 1). Note
that we assume that when a seller purchases a unit from himself, he does not incur the
production cost c. We denote agent i’s payoff function by ui .

The realization of ν is common knowledge in period 2. Hence, in each state ω the
agents play a complete information market game denoted by G(ω). This game has the
following properties.

Remark 1 The market price in any NE of G(h) is 1. The market price in any NE of
G(l) is c if S > B; 1 if S < B; and any value in [c, 1] if S = B.

In period 1 agents have conflicting prior beliefs regarding the likelihood of each
state. Let θi denote the prior probability that agent i assigns to state h. Denote θ =
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(θ1, . . . , θS+B). It is common knowledge that every agent i independently draws his
prior belief θi from a continuous cdf F with support [0, 1] and positive continuous
density. Thus, F may be interpreted as the distribution of opinions regarding future
external demand in the general population of traders.

A bet is a multilateral contract, which maps a set of verifiable contingencies to
budget-balanced monetary transfers among the traders. We assume that neither the
state of nature nor the agents’ actions are verifiable. The only contingencies that can
be contracted upon are whether trade occurs in the second period and at what price.
For every action profile a in the market game, let x(a) ∈ [0, 1] ∪ D represent the
verifiable market outcome induced by a, where x(a) = D if a induces no trade,
and x(a) is the market price if a induces trade. Thus, a bet is a profile of functions
t = (ti (·))B+S

i=1 , where ti : [0, 1] ∪ D → R; ti (x) is the monetary transfer received

by agent i when the second-period outcome is x ; and
∑B+S

i=1 ti (x) = 0 for all x ∈
[0, 1] ∪ D.

If agents sign a bet in period 1, their second-period payoff function is modified,
such that agent i’s payoff from an action profile a is ui (a) + ti (x(a)). For each state
ω, we let G(ω, t) denote the second-period market game that is played in state ω after
the agents agreed on a bet t in the first period. Consider an agent j who signed the
bet and expects the second period action profile in state ω ∈ {h, l} to be aω. Denote
a = (ah, al). Given the agent’s first-period prior belief, his expected utility is:

Ui (a, t) ≡ θi [ui (a
h) + ti (x(ah))] + (1 − θi )[ui (a

l) + ti (x(al))]

We conclude the description of the model with a few comments. First, note that
second-period trade takes place once and for all. If an agent purchased more units than
he is able to consume, he cannot resell those extra units. Second, the model rules out
short-selling: a seller cannot offer more than one unit and a buyer cannot offer any
unit. Consequently, there is an asymmetry in the agents’ ability to influence market
outcomes. If a certain action profile induces a market price of p < 1, then every agent
can unilaterally induce a higher price p′ ∈ (p, 1], by demanding a sufficiently large
quantity at p′. In contrast, downward price manipulation is often impossible, because
a comparable “dumping” strategy is unavailable. This asymmetry between upward
and downward price manipulation will play an important role in the sequel. Third,
the assumptions imposed on the stochastic behavior of external demand simplify the
restrictions imposed on the traders’ incentives to manipulate the market outcome in
the second period. To see this, note that because the size of external demand in state
h is higher than S, trade must take place in that state at a price of 1, regardless of the
agents’ actions. Hence, when agents contemplate signing a bet in period 1, they all
agree that the verifiable market outcome in state h will be xh = 1. Therefore, market
manipulation is possible only in state l.

Finally, note that our model is formally indistinguishable from a model in which
every agent i assigns probability 1

2 to each state, and his utility function is multiplied
by a state-dependent constant (θi in one state and 1 − θi in the other state). The
motivation for signing side contracts under this re-interpretation is risk sharing rather
than speculative betting. Note that this re-interpretation requires us to assume that
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the utility from money is state-dependent, whereas the trade-off between money and
consumption is state-independent. We find it hard to imagine other motivations than
non-common priors for such preferences.

2.1 Constrained interim-efficient bets

We are now able to define the limits to potential gains from speculative bets, imposed
by the agents’ ability to manipulate market prices. Consider the following constrai-
ned optimization problem. For every profile of priors θ , choose a bet t(θ) and a
state-contingent action profile a(θ) so as to maximize

B+S∑

i=1

Ui [a(θ), t(θ)] (1)

subject to constraint that for every state ω ∈ {h, l}, the outcome aω(θ) is a NE in the
modified market game in which agent i’s payoff function is ui (aω) + ti (x(aω)). We
refer to this constraint as “second-period incentive compatibility” (SPIC). In order to
be sustainable, a bet must satisfy the SPIC constraints—that is, it must provide the
agents with incentives not to manipulate the market price.

A solution (a(θ), t(θ)) to the constrained optimization problem is referred to as
constrained interim efficient (or CIE for short). In other words, for any pair (a, t) that
is not a solution, the agents can find a bet t ′ and a state-contingent action profile a′,
such that (a′, t ′) satisfies the SPIC constraints and every agent prefers (a′, t ′) to (a, t),
given his prior. We refer to the optimal value of (1) as the “CIE surplus”. Occasionally,
we refer to t(θ) as a “CIE bet”. We shall say that a pair (a, t) is a candidate solution
if the action profiles, ah and al , are NE of the t-modified game in states h and l,
respectively.

The following pair of examples illustrates how the SPIC constraints affect the
sustainability of bets. In both examples, S = B = 1. Our first example describes a
bet that cannot be sustained, once SPIC constraints are taken into account. Suppose
that b and s sign a bet requiring s to pay b the amount A if trade occurs in period
2, and receive A from b if trade does not occur. Thus, ts(D) = −tb(D) = A, and
ts(x) = −tb(x) = −A for every x ∈ [0, 1]. Occurrence of trade in state h is assured,
regardless of the players’ actions. Suppose that there is an action profile al such that
x(al) = D. Then, the agents’ first-period interim expected utilities are:

Us (a, t) ≡ θs · [1 − c − A] + (1 − θs) · A

Ub(a, t) ≡ θb · [1 − 1 + A] − (1 − θb) · A

However, the buyer can impose trade in state l by demanding one unit at p = 1. Both
before and after this deviation, his bare-game payoff is zero, but the deviation tilts the
outcome of the bet in his favor. Therefore, as long as A > 0, there is no action profile
that satisfies the SPIC constraints.
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Now suppose that b and s sign an alternative bet requiring s to pay p − c if there is
trade at a price of p > c, and zero if there is no trade, or if there is trade at a price of
p ≤ c. This contract resembles a call option which is settled in cash, giving the buyer
the right to purchase a unit of the good for a price of c in period 2. In state h trade
occurs at p = 1, regardless of the agents’ actions. Suppose that in state l, s offers one
unit at a price of c, and b demands one unit at this price. Let us show that this action
profile constitutes a NE in the market game modified by the bet. The only way a seller
can manipulate the outcome of the bet is by raising the ask price to p > c. However,
his bare-game payoff will remain zero and in addition he will have to pay p − c to
the buyer. The buyer can manipulate the outcome by raising his bid price also to p.
The increase in the side payment that the buyer receives as a result of this deviation is
exactly offset by the decrease in his bare-game payoff. Therefore, none of the agents
wish to manipulate the bet’s outcome. It follows that the bet and the constructed action
profile satisfy the SPIC constraints.

3 Characterization of CIE bets

A priori, it is not clear whether traders would prefer to sacrifice efficiency in the bare
market game in order to increase their speculative gains. But as our first result shows,
interim-efficient bets do not compromise ex-post efficiency.

Proposition 1 For every profile of priors θ , there exists a CIE solution, which is also
ex-post efficient.

There are two reasons why this result is not self-evident. First, in principle, the
traders could sustain a no-trade outcome in state l. This could be achieved with a pair
(a, t) in which all sellers submit an ask of 1, all buyers submit a bid of 0, and t is
defined such that it is not profitable for a seller or for a buyer to unilaterally induce trade.
However, as we show in the proof of the proposition, the SPIC constraint that prevents
trade from occurring in l implies, by budget-balancedness, that t(D|θ) = t(1|θ) for
all θ . This means that by enforcing no trade in state l, not only do traders earn zero
speculative gains, they also lose the bare-game surplus that is available in that state.
Hence, it cannot be interim-efficient not to trade in state l.

Second, the agents could also use the bets’ transfers to sustain inefficient trade where
some agents either do not trade, or purchase useless units. However, as we show in the
Appendix (see Lemma 1), the total surplus attained by a bet that induces inefficient
trade cannot exceed the surplus that is generated by a bet that induces efficient trade.

In light of Proposition 1, we proceed to explore the properties of those CIE solutions
that are ex-post efficient. More specifically, we ask whether there exist such solutions
in which the agents’ behavior in each state is similar to their behavior in the NE of the
bare game in the following sense: the agents’ actions are independent of their prior
beliefs, all buyers submit the same buy order, all sellers submit the same sell order
and the outcome is individually rational (i.e., sellers do not purchase any units, buyers
purchase at most one unit and the price is in [c, 1]). We refer to efficient CIE solutions
with these properties as natural CIE solutions.
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Definition 1 The CIE surplus is attained by natural solutions if there exists a bet t(θ)

and a pair of action profiles, ah and al , which are efficient and individually rational
in states h and l respectively, such that for all θ , the tuple ((ah, al), t(θ)) is CIE.

We begin by characterizing the bets that are used in any natural CIE solution. Since
there is no speculation when pl = ph = 1, we focus on the case in which a natural
CIE solution induces pl < 1. For our characterization we shall need the following
notation. Let pω denote a NE market price in state ω. Let i∗(θ) = arg mini θi . Given
that F is continuous, we ignore the case in which several agents share the same prior.
To simplify the exposition, we shall refer to i∗ as the l-optimistic agent.

Proposition 2 Suppose the CIE surplus is attained by a natural CIE solution that
induces pl < 1. Then a bet t(θ) attains this surplus if and only if for every s, b and
p ∈ (pl , 1],

ts(p|θ) − ts(pl |θ) ≤ min

{

1,
B

S

}

· (pl − c) + p(S − 1) (2)

tb(p|θ) − tb(pl |θ) ≤ min

{

1,
S

B

}

· (1 − pl) + pS − 1 (3)

and if at p = 1, the above conditions hold with equality for every s 	= i∗(θ) and
b 	= i∗(θ).

Since in equilibrium, the market prices in states h and l will be 1 and pl respectively,
we may interpret

∣
∣t j (1) − t j (pl)

∣
∣ as the stakes of the “bilateral bet” between i∗ and

j 	= i∗. In other words, this is the volume of the speculative bets between these
agents. It is constrained by j’s gain from following his equilibrium strategy, relative
to manipulating the market price in state l from pl to 1 (the fact that only upward
price manipulation is relevant can be traced to our assumption of no short-selling).
The loss from manipulating the market price is equal to the net cost of buying S units
at a price of 1. For a buyer, who consumes the first unit he buys, this cost is equal to
his expenditure, S, minus his utility from the first unit. For a seller, who can purchase
the first unit from himself, this cost is equal to his expenditure on the remaining S − 1
units. This buyer-seller difference in manipulation costs will play in important role in
the next section. Finally, note that the CIE bet characterized in Proposition 2 has the
property that the stakes of the bet between i∗ and every j 	= i∗ are independent of θ .

Proposition 2 is proven by actually constructing a natural CIE solution in which
the l-optimistic agent essentially bets on a low price (pl < 1) against each of his
opponents, where this price pl is independent of θ . The following result is an immediate
corollary of this construction in the proof.

Corollary 1 The CIE surplus is attained by natural solutions.

It is interesting to note that the bets in natural CIE solutions can have a simple form
that resembles some real-life financial instruments. In particular, such bets can take
the form of a contract that specifies constant transfers as long as trade occurs at a price
p ≤ pl or does not occur at all, but if p > pl , agent i∗ pays an additional amount
which is linear in p. This contract may be interpreted as a non-linear option.
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Proposition 2 allows us to analyze the effect of speculative bets—at the CIE
solution—on prices. Our assumption on the size of external demand in state h implies
that the NE price in that state must be 1, regardless of the form of bets signed in the
first period. We therefore focus on the effect that CIE bets have on the price in state l .

Proposition 3 CIE solutions have the following implications for market prices.

(i) When S > B, there exists a CIE solution with the property that pl is perfectly
competitive.

(ii) When B > S > 1, the CIE surplus is attained without bets and with perfectly
competitive prices.

(iii) When B > S = 1 and the l-optimistic agent is a buyer (i.e., i∗ > 1), the
CIE surplus is attained with non-trivial bets, sustaining any pl ∈ [c, 1). When
B > S = 1 and the l-optimistic agent is a seller (i.e., i∗ = 1), the CIE surplus
is attained without bets and with perfectly competitive prices, as well as with
bets and any pl ∈ [c, 1).

(iv) When B = S, there exists a CIE solution with the property that pl is perfectly
competitive. However, there exists no CIE solution that induces pl = 1.

This result highlights some important features of the market price in the presence
of CIE bets. First, although the CIE bet is a function of the priors, the market price
does not depend on them. Second, when B > S > 1, there is no speculation. In this
case, competitive forces push the price in state l all the way up to 1, regardless of
the bet. But this means that the prices in both states are equal, hence traders cannot
bet. Competition pushes the price to its competitive level in the case of B < S, too.
In this case, however, the price is c, hence there are non-trivial CIE bets. These bets
are “purely speculative” in the sense that they have no effect on the second period
market outcome. That is, the NE of the modified game is exactly the same as the NE
of the bare game: the outcome is efficient and the price is perfectly competitive. When
B > S = 1, CIE bets lead to indeterminacy, since pl can get any value in [c, 1). In
this case, bets assume the role otherwise played by prices, providing the incentives
needed for an efficient allocation. Finally, when S = B, pl = 1 is not a NE price in
the modified game, although it is a NE of the bare game.

Summary. In this section we characterized an example of “optimal speculative bets”,
where the object of speculation is the future price of a commodity which is traded in an
imperfectly competitive market model populated by the betting parties themselves as
well as “noise” traders. The main features of “optimal speculation” in our simple model
can be summarized as follows. First, optimal speculation may involve price volatility
which does not exist in the absence of bets. However, it does not compromise the
ex-post efficiency of resource allocation. Second, a non-linear contract of the future
market price, which may be contrasted with the linearity in prices of standard options,
is an efficient instrument for speculation. Finally, optimal speculation depends on the
profile of prior beliefs only in-so-far as it relies on the identity of the agent with the
lowest assessment of external demand.
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4 Mechanism design

Corollary 1 in the previous section established that given any profile of priors θ , there
exists a natural CIE solution in which the market outcome in each state is efficient,
individually rational and independent of the agents’ priors. However, the CIE bet in
these solutions does depend on θ . This raises the question: would agents be able to
sign such a bet when their prior beliefs are private information?

Our approach to addressing this question is borrowed from the mechanism-design
literature. We ask, is there a mechanism—i.e., a game played in the first period whose
outcome is a bet—such that for every θ , there exists a perfect Bayesian Nash Equili-
brium (PBNE) in which the first-period outcome is a bet t(θ) and the second-period
outcome is ah in state h and al in state l, such that ((ah, al), t(θ)) is a natural CIE
solution? Whenever the answer to this question is positive, we say that the mechanism
implements a natural CIE solution.4

We require the mechanism to satisfy a participation constraint. Every agent can
veto the mechanism, in which case the agents play a NE of the bare market game in
period 2 (recall that in period 2 the state of nature is common knowledge, hence, the
agents play a complete information game). Therefore, the interim expected utility that
any agent earns in the PBNE of the two-stage game induced by the mechanism cannot
be lower than his interim expected utility in the NE of the bare game. Note that when
S = B, there are multiple equilibria in the bare game. In this case, the participation
constraint is non-standard, in the sense that the agents’ reservation utility is determined
in equilibrium, rather than being exogenous.

We consider implementation via a direct mechanism. This means that the agents
play a two-period game, denoted �(t). In the first period, every agent submits a report
θ̂ j ∈ [0, 1] or chooses to veto the mechanism. If all agents choose to participate,
their profile of reports θ̂ = (θ̂1, . . . , θ̂S+B) is assigned a profile of transfer functions
t(x |θ̂) = (t1(x |θ̂), . . . , tS+B(x |θ̂)). In period 2, the state of Nature is realized and the
agents play the market game whose payoffs are modified by t(x |θ̂). We identify the
direct mechanism with t(x |θ̂).

In order to formally define our notion of implementation, we require the following
notation. Given an action profile in state ω, aω, we denote xω ≡ x(aω). Recall that
each agent independently draws his prior belief from a distribution F on [0, 1]̇ . Thus,
for each state ω, we define T ω

i (θ ′
i ) ≡ Eθ−i ti (xω(θ ′

i , θ−i )|θ ′
i , θ−i ). That is, if agent i

reports a prior θ ′
i , while all other agents are truthful, then T ω

i (θ ′
i ) is agent i’s expected

transfer in state ω under the mechanism t(x |θ̂).

Definition 2 A direct mechanism t(x | θ̂) implements a natural CIE solution for
a given distribution F if there exist two pairs of action profiles, a = (ah, al) and
d = (dh, dl) such that for every θ the following conditions hold:

4 Our focus on this class of CIE solutions may entail some loss of generality in that there may be cases
where a symmetric, natural CIE solution is not implementable for some distribution F, but another CIE
solution is. However, we have not been able to obtain necessary or sufficient conditions for implementing
some CIE solution.
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(CIE) [a, t(x |θ)] is a natural CIE solution, and there exists a PBNE in �(t)
satisfying:

(veto-SPIC) In each state ω, the action profile dω is a pure-strategy NE in G(ω)

(IC) Conditional on participating, agent i weakly prefers to report his true
prior in period 1. That is, for every i and every θi , θ

′
i :

θi T
h

i (θi ) + (1 − θi )T
l
i (θi ) ≥ θi T

h
i

(
θ ′

i

) + (1 − θi )T
l
i (θ ′

i )

(IR) Each agent chooses to participate in period 1. That is, for every i and
every θi :

θi

[
T h

i (θi ) + ui (a
h)

]
+ (1 − θi )[T l

i (θi ) + ui (a
l )] ≥ θi ui (d

h) + (1 − θi )ui (d
l )

Condition (CIE) and (veto-SPIC) imply that in the second stage of �(t), the agents
play a NE of the market game. If at least one of the agents vetoed the mechanism, they
play a NE of the bare game. If all agents opted to participate, then they coordinate on
a NE of the t-modified game, independently of their first-stage announcements. The
IC and IR constraints refer to the agents’ first-period decisions. Bare-game payoffs
are supressed in the IC constraint because the agents’ second-period actions are inde-
pendent of the reported priors.

Let us begin with the case of S 	= B, in which the bare game admits a unique
equilibrium price in each state. We ignore the case of B > S > 1, since as we
already know from Proposition 3, there is no speculation in this case, and therefore
no implementation problem.

Proposition 4 When B > S = 1, the CIE surplus is not implementable for any F.
When S > B, there exists a distribution F for which the CIE surplus is implementable.

To develop an intuition for the above result, define i∗(θ̂) to be the l-optimistic agent
according to the profile of reports θ̂ . Consider a mechanism that satisfies the following
condition:

ti (1 | θ̂) − ti (pl | θ̂) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
{
1, B

S

} · (pl − c) + S − 1 if i = s and s 	= i∗(θ̂)

min{1, S
B } · (1 − pl) + S − 1 if i = b and b 	= i∗(θ̂)

−∑
j 	= j∗ [t j (1 | θ̂) − t j (pl | θ̂)] if i = i∗(θ̂)

(4)

Note that when θ̂ = θ , Eq. (4) is consistent with the condition given by Proposition
2. From the proof of Proposition 2, it follows that if a mechanism satisfies (4), then
regardless of the first-period outcome, the following are NE in the second period
(modified) market game. In state h, regardless of whether S > B or B > S, each
seller submits an ask of 1 and each buyer demands one unit and bids 1. If S > B, then
in state l, each seller submits an ask of c, and each buyer demands one unit and bids
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c. If, however, B > S = 1, then in state l, the seller submits an ask of pl ∈ [c, 1),

and each buyer demands one unit and bids pl . Thus, if θ̂ = θ , the bet assigned by the
above mechanism is CIE. The problem is to design such a mechanism t(x | θ̂), which
also ensures that the parties participate and report their true priors.

Our approach to analyzing this problem involves reinterpreting it as a problem of
allocating an asset to the person who values it the most. Suppose that in period 1, all
agents agree to participate and report their true priors. Consider the decision problem
faced by a single agent, say a buyer, in the second period. What is his gain from
following the action profile al , relative to unilaterally moving the price up to 1? By
definition, the gain is zero in state h since the market price in that state is already 1.

However, in state l the gain is

min

{

1,
S

B

}

· (1 − pl) + S − 1 − [tb(1 | θ) − tb(pl | θ)] (5)

By our construction of t(x | θ̂), and the assumption that θ̂ = θ , the value of this
expression depends on the relation between S and B and whether b = i∗. If b 	= i∗,
then the gain given by (5) is zero. If b = i∗, then (5) is equal to S(S − 1) + B(S − c)
when S > B, and equal to 1 − c when B > S = 1.

Thus, the agent’s gain may be interpreted as a right to receive a prize whenever the
second period market price is pl or lower. The size of the prize is S(S −1)+ B(S − c)
if S > B, and 1 − c if B > S = 1. We may therefore describe the right to receive the
above prize as an asset, whose first-period valuation by each party i is (1 − θi )[S(S −
1) + B(S − c)] if S > B, and (1 − θi )(1 − c) if B > S = 1. Note that the buyer
receives this asset if and only if (1 − θb) > (1 − θi ) for all i . This is analogous to
allocating the asset to the party who values it the most.

When no bet is signed in period 1, the agents play the bare market game. Note that
when S 	= B, this game has a unique NE in state l: each seller offers one unit and
each buyer demands one unit at a price pl , where pl = c if S > B and pl = 1 if
S < B. It follows that the buyer’s gain from following his equilibrium action, relative
to pushing the price up to 1 is again zero in state h. But in state l, this gain is S − c if
S > B and 0 if B > S = 1. Thus, when S > B, it is as if the buyer initially holds a
share of S − c in the asset described above. Similarly, when B > S = 1 , it is as if the
buyer initially holds zero shares in the asset. His first-period valuation of this asset is
(1 − θb)(S − c) in the former case and 0 in the latter case.

These observations suggest that the problem of implementing the CIE surplus is
analogous to the problem of dissolving a partnership efficiently. In this problem, S+ B
agents jointly hold an asset. If S > B, then the asset is of size S(S −1)+ B(S −c) and
the agents’ shares in the asset are S−c

S(S−1)+B(S−c) for B of the agents and S−1
S(S−1)+B(S−c)

for S of the agents. If B > S = 1, then the asset is of size 1 − c and the agents’ shares
in the asset are 1 for one of the B + 1 agents and 0 for all other agents. Each agent
privately and independently draws a valuation of the asset. The problem is to design
a mechanism that allocates the entire asset to the agent with the highest valuation,
subject to the constraint that all agents agree to participate in this mechanism.
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CGK showed that implementing this objective depends on the initial ownership
structure. If (S −c)/(S −1) is close to 1—that is, if some of the agents enter the nego-
tiation mostly as “sellers” of the asset—the same forces that underlie the Myerson–
Satterthwaite theorem make it hard to allocate the asset efficiently. As the gap between
S − 1 and S − c shrinks, each agent enters the negotiation both as a seller and a buyer,
and thus he has “countervailing incentives” when reporting his valuation. Transla-
ted into the language of our model, this result means that implementing the CIE bet
becomes easier when the equilibrium payoffs in the bare game become more equal
across traders. Put differently, when the value of not speculating is more or less the
same for all traders, it becomes easier to implement the CIE bet.

At the other extreme, when B > S = 1, the net gain of a buyer from following his
equilibrium strategy in the bare game, relative to pushing the price up to 1, is always
zero. This is because the price of the good is 1 in each state. In contrast, the seller’s net
gain is 1 − c, which is precisely the entire size of the asset in the analogous partner-
ship problem. This extreme buyer-seller asymmetry leads to a Myerson–Satterthwaite
impossibility result.

Note that Proposition 4 makes a weak statement in the case of S > B: there exists
some distribution F for which the CIE surplus is implementable. We rely here on
the results of CGK, who do not characterize the class of distributions for which an
asymmetric partnership can be efficiently dissolved. In addition, CGK do not specify
whether this class is large or small. In contrast, we show below that when B = S,

our implementation problem is equivalent to the problem of efficiently dissolving a
symmetric partnership, which is solvable for any distribution F .

Let us turn to comparative statics.

Proposition 5 Fix F, and suppose that the CIE surplus is implementable for some
S, B, c, S > B. Then:

(i) The CIE surplus is also implementable for c′ ∈ (c, 1).
(ii) The CIE surplus is also implementable for S′, B ′ satisfying S′ > S, B ′.

As c approaches 1, the NE payoffs in the bare game become similar for buyers and
sellers. Similarly, when the number of sellers becomes larger, the difference between
buyers’ and sellers’ valuation of a single unit becomes negligible relative to the number
of units that need to be purchased in order to drive the price up. Therefore, these changes
in market fundamentals facilitate implementability of the CIE bet.

The case of S = B turns out to be special because of the multiplicity of prices
in the NE of the bare game. Consider the following indirect mechanism. In period 1,
every agent exercises a veto option, or submits a bid for a lottery ticket which entitles
its owner to a prize of Z = 2B · (B − 1+c

2 ) conditional on the occurrence of trade
at a price p < 1. If at least one agent exercises his veto option, the agents play the
bare market game in the second period. Otherwise, the lottery ticket is assigned to
the highest-bidding agent, who then pays his bid. After the ticket is allocated to the
winner, the agents play the market game in the second period. Both the revenues from
the winner’s bid and the cost of paying the prize are distributed equally among all
agents.

The first-period auctioning of the lottery ticket modifies second-period payoffs as
follows (the bids are sunk at that stage, and therefore we can ignore them). If the
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market price is below 1, then in addition to the bare-game payoff, the auction winner
receives a net payment of (2B − 1) · (B − 1+c

2 ). The other agents’ net payoff is their
bare-game payoff minus B − 1+c

2 . If the market price is equal to 1, or if there is no
trade, then the agents’ net payoff is equal to their bare-game payoff. Let � denote the
two-stage game induced by the betting auction.

Proposition 6 Let S = B. Then, � implements the CIE surplus for all distributions
F. Moreover, in the PBNE that implements the CIE, ph = 1 and pl = 1+c

2 in period
2, after every history.

As we explained above, implementability of the CIE bet is easier when all traders
face the same reservation value from not speculating. This value is equal to their NE
payoffs in the bare game. When S = B any price in [c, 1] can be sustained in the NE of
G(l). We may therefore select a NE in which buyers and sellers have the same payoffs.
This can be achieved by choosing a NE in which pl = 1+c

2 , such that 1− pl = pl −c.
Our implementation problem then becomes formally equivalent to the problem of
implementing efficient dissolution of an equal-share partnership, which CGK show
to be possible under any distribution of valuations. Moreover, CGK show that such a
partnership can be efficiently dissolved using a simple indirect mechanism.

Proposition 6 highlights two important features of the CIE bet. First, this bet may be
interpreted as a future contract (which is essentially a step function of the market price
if we ignore the possibility of no trade), competed for in a market which is designed
as a first-price auction. Thus, the indirect mechanism described above may serve as
a theoretical benchmark for the design of market institutions for speculative bets via
trade in derivatives.

Second, the PBNE that implements the CIE surplus has the property that market
prices are history-independent. In other words, the bets induced by the mechanism are
“purely speculative”, in the sense that they do not affect the outcome in the second-
period market.

Summary. In this section we discussed the implementability of optimal speculation in
our model when the agents’ prior beliefs are private information. When there is a single
seller, it is impossible to implement optimal speculation. When there are more sellers
than buyers, implementation becomes possible for a larger set of distributions of priors
as the number of sellers increases and as the gap between buyers’ and sellers’ valuations
decreases. When the numbers of buyers and sellers are the same, optimal speculation
is implementable for any distribution of priors. Furthermore, it is implementable via
an auction-like mechanism.

5 Discussion

Our market model is highly stylized and involves a number of simplifying assump-
tions. We view it as an initial, exploratory attempt at addressing the question of optimal
speculation in a setting with non-common priors. Our hope is that this paper would
stimulate further research on this topic, which would be able to relax our assump-
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tions and construct a market model closer to real life. In what follows we discuss the
sensitivity of our analysis to the various simplifying assumptions we made.

5.1 Extending traders’ action space

In our market model, bid and ask prices are bounded in [0, 1]. What is the econo-
mic justification for this assumption? Recall that the agents’ valuations are common
knowledge in the model. Therefore, it is also common knowledge that if an agent sub-
mits a bid price above 1, he must be exploiting his market power to tilt the outcome of
a previously signed bet. An external regulatory agency may respond to such a trans-
parent attempt to manipulate the price by shutting down the market, or by punishing
the manipulator.

Suppose that we relax this assumption, and allow agents to submit any non-negative
bid and ask price. When S = B = 1, this perturbation does not alter our analysis. The
reason is that every agent can unilaterally impose no trade whenever the market price
is strictly between 0 and 1. The SPIC constraints that follow are sufficiently strong to
render the bounds on bid and ask prices irrelevant.

When there are more than two agents, removing all bounds on prices implies that
CIE bets do not exist, because the agents can sustain bets with arbitrarily high stakes.
For example, let B = 1 and S = 2. Without loss of generality, let θ2 > θ1. Consider
the following bet:

t3(p) =
{

ph − c if p ≥ ph

0 if p < ph

t2(p) =
{

T1 if p ≥ ph

−T2 if p < ph

where T1 and T2 satisfy the following conditions:

1 − c ≤ T1 + T2 ≤ ph

θ1

1 − θ1
≤ T2

T1
≤ θ2

1 − θ2

and let t j (D) = 0 for all agents j .
Given this bet, the following state-contingent action profile satisfies the SPIC

constraints. In state l, the buyer (agent 3) demands one unit at p = c and each
seller (agents 1 and 2) offers one unit at the same price p = c. In state h, the buyer
demands one unit at ph , seller 1 offers one unit at p = 1 and seller 2 offers one unit
at ph . Moreover, as long as T1 and T2 satisfy the above condition, each agent earns a
non-negative interim expected payoff. Since we can take ph to be arbitrarily large, the
two transfers, T1 and T2, may be arbitrarily large as well, allowing the total interim
surplus to be unbounded.

The trick behind this construction is to sustain the market price ph > 1 with an
action profile in which a single buyer purchases the good at this high price (otherwise,
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traders could profitably deviate by demanding zero units, thereby cutting their loss
without affecting the market price). This action profile is constructed so that ph is set
by a seller who does not trade (the “inactive” seller), while the seller who does trades
with the buyer (the “active” seller) cannot change the market price in a way that would
affect the bet. The bet is designed such that when p = ph , the active seller gives the
buyer a transfer that compensates him for purchasing the good at a price above his
reservation value. The reason this seller is willing to make this transfer is that he bets
with the inactive seller, who assigns a higher prior to h, and the speculative gains in
this bilateral bet are sufficiently large to cover the compensatory transfer to the buyer
who sustains the high price.

Another problematic feature of the action space is that sellers are restricted to offe-
ring exactly one unit. We have already commented on the implication that short-selling
(that is, offering a quantity greater than one) is ruled out. However, this restriction also
implies that sellers are unable to refrain from trade by offering zero units. This assump-
tion is made purely for simplifying analysis. It can be shown that if we allow sellers
to choose to offer zero units, none of our results will change.5

5.2 Is the betting-with-the-l-optimist result robust?

Our assumption that external demand in state h is sufficiently high to pin down the
market price at ph = 1 simplifies the analysis because it implies that we can restrict
attention to upward price manipulation in state l. This in turns leads to the conclusion
that CIE bets are essentially bets between the agent who assigns the lowest prior to
h and the other traders. The question is whether this insight is general and extends to
situations in which no external force constrains market prices in a similar fashion.

We believe that the following insight is general, under the assumption that short-
selling is infeasible: if CIE solutions assign prices to states independently of the profile
of priors (as in the case of natural solutions), then CIE bets are essentially bets between
the l-optimistic agent and the other traders. However, the antecedent need not hold
in general. Finding the general conditions that ensure the optimality of keeping the
assignment of prices to states independent of the profile of priors is an important
problem for future research.

5.3 Extending the state space

Our model assumes two states of Nature. This is a greatly simplifying assumption
because it means that an agent’s type is a scalar. When we extend the model to envi-
ronments with K > 2 states of Nature, the traders’ types are multi-dimensional,
a feature which notoriously complicated mechanism-design problems. One way to
address this difficulty is to “scalarize” the type space by assuming that the set of pos-
sible second-period external demand levels is a continuum and restricting the set of
permissible prior beliefs over second-period external demand to a family of continuous
distributions which are well-ordered according to first-order or second-order stochas-

5 Note, for example, that in our construction of the infinite bet, the seller who obtains a negative payoff in
the high state is actually the seller who does not trade.
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tic dominance (e.g., see Courty and Li 2000). Ordering traders’ beliefs according to
first-order stochastic dominance is attractive because the traders on each side of the
market can then be ranked according to their degree of “optimism”.

When the state space is continuous, a CIE bet needs to satisfy a continuum of SPIC
constraints. It may well be that this saturation of SPIC constraints imposes a lot of
structure on the set of relevant bets and therefore results in CIE bets having a simple
structure. Exploring this extended model is an interesting project for future work.

Appendix: Proofs

The following Lemma will be instrumental in proving Propositions 1–3.

Lemma 1 Let ((ah, al), t) be any candidate solution with the property that al induces
trade in state l. There exist a bet t̂ and an ex-post efficient action profile âl such that
((ah, âl), t̂) is a candidate solution with a total interim-expected surplus, which is
higher or equal to the surplus generated by ((ah, al), t). Moreover, âl can be chosen
so that every seller submits the same ask p̂ ∈ [c, 1], and every buyer demands one
unit and bids p̂.

Proof Let âl be the following action profile: every buyer submits a bid of p̂ and
demands exactly one unit and every seller submits an ask of p̂. Under this action
profile, each seller sells a unit with probability min{ B

S , 1} and each buyer buys a
unit with probability min{ S

B , 1}. Let p be the market price induced by al . If p ≥ c,
then p̂ = p. Otherwise, p̂ = c. Let ui (al) and ui (âl) denote the bare game payoffs
induced by al and âl respectively. Note that ub(âl) = min{ S

B , 1}·(1− p̂) and us(âl) =
min{ B

S , 1} · ( p̂ − c).
For i = b, s, let qi denote the expected number of units that agent i buys in the

profile al . Define δq ≡ min{S, B} − ∑
b min{qb, 1}. Note that δq ≥ 0. Similarly, for

every seller s let αs denote the probability that s sells his unit to another agent under
the profile al . Define δα ≡ min{S, B} − ∑

s αs . Note that δα ≥ 0. Note also that
because there may be a seller s with qs > 0, it follows that

∑
b qb ≤ ∑

s αs .
To define the bet t̂ , we distinguish between two cases.

Case 1 p ≥ c
In this case, p̂ = p. We construct t̂ as follows. First, for every agent i and for every
x ∈ (p, 1], let t̂i (x) = ti (x). Second, for every x ∈ [0, p] ∪ D and for every s > 1,

let

t̂s(x) = ts(x) +
(

αs − min

{
B

S
, 1

})

(p − c)

and for s = 1, let

t̂1(x) = t1(x) +
(

αs − min

{
B

S
, 1

}

+ δα

)

(p − c)
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Finally, for x ∈ [0, p] ∪ D and for b > S + 1, let

t̂b(x) = tb(x) +
(

min{qb, 1} − min

{
S

B
, 1

})

(1 − p)

and for b = S + 1, let

t̂b(x) = tb(x) +
(

min{qb, 1} − min

{
S

B
, 1

}

+ δq

)

(1 − p)

Note that by construction, the bet t̂ is budget balanced
(∑

i t̂i (x) = 0
)

, and has the

property that for every agent i,

ui (â
l) + t̂i [x(âl)] ≥ ui (a

l) + ti [x(al)] (6)

This inequality is strict if qb > 1 and qs > 0 for some buyer b and seller s. It follows
that

∑
i Ui (â, t̂) ≥ ∑

i U (a, t).
It remains to show that âl is a NE of the t̂ -modified market game in state l. To show

this, note first that the action profile âl has the property that no agent i can manipulate
the price downwards. Second, note that by our assumption that (a, t) is CIE, no agent
has any incentive in state l to push the price up to some p′ > p. This implies that for
every buyer b and seller s,

ub(a
l) + tb[x(al)] ≥ 1 − Sp′ + tb(p′)

us(a
l) + ts[x(al)] ≥ p′ − c − Sp′ + ts(p′)

In addition, if any agent i can unilaterally impose no trade, he has no incentive to do
so:

ui (a
l) + ti [x(al)] ≥ ti (D)

But by (6), no agent has any incentive to either push the price up or to impose no trade
in the profile âl .

Case 2 p < c
Noting that in this case p̂ = c, we construct t̂ as follows. First, for every agent i and
for all x ∈ (c, 1], let t̂i (x) = ti (x). Second, for x ∈ [0, c] ∪ D, let

t̂s(c) = ts(p) + min

{
B

S
, 1

}

(p − c) +
(

αs − min

{
B

S
, 1

})

(p − c) + qs(1 − p)

(7)

t̂b<S+B(c) = tb(p) + min

{
S

B
, 1

}

(c − p) +
(

qb − min

{
S

B
, 1

})

(1 − p) (8)
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t̂S+B(c) = tS+B(p) + min

{
S

B
, 1

}

(c − p) +
(

qS+B − min

{
S

B
, 1

})

(1 − p)

−
(

S+B∑

i=1

qi − min{S, B}
)

(1 − c) (9)

Note first that for every outcome x ∈ [0, 1] ∪ D, we have
∑

i t̂i (x) = 0. This is
obvious for x ∈ (c, 1]. To see that this also holds for x ∈ [0, c] ∪ D, note that since
the number of units sold must equal the number of units bought,

∑S+B
i=1 qi = ∑

s αs .
The bet t̂ also has the property that (6) holds. To see this, note that for every buyer b:

ub(a
l) + t̂b[x(al)] = min{qb, 1} − qb p + tb(p)

Compare this with ub(âl) + t̂b[x(âl)], which for every b < S + B is given by

min

{
S

B
, 1

}

· (1 − c) + t̂b(c)

Substituting t̂b(c) with the expression in (8) yields

min

{
S

B
, 1

}

· (1 − c) + tb(p) + min

{
S

B
, 1

}

· (c − p)+
(

qb−min

{
S

B
, 1

})

(1− p)

= qb(1 − p) + tb(p)

≥ min{qb, 1} − qb p + tb(p)

Similarly, for b = S + B,

uS+B(al) + t̂S+B[x(al)] = qb(1 − p) + tb(p) −
(

S+B∑

i=1

qi − min{S, B}
)

(1 − c)

≥ min{qb, 1} − qb p + tb(p)

where the last inequality follows from the fact that
∑S+B

i=1 qi ≤ min{S, B}.
With regards to the sellers,

us(a
l) + t̂s[x(al)] = αs(p − c) + ts(p) − qs p

while

us(â
l) + t̂s[x(âl)] = t̂s(c)

= αs(p − c) + ts(p) + qs(1 − p)

≥ αs(p − c) + ts(p) − qs p

By essentially the same argument given in Case 1 above, it follows that âl is a NE
of the t̂-modified market game in state l. 
�
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Proof of Proposition 1 The proof proceeds in several steps.

Step 1 There exists a CIE solution, (a(θ), t(θ)).
Because traders are risk-neutral and have quasi-linear utilities, their payoffs are

linear in the market prices and in the transfers. Because bids and asks must lies in [0, 1],
market prices must also lie in this interval. By the SPIC constraints, the differences,
t j (1) − t j (pl), are bounded for every agent j. Hence, the constrained optimization
problem that defines the CIE surplus must have a solution.

Step 2 The outcome in state h is ex-post efficient.
In state h, the market price is ph = 1, regardless of the agents’ actions. Therefore,

in equilibrium they will act as price takers: each seller will offer one unit and demand
zero units, while each buyer is indifferent between demanding one unit and demanding
zero units. Therefore, a(θ) must induce an efficient outcome regardless of the buyers’
strategies.

Step 3 There is trade in state l.
Assume the contrary. Each agent can manipulate the outcome and impose trade at

p = 1, by demanding a single unit at a price of 1. Moreover, each seller can impose
this at no cost by simultaneously submitting a bid of 1 and and an ask of 0, in which
case he would buy the good from himself (it must be the case that all the other sellers
quote a strictly positive ask price—otherwise, trade would occur). It follows that the
SPIC constraints in the no-trade state must include the following inequalities:

ts(D) ≥ 1 − 1 + ts(1)

tb(D) ≥ 1 − 1 + tb(1)

By budget balancedness, �i ti (D) = �i ti (1) = 0. Hence, ti (D) = ti (1) for all i ,
such that total surplus is equal to the bare-game surplus, given the agents’ behavior.
But since the bare-game outcome is ex-post inefficient in state l, it obviously does not
maximize total surplus.

Step 4 There exists an ex-post efficient CIE solution.
By Steps 1–3, there exists a CIE solution [(ah(θ), al(θ)), t]with the following

properties: (i) the outcome in state h is ex-post efficient, and (ii) there is trade in state
l. By Lemma 1, there must exist a CIE solution [(ah(θ), âl(θ)), t̂] where âl(θ) is
ex-post efficient. 
�
Proof of Proposition 2 Let ah be the profile of actions in which every seller submits an
ask of 1 and every buyer bids 1 and demands a single unit. Let al be the profile of actions
in which every seller submits the same ask pl ∈ [c, 1], and every buyer demands one
unit and bids pl . By Proposition 1, there exists an ex-post efficient CIE solution,
hence, by Lemma 1, for every profile of priors θ , there exists a bet t(θ) such that
((ah, al), t(θ)) is CIE. We show that we can let t(θ) be a bet that satisfies (2) and (3).

We begin by characterizing the SPIC constraints that the solution ((ah, al), t(θ))

must satisfy. Note that if pl = 1, there is no speculation and the CIE surplus is attai-
ned without any transfers by simply playing in each state a NE of the bare game.
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We, therefore, focus on the case in which pl < 1. By definition, the action profiles
(ah, al) have the property that no player can unilaterally impose a price below pl .

In addition, ah has the property that no player can impose a higher price. Therefore,
the only relevant SPIC constraints are those that al and t(θ) must satisfy in order to
prevent a single agent from unilaterally imposing a price p > pl . These constraints
are given by the following inequalities:

min

{

1,
B

S

}

· (pl − c) + ts(pl) ≥ p − Sp + ts(p) (10)

min

{

1,
S

B

}

· (1 − pl) + tb(pl) ≥ 1 − Sp + tb(p) (11)

Note these are precisely the constraints given by (2) and (3).
If min{S, B} = 1, then there is at least one agent who can unilaterally impose no

trade in state l. Hence there are additional SPIC constraints that are needed to prevent
such a deviation. We can minimize these constraints by having all agents quote the
same price. Hence, if S = 1 and B > 1, or if B = 1 and S > 1, only a single agent -
either the single buyer or the single seller—can impose no trade. To prevent him from
doing so, we can impose an infinite fine on him whenever there is no trade. That is, if
S = 1 and B > 1 we set ts(D) = −∞, and if B = 1 and S > 1, we set tb(D) = −∞.

If S = B = 1, then each agent can unilaterally impose no trade in every state. This
means that we need to satisfy additional SPIC constraints:

pl − c + ts(pl) ≥ ts(D) (12)

1 − pl + tb(pl) ≥ tb(D) (13)

Note that when S = B = 1, the SPIC constraints (10) and (11) with respect to p = 1
become

pl − c + ts(pl) ≥ ts(1) (14)

1 − pl + tb(pl) ≥ tb(1) (15)

Hence, by setting ts(D) = ts(1) and tb(D) = tb(1), we make the constraints (12)
and (13) equivalent to (14) and (15). It follows that the additional constraints required
to prevent no trade when min{S, B} = 1 can be satisfied without imposing further
restrictions on t j (p), beyond those implied by (10) and (11). Hence, inequalities (2)
and (3) are necessary for attaining the CIE surplus with a natural solution.

The candidate solution ((ah, al), t (θ)) generates a total interim-expected surplus
equal to

∑

s

{

θs[(1 − c) + ts(1|θ)] + (1 − θs)

[

min

{
B

S
, 1

}

· (pl − c) + ts(pl |θ)

]}

+
∑

b

{

θbtb(1|θ) + (1 − θB)

[

min

{
S

B
, 1

}

· (1 − pl) + tb(pl |θ)

]}

(16)
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where ti (x |θ) denotes i’s transfer when the outcome is x , given that the profile of
priors is θ .

To simplify the exposition, let αl
b = min{ S

B , 1} and αl
s = min{ B

S , 1}. For each
p > pl , define

zs(p; θ) ≡ αl
s p + ts(p; θ) − αl

s pl − ts(pl; θ) (17)

zb(p; θ) ≡ −αl
b p + tb(p; θ) + αl

b pl − tb(pl; θ) (18)

where we note that by budget-balancedness,
∑S+B

i=1 zi (p; θ) = 0 for all p. The total
interim-expected surplus may then be written more compactly as follows:

∑

i

θi zi (1; θ) + (1 − c)
∑

s

θs(1 − αl
s) + (1 − c) min{S, B} (19)

Notice that we have no freedom in choosing the values of the second and third terms
in the above expression for the surplus. These are uniquely determined by the realized
vector of priors and by the values of S and B. However, we can affect the first term in
(19) through the bet we choose. Thus, the problem of achieving the CIE surplus can be
reduced to the problem of maximizing

∑
i θi zi (1; θ), subject to the SPIC constraints.

These constraints impose an upper bound on
∑

i θi zi (1; θ), and hence, on the total
surplus.

To derive this bound, we rewrite the SPIC constraints, given by (10) and (11), as
follows:

zs 	=i∗(p; θ) ≤ (S + αl
s 	=i∗ − 1)p − αl

s 	=i∗c (20)

zb 	=i∗(p; θ) ≤ (S − αl
b 	=i∗)p + αl

b 	=i∗ − 1 (21)

These inequalities imply an upper bound on (19), and hence, on the total interim-
expected surplus. To compute this bound, it is useful to rewrite (19) as follows (we
use here the property that

∑S+B
i=1 zi (p; θ) = 0 for all p):

∑

i 	=i∗(θ)

(θi −θi∗(θ)) · zi 	=i∗(θ)(1; θ)+(1−c)
∑

s

θs(1−αl
s)+(1−c) min{S, B} (22)

By (20) and (21), the upper bound on total surplus is obtained by substituting

zs 	=i∗(θ)(1; θ) = S − 1 + (1 − c) min

{
B

S
, 1

}

(23)

zb 	=i∗(θ)(1; θ) = S − 1 (24)

into (22). Note that these equations are obtained by requiring the constraints (2) and
(3) to be binding at p = 1 for every s 	= i∗(θ) and b 	= i∗(θ). Hence, this added requi-
rement is also necessary for attaining the CIE surplus. Since the bet we constructed
attains the CIE surplus while satisfying (2) and (3), these properties are also sufficient
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for attaining the CIE surplus with a natural solution. It follows that the properties
described in the statement of the proposition are both necessary and sufficient. 
�
Proof of Proposition 3 By Lemma 1 and Propositions 1–2 there exists a CIE solution
with the following properties: (i) in state l every seller submits the same ask pl ∈ [c, 1],
and every buyer demands one unit and bids pl , and (ii) if pl < 1, then the CIE bet
satisfies (2)–(3). Property (i) guarantees that no agent can unilaterally impose a price
lower than pl . Property (ii) ensures that no agent has any incentive to impose no trade
or a price above pl .

Suppose S > B. The competitive price level in this case is c. If pl = c, then no
agent can deviate and increase his bare game payoff without affecting the market price.
But since no agent can lower the market price, and none has any incentive to raise it,
we conclude that the CIE surplus can be achieved with pl = c.

Suppose instead that B > S > 1. The competitive price level in this case is 1. If
pl < 1, then any buyer who deviates to a bid of 1 raises the probability that he trades
without affecting the price, a contradiction. But if pl = 1, then agents cannot bet and
the CIE surplus is attained without transfers.

Suppose next that B > S = 1. The competitive price level in this case is still 1.

Let us distinguish between two cases. First, assume that i∗ = 1, i.e., the l-optimistic
agent is the seller. In this case, according to expressions (23)–(24), zi (1; θ) ≤ 0 for
every i 	= i∗. Therefore, total interim-expected surplus cannot exceed 1 − c. One way
to attain this surplus is without bets, so that pl = 1. Another way is to set pl ∈ [c, 1),
and set t so that inequalities (20)–(21) are binding for every p ∈ (pl , 1].

Second, assume that i∗ > 1, i.e., the l-optimistic agent is a buyer. In this case,
according to expressions (23)–(24), zs(1; θ) ≤ 1 − c for the seller s and zb(1; θ) ≤
0 for every buyer b 	= i∗. Therefore, total interim-expected surplus cannot exceed
(1 − c) · (1 + θs − θi∗), and it is attained with a bet that sustains any pl ∈ [c, 1), by
setting t so that inequalities (20 )–(21) are binding for every p ∈ (pl , 1].

Finally, suppose that S = B. Then any price level in [c, 1] is competitive. If pl ∈
[c, 1], then since S = B, any buyer who deviates to a bid higher than pl would still
trade with probability one and would not affect the price. Hence, any pl ∈ [c, 1] can
be sustained in the NE of the modified market game. However, since the total interim-
expected surplus generated by any pl ∈ [c, 1) equals (22), where zi 	=i∗(θ)(1; θ) satisfy
(23) and (24), there cannot be a CIE solution with pl = 1. 
�
Proof of Proposition 4 The proof relies on a formal relation between the problem of
implementing the CIE surplus in our model and the problem of efficiently dissolving
a partnership. This latter problem is defined as follows. A partnership with S + B
members is a tuple 〈r1, . . . , rS+B, F〉, where ri ≥ 0 is partner i’s initial share in
the jointly owned asset and F is the continuous distribution on [0, 1] from which all
partners independently (but privately) draw their valuations of the asset. The partners
are assumed to be risk neutral with quasi-linear preferences, where 1 − θi denotes
partner i’s value for a unit of the asset. A partnership is dissolved efficiently if the
entire asset

∑
i ri is allocated to the partner with the highest valuation.

A direct mechanism for dissolving a partnership is a pair of functions (q(θ̂), m(θ̂))

that assign, for each profile of reported values θ̂ , an allocation of shares, q1(θ̂), . . . ,
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qS+B(θ̂), and a profile of monetary transfers, m1(θ̂), . . . , mS+B(θ̂), such that for all
θ̂ , qi (θ̂) ≥ 0,

∑
i qi (θ̂) = ∑

i ri and
∑

i mi (θ̂) = 0.

Definition 3 A mechanism (q(θ̂), m(θ̂)) efficiently dissolves a partnership 〈r1, . . . ,

rS+B, F〉 if it satisfies the following properties for i = 1, . . . , S + B: (EFF) Whenever
θ̂ = θ ,

qi (θ) =
{∑

i ri if θi ≤ θ j for all j
0 if θ j < θi for some j

(IC∗) There is a Bayesian NE in which every partner reports his true value. That is,
for every i and every θi , θ

′
i :

(1 − θi )Qi (θi ) + Mi (θi ) ≥ (1 − θi )Qi (θ
′
i ) + Mi (θ

′
i )

where Qi (θ̂i ) ≡ Eθ−i qi (θ̂i , θ−i ) and Mi (θ̂i ) ≡ Eθ−i mi (θ̂i , θ−i ).

(IR∗) Each partner’s interim-expected payoff in the truth-telling Bayesian NE is at least
as high as the value he assigns to his initial share. That is, for every i and every θi :

(1 − θi )Qi (θi ) + Mi (θi ) ≥ (1 − θi )ri

We say that a partnership can be dissolved efficiently if there exists a direct mecha-
nism that implements its efficient dissolution.

Define i∗(θ̂) to be the lowest indexed agent among those agents with the lowest
reported prior on h. Consider a direct mechanism t(x |θ̂) that satisfies (2) and (3) with
θ replaced by θ̂ and i∗ replaced by i∗(θ̂) (note that there are many such mechanisms).
We distinguish between two cases: S > B and B > S = 1.

Case 1 B > S = 1
We begin by constructing second-period continuation strategies, which are necessary
for implementation of a natural CIE . If at least one agent refuses to participate in the
first-period mechanism, the seller submits an ask of 1 and each buyer demands one
unit at a price of 1. This action profile is the NE of both G(h) and G(l), hence it is
also a NE in the corresponding second-period subgame. Now suppose that all agents
agreed to participate in the first-period mechanism and submitted a profile of reports
θ̂ . In state h, the seller submits an ask of 1, and each buyer demands one unit at this
price. Denote this action profile by ah . It is independent of θ̂ . In state l, the seller
submits an ask of pl(θ̂) ∈ [c, 1), and every buyer demands one unit and bids pl(θ̂).
Denote this action profile by al(θ̂). By Propositions 2 and 3, al(θ̂) constitutes a NE
of G(l, t) for any t that satisfies (2) and (3).

Our objective is to examine whether there exist distributions F for which agreeing to
participate in the mechanism and reporting one’s true prior, together with the second-
period continuation strategies described above, constitute a PBNE. Our approach is to
show that if this is the case, then there is a corresponding partnership 〈r1, . . . , rB+1〉
that can be efficiently dissolved for some F whenever (ah, al(θ), t(x |θ)) is imple-
mentable for that F . Using Proposition 2 of CGK, we obtain a contradiction.

Assume (ah, al(θ), t(x |θ)) is implementable for F . Consider the partnership
〈r1, . . . , rB+1, F〉 where r1 = 1 − c and rb = 0 for every b > 1. Let (q(θ̂), w(θ̂)) be

123



Optimal speculative trade among large traders 69

the following mechanism: for each agent i and for every pair of reports θ̂ ,

q1(θ̂) ≡ pl(θ̂) − c − [t1(1|θ̂) − t1(pl(θ̂)|θ̂)]
qb(θ̂) ≡ 1 − pl(θ̂)

B
− [tb(1|θ̂) − tb(pl(θ̂)|θ̂)]

m1(θ̂) = t1(1|θ̂)

mb(θ̂) = tb(1|θ̂)

Because t1(1|θ̂) and tb(1|θ̂) satisfy (CIE), (veto-SPIC), (IC) and (IR) it follows that the
mechanism (q(θ̂), m(θ̂)) has the following properties. First, by (CIE), whenever θ̂ = θ ,

qi (θ̂) =
{

1 − c if i = i∗(θ̂)

0 if i 	= i∗(θ̂)

Hence, q(θ̂) satisfies (EFF).
Second, by (IC), we have that for every θ ′

i ∈ [0, 1],

(1 − θ1)[Q1(θ1) − (pl(θ̂) − c)] + M1(θ1) ≥ (1 − θ1)[Q1(θ
′
1) − (pl(θ̂) − c)] + M1(θ

′
1)

and for every b ≥ 2,

(1−θb)

[

Qb(θ1) − 1 − pl(θ̂)

B

]

+ Mb(θb) ≥ (1 − θb)

[

Qb(θ
′
b) − 1 − pl(θ̂)

B

]

+Mb(θ
′
b)

By (IR),

(1 − θ1)[Q1(θ1) − (pl(θ̂) − c)] + M1(θ1) ≥ (1 − θ1)[(1 − c) − (pl(θ̂) − c)]

and for every b ≥ m + 1,

(1 − θb)

[

Qb(θb) − 1 − pl(θ̂)

B

]

+ Mb(θb) ≥ (1 − θb)

[

−1 − pl(θ̂)

B

]

These two inequalities imply that (q(θ̂), m(θ̂)) satisfies (IC∗) and (IR∗).
It follows that given F , the mechanism (q(θ̂), m(θ̂)) efficiently dissolves the part-

nership 〈1 − c, 0, . . . , 0〉. But this contradicts Proposition 2 of CGK, which states
that there exists no F for which one can efficiently dissolve a partnership whose
entire assets are owned by a single partner. This implies that our initial assertion—that
(ah, al(θ), t(x |θ)) is implementable for F—is false.

Case 2 B < S
We begin by constructing second-period continuation strategies, which are necessary
for implementation of a natural CIE. Regardless of the agents’ actions in the first
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period, if state h is realized in the second period, the agents coordinate on the action
profile ah described in the previous case. If state l is realized, then regardless of the
agents’ actions in the first period, the agents play the action profile al from the previous
case, only with pl = c for any profile of reported priors. Since ah and al are NE of
G(h) and G(l) respectively, they are also NE of the second-period subgame when at
least one agent vetoes the mechanism. In what follows, we shall construct a mapping
from announced priors to bets such that ah and al will constitute NE of the modified
second-period market game.

We now show that there exists a partnership
〈
r ′

1, . . . , r ′
S+B, F

〉
that can be efficiently

dissolved if and only if (ah, al , t(x |θ)) is implementable for F . We then apply Propo-
sition 3 of CGK to obtain that there exists a distribution F for which this partnership
can be efficiently dissolved, which implies that (ah, al , t(x |θ)) for that F .

Define:

r ′
i≤S = S − 1 + B

S
(1 − c)

r ′
i≥S+1 = S − 1

qi (θ̂) = ti (c|θ̂) − ti (1|θ̂) + r ′
i

mi (θ̂) = ti (1|θ̂)

ti (x |θ̂) =
{

ti (c|θ̂) if x 	= 1

ti (1|θ̂) if x = 1

Note that (EFF) holds if and only if ti (1|θ̂) − ti (c|θ̂) = zi (1; θ) for every i 	= i∗(θ),
where zi 	=i∗(θ)(1; θ) satisfies (23) and (24). Since ti (x |θ̂) is constant for all x 	= 1,

it follows from Proposition 2 that (EFF) holds if and only if (CIE) holds. As we
have noted above, our construction of the second-period action profiles satisfies (veto-
SPIC). By simple algebra, we obtain that (IR) and (IC) hold if and only if (IR∗) and
(IC∗) hold, respectively. Therefore, the mechanism t(x |θ̂) implements a natural CIE
solution if and only if the mechanism (q(θ̂), m(θ̂)) efficiently dissolves the partnership〈
r ′

1, . . . , r ′
S+B, F

〉
. Now, we can apply Proposition 1–3 in CGK to obtain the desired

result. 
�
Proof of Proposition 5 Let (ah, al , t(x; θ)) be a natural CIE solution, and consider
an (S + B)-member partnership where S members own S − 1 shares of the asset and
B members own S − c shares. By Proposition 4, this partnership can be efficiently
dissolved if and only if (ah, al , t(x; θ)) is PBNE-implementable. By Proposition 1
of CGK, as the ratio ri≤S/ri≥S+1 become closer to one, the set of distributions for
which efficient dissolution is possible weakly expands. This implies that the set of
distributions for which (ah, al , t(x; θ)) is implementable, weakly as S increases and
as c increases and becomes closer to one. 
�
Proof of Proposition 6 We proceed in four steps.
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Step 1 Construction of second-period action profiles.
Regardless of the agents’ actions in the first period, they coordinate on the following

action profiles in the second period. In state h each seller submits an ask of 1 and each
buyer demands one unit and bids 1. In state l, each seller submits an ask of 1+c

2 and
each buyer demands one unit and bids 1+c

2 . Denote these action profiles by ah and al

respectively. It is straightforward to verify that ah is a NE in G(h) and al is a NE in
G(l).

Step 2 The action profiles ah and al are NE in the games that are induced by G(h) and
G(l) and the proposed auction.

Let Z ≡ 2B(B− 1+c
2 ) denote the prize, awarded to the highest bidder in the auction.

In state h, no agent can unilaterally alter the outcome. In state l, an agent can alter the
outcome (in the sense of preventing the prize) only by demanding B units at a price
of 1. A seller has no incentive to deviate in this manner if he won the auction and

1 + c

2
− c +

(

1 − 1

2B

)

Z ≥ 1 − B

or if he lost and

1 + c

2
− c − Z

2B
≥ 1 − B

Similarly, a buyer has no incentive to demand B units and bid 1 if he won the auction
and

1 − 1 + c

2
+

(

1 − 1

2B

)

Z ≥ 1 − B

or if he lost and

1 − 1 + c

2
− Z

2B
≥ 1 − B

(note that the first-period bids are sunk, hence they are left out of these constraints).
It is easy to verify that since B ≥ 1, the above inequalities must hold.

When S = B = 1, we need to consider the agents’ ability to impose no trade in
state l. If the seller won the auction, the additional SPIC constraints are:

1 − 1 + c

2
−

(
1 − c

2

)

≥ 0

1 + c

2
− c +

(
1 − c

2

)

≥ 0
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and if the buyer won the auction, the constraints are:

1 − 1 + c

2
+

(
1 − c

2

)

≥ 0

1 + c

2
− c −

(
1 − c

2

)

≥ 0

It is easy to verify that these additional constraints are also satisfied.

Step 3 There exists a PBNE in which (i) all agents participate in the auction, (ii) the
agent with the lowest prior on h wins the auction, and (iii) the agents play ah and al

in the second period.
The previous step already established that ah and al are NE in the second period

modified games. It remains to show that if agents expect to play these action profiles
in the second period, then the first-period auction has a BNE in which all agents
participate and the winning agent is the one who assigns the highest prior to state l.

Let t denote the proposed auction mechanism. Let j∗ denote the agent who wins
the auction. Let β ≡ (βi (θi ))

S+B
i=1 denote a profile of bidding strategies. Let λi (θi ,β)

denote the probability that agent i wins the auction, given that i’s prior on state h is θi

and that the agents play the strategy profile β. The interim expected payoff of agent i ,
given β, is equal to:

λi (θi ,β)Ui= j∗(a
h, al , t) + [1 − λi (θi ,β)] · Eθ−i Ui 	= j∗(a

h, al , t) (25)

where:

Us 	= j∗ (ah, al , t) = (1 − θs)

[
1 + c

2
− c − Z

2B

]

+ θs(1 − c) + β j∗
2B

Us= j∗ (ah, al , t) = (1 − θ j∗)
[

1 + c

2
− c +

(

1 − 1

2B

)

Z

]

+ θ j∗(1 − c) −
(

1 − 1

2B

)

β j∗

Ub 	= j∗(ah, al , t) = (1 − θb)

[

1 − 1 + c

2
− Z

2B

]

+ θs(1 − 1) + β j∗
2B

Ub= j∗(ah, al , t) = (1 − θ j∗)
[

1 − 1 + c

2
+

(

1 − 1

2B

)

Z

]

+ θ j∗(1 − 1) −
(

1 − 1

2B

)

β j∗

If at least one agent vetoes the auction, then the seller’s interim expected payoff is

Us(a
h, al) = θs(1 − c) + (1 − θs)

(
1 + c

2
− c

)

= −(1 − θs)

(
1 − c

2

)

+ (1 − c)

while the buyer’s interim expected payoff is

Ub(a
h, al) = (1 − θb)

[

1 − 1 + c

2

]

+ θb(1 − 1) = (1 − θb)

(
1 − c

2

)
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We wish to show that there exists a symmetric BNE in which all agents use the
same bid function β(θi ), which is monotonically decreasing in θi . To show this, we
again rely on a formal relation between the problem of implementing a CIE solution
and the problem of efficiently dissolving a partnership.

Consider the problem of efficiently dissolving an equal-share partnership with 2B
members, who each owns 1

2B of an asset of size Z = 2B(B− 1+c
2 ). Agent i’s valuation

of the partnership is 1−θi . Suppose the members of this partnership could participate
in a first-price, sealed-bid auction in which the highest bidder wins all shares of the
asset, and the auction’s revenues are equally shared among all partners.

Suppose agent i won this auction. Then his payoff would be

(1 − θi )Z −
(

1 − 1

2B

)

β̂i

where β̂i denotes his bid. If j 	= i won the auction, then i’s payoff would be

1

2B
β̂ j

If the auction is not conducted, then i’s payoff is

(1 − θi )
Z

2B

By Proposition 5 of CGK, this auction has a symmetric BNE in which every player
uses the same bidding function β̂(θi ), which is a monotonically decreasing function
of θi . Moreover, the expected payoff of each bidder in this equilibrium is at least as
high as his payoff when the auction is not conducted.

Note that the payoff of player i ≤ S = B in the above partnership-dissolution
auction may be obtained by subtracting (1 − θi )(B − c) − (1 − c) from his payoff in
our proposed auction. Similarly, the payoff of player i ≥ B + 1 in the partnership-
dissolution auction may be obtained by subtracting (1 − θi )(B − 1) from his payoff
in our proposed auction. Therefore, if (β̂(θ1), . . . , β̂(θ2B)) is a symmetric BNE in the
partnership-dissolution auction, then it must also be a BNE in our proposed auction.
Moreover, the expected payoff of each agent in the proposed auction must be at least
as high as his payoff when at least one agent vetoes the mechanism.

Step 4 The proposed auction attains the CIE surplus in the PBNE described in Step 3.
Step 3 described a PBNE in which all agents participate in the proposed auction,

the agent with the lowest prior on h wins, and in the second period the agents play
ah in state h and al in state l. By Proposition 2, the CIE surplus is achieved by a bet
with the following properties: (i) it induces a market game where ah is a NE in state h
and al is a NE in state l, and (ii) the difference between the transfer in state h and the
transfer in state l for an agent i 	= i∗(θ) (i.e., an agent, who is not the most optimistic
about state l) is

(
1 + c

2
− c

)

+ (B − 1) = B − 1 + c

2
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for a seller and
(

1 − 1 + c

2

)

+ (B − 1) = B − 1 + c

2

for a buyer (where the difference in these transfers for the l-optimistic agent is minus
the sum of these differences across all the other agents). Hence, to establish that our
proposed auction attains the CIE surplus in the PBNE of Step 3, it suffices to show
that the difference between the equilibrium transfer that any agent i 	= i∗ receives in
this auction in state h and his transfer in state l is B − 1+c

2 (recall that we have shown
that i∗ wins the auction).

To show this, consider any agent who loses in the auction. In state h the price is
above 1+c

2 , hence, his payoff in the auction is only his share in the revenue, 1
2B β̂(θ j ),

where β̂(θ j ) is the equilibrium bid of the winner. In state l, the price is at or below
1+c

2 , hence, the agent has to pay B − 1+c
2 to the winner, in addition to his share in the

revenue. Therefore, the difference in transfers is precisely B − 1+c
2 . 
�
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