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Abstract

Nash equilibrium is often interpreted as a steady state in which each player holds the
expectations about the other players’ behavior and acts rationally. This paper investiga
robustness of this interpretation when there are small costs associated with complicated fo
The model consists of a two-person strategic game in which each player chooses a finite ma
implement a strategy in an infinitely repeated 2×2 game with discounting. I analyze the model us
a solution concept called Nash Equilibrium with Stable Forecasts (ESF). My main results co
the structure of equilibrium machine pairs. They provide necessary and sufficient conditions
form of equilibrium strategies and plays. In contrast to the “folk theorem,” these structural prop
place severe restrictions on the set of equilibrium paths and payoffs. For example, only seque
the one-shot Nash equilibrium can be generated by any ESF of the repeated game of chicken
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Introducing the notion of Nash equilibrium in their text book, Osborne and Rubin
(1994, p. 14) write: “The most commonly used solution concept in game theory is that
of Nash equilibrium. This notion captures a steady state of the play of a strategic game in
which each player holds the correct expectation about the other players’ behavior and acts
rationally.”
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0899-8256/03/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0899-8256(03)00024-1



K. Eliaz / Games and Economic Behavior 44 (2003) 286–310 287

ons of
ly the
ed by
brium

brium,
sses the
rties
t can be

r two-
recasts
nent?
nalized
annot
lution

le. An
. The

your
will

requests
t pass
pass
er in
and

n of it

tegy”:
well; if
ponse
threat
ide to
The above citation describes one of the most commonly accepted interpretati
Nash equilibrium. It says that the equilibrium strategy of a player represents not on
action plan this player actually takes, but also this player’s plan of action as envision
the other players. According to this interpretation, players’ strategies in a Nash equili
must meettwo requirements:

(1) they must be best responses to each other, and
(2) they must also represent what the other players expect each player to do.

Thus, if for some reason playeri ’s actual strategy does not coincide with playerj ’s
expectations, then we are not at a Nash equilibrium.

This paper investigates the robustness of the above interpretation of Nash equili
when there are small costs associated with complex forecasts. The paper addre
following question: What is the set of strategy profiles that retain the two prope
described above, when players try to use the simplest forecasts? I argue that this se
surprisingly small.

In order to address the question posed above I perform the following exercise fo
person games. I look at the Nash equilibria of a game and then ask, if complicated fo
are costly, will each player continue to maintain an accurate forecast of his oppo
Suppose one of the players can find a best response to his opponent, which is ratio
by a simpler (but possibly inaccurate) forecast. Then the original pair of strategies c
be considered a Nash equilibrium that is consistent with our interpretation of this so
concept.

To help motivate the question this paper addresses, consider the following examp
army is engaged in (the strategic form of) the infinitely repeated game of chicken
stage game payoffs are given in Fig. 1.

You are an intelligence officer in charge of analyzing the opponent and reporting
forecast of his strategy to the Chief of Staff (COS). Given your forecast, the COS
choose a best response. The COS’s are replaced every period, and every new COS
an intelligence report on the opponent. The intelligence report you prepare mus
through a long chain of hierarchy before arriving at the COS’s desk. That is, you
your report to the officer in charge of you, who edits it and then sends it to the offic
charge of him who edits your officer’s report and so forth. Along this chain of comm
there are many opportunities for your report to be distorted so that the final versio
(which the COS receives) may be very different from your original report.

Suppose you come to the conclusion that the opponent is using a “grim trigger-stra
He starts by cooperating and continues to do so as long as you cooperate as
you defect at any period, he will forever defect. You conclude that the best res
is to cooperate in every period. However, you worry that a report describing the
might get distorted along the chain of command (for example, someone may dec

C D

C (3,3) (1,4)

D (4,1) (0,0)

Fig. 1. The game of chicken.
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simplify it by writing “The opponent always cooperates”). Therefore, you consider sen
a simple report, which has a negligible chance of getting misunderstood: “The opp
always defects.” A very simple best response to this report is to always cooperate.
also a best response to what you believe to be the opponent’s actual strategy. Th
decide to report that the opponent always defects, expecting this report to reach th
without mistakes. Since the forecast you send mentions nothing about a possible de
of his opponent, it seems natural that the COS will not decide to threaten his opp
with a punishment. Thus, you believe the COS will respond to the report by cons
cooperating, thus obtaining the highest payoff against his opponent.1

The above argument suggests that a pair of grim trigger-strategies may not quali
Nash equilibrium when the complexity of forecasts is taken into account. Moreover,
trigger-strategies seem intuitively very simple, the example suggests that more comp
strategies, which enforce constant cooperation, may also fail to qualify as Nash equ

The example above introduces a central theme of this paper, which is that expec
that can be simplified without affecting the players’ payoffs, will eventually be repla
This assumption is motivated by the observation that complicated descriptions of stra
have undesirable features. For example, complicated descriptions tend to be more
to understand and more difficult to remember. Furthermore, complicated description
be more costly to communicate: They take longer to explain and stand a higher cha
being distorted along the communication channel (especially when the description
pass through several hands until it reaches its final destination).

One may study the interaction of agents who account for the complexity of
forecasts in the context of any model. It is particularly appropriate in the co
of an extensive game, where a forecast determines the opponent’s actions in
circumstances. This allows the use of forecasts that are intuitively very simple, a
as those that are intuitively very complicated. Within the set of extensive games, I
the model of infinitely repeated 2× 2 symmetric games with discounting. This mod
includes many well-known games which have been widely studied, such as the Pris
Dilemma, Chicken, and the Battle of the Sexes. Following the literature on comp
considerations in repeated games (in particular, Rubinstein (1986), Abreu and Rub
(1988), and Piccione (1992)), I analyze the strategic game in which players choose
machines to implement their strategies in the repeated game.

The use of machines allows one to model simplicity in ways which are relat
intuitive. Simplicity is defined in this model by a partial ordering over machines. Loo
speaking, one machine is said to be simpler than another if the behavior of the first m
is less dependent on the actions of the opponent, or if the first machine has less cha
its modes of behavior, or both.

I analyze the model using a solution concept called Nash Equilibrium with S
Forecasts (ESF). This solution concept says that a pair of machines is anESF if two
conditions are satisfied:

1 A natural question that may arise, is why cannot cooperation be sustained if each player reports
opponent always defects? If the COS of each army employs an intelligence officer who reasons as you h
each COS would cooperate in each period independently of his opponent’s actions. But then each inte
officer would want to report the truth, i.e., that the opponent is cooperating each period.
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(1) the machine of each player is a best response to his opponent’s machine, and
(2) no player has a best response to his opponent, which can be rationalized by a fo

which is simpler than his opponent’s machine.

This definition is meant to capture our interpretation of Nash equilibrium in a world w
players may not want to use correct forecasts which are too complicated. The defini
ESF is also motivated by the interpretation of equilibrium strategies in extensive gam
representing not only the player’s plan of action, but also his opponents’ beliefs abo
(see Aumann (1987) and Rubinstein (1991)).

My main results concern the structure of equilibrium machine pairs. They pro
necessary and sufficient conditions on the form of equilibriumstrategies andplays. These
structural properties place restrictions on the set of equilibrium paths and payoff
example, only sequences of the one-shot Nash equilibrium (outcomes on the off-dia
can be generated by anyESF of the repeated game of Chicken. I also show that there
only two possibleESF play paths in the repeated Prisoner’s Dilemma: Either both pla
defect each period, or both cooperate each period. Given the restrictions on play
I characterize the set of equilibrium payoffs.

The above results should be contrasted with those for the usual repeated gam
which the Nash equilibrium set is very large in the space of strategies as well
the space of outcomes. In particular, the “folk theorem” (see Fudenberg and M
(1986)) applies: All individually rational outcomes can be generated by some pair of
equilibrium strategies. However, when the cost of forecasts enter the players’ prefe
even lexicographically, the set of equilibrium outcomes is drastically reduced.

I interpret my results as a critique of our interpretation of Nash equilibrium. The “co
expectations” interpretation may suit games in which the formation or use of fore
is costless. However, as soon as players acknowledge that complicated forecas
be misunderstood, or as soon as we introduce a small cost for forming or maint
complicated forecasts, then the correct expectations interpretation places severe res
on the set of equilibrium outcomes.

This paper is organized as follows. Section 2 discusses the related literature. The
is introduced in Section 3. Section 4 provides the equilibrium characterization, a
Section 5 I characterize the equilibrium payoffs. This is followed by concluding rema

2. Related literature

This paper is closely related to the literature on strategic complexity in repeated
and in particular to the works on finite automata. Among the many works in this litera
the papers most closely related to mine are Abreu and Rubinstein (1988) (henc
denoted AR) and Piccione (1992). Central to most of the works in this literature i
assumption, which is absent in this paper, that the players’ preferences are neg
affected by the complexity of their own strategy. The novel feature of this pap
the assumption that each player’sexpectations about his opponent are affected by t
complexity of his opponent’s strategy.

The only paper I am aware of that accounts for the complexity of describing
opponent’s strategy is Spiegler (2001). Spiegler studies two-person extensive form



290 K. Eliaz / Games and Economic Behavior 44 (2003) 286–310

ng a
needs

yer’s
pletely
t for
t also
lution
d

er
games
yers’

o not
they

the
tween
maker
serves
maker
cision
given

er is

ut the
layers
me

n

own
igure 2
in which each player needs to justify (ex-post) his choice of strategy by offeri
hypothesis on what the opponent’s strategy is. The opponent’s hypothetical strategy
to be the simplest strategy, which is consistent with the observed history of play.

Aside from incorporating complexity considerations into the determination of a pla
beliefs about his opponent, the two papers, Spiegler’s and the present one, are com
different. Spiegler’s goal is to propose a procedurally rational solution concep
extensive games in which players care not only about their material payoffs, bu
on whether their choice of strategy can be justified ex-post to a third party. The so
concept suggested by Spiegler is very much different from anESF. The reader is referre
to his paper for further details.

The literature onP sychological Games (in particular, Dufwenberg and Kirchsteig
(2000) and Geanakoplos et al. (1989)) is a related strand of literature which model
in which the players’ preferences are affected by their beliefs (in particular, the pla
beliefs about the other players’ beliefs). However in this literature the players d
choose their beliefs, but rather the players’ beliefs are derived in equilibrium where
are assumed to be correct.

In Eliaz (2001) I explicitly model a situation in which advisors take into account
possibility that their advise will not be understood. That paper considers a game be
two organizations, each consisting of a decision maker and an advisor. The decision
receives a forecast from his advisor to which he best responds. The advisor, who ob
the strategy of the opponent, has a probabilistic belief on the mistakes his decision
can make. In equilibrium, each advisor sends a forecast that maximizes the de
maker’s expected payoffs, given the strategy of the opponent decision maker and
the advisor’s beliefs over the mistakes his decision maker can make.

3. A model

Let G be a 2× 2 symmetric game. The set of actions available to each play
A = {C, D}. We use the notationai to refer to an action taken by playeri, and we let
−ai denote that player’s other action (i.e., for eachai ∈ {C, D}, −ai ∈ {C, D}\{ai}).
A G-outcome is a member ofA2 and is denoted bya such thata = (a1, a2). To save
on notation, we suppress subscripts whenever it is clear which player is carrying o
action, or whenever the identity of the player is unimportant (such as when both p
choose the same action). Thus, theG outcomes in which both players choose the sa
action are(D, D) and(C, C), whereas the outcome in which playeri chooses the actio
D while playerj choosesC is (Di, Cj ).

Each player’s payoff is represented by a utility functionu : A2 → 	 with ui denoting
the payoff to playeri. We let D be each player’s minmax action, i.e.,D solves
minai maxaj uj (a1, a2) ≡ vj . We assume thatu(C, C) �= u(Di, Cj ) and u(Ci, Dj ) �=
u(D, D). The class of games which satisfy these conditions include many well-kn
examples such as the Prisoner’s Dilemma, Chicken, and the Battle of the Sexes. F
displays examples of payoff matrices for those games.
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C (3,3) (0,4) C (3,3) (1,4) C (0,0) (1,3)

D (4,0) (1,1) D (4,1) (0,0) D (3,1) (0,0)

(a) (b) (c)

Fig. 2. (a) The prisoner’s dilemma. (b) Chicken. (c) The battle of the sexes.

Each playeri evaluates a sequence ofG-outcomes(at ) by applying the discountin
criterion to the induced sequence of utility numbers(ui(at )). We refer to (1 − δ) ×∑

t δt−1ui(at ) as playeri ’s repeated game payoff in the repeated game with discount
We study a static version of a repeated game in which each playeri chooses a finite

machinemi ∈ Mi to play the infinitely repeated game ofG (see Osborne and Rubinste
(1994, pp. 140–143)) for an introduction on the use of machines as a modeling
in repeated games). We refer to this strategic game as a “machine game” deno
MG(δ). A machine of playeri is a four-tuple(Qi, q0

i , fi , τi) whereQi is a finite set of
states,q0

i is the initial state,fi : Qi → A is an output function that assigns an action
every state andτi : Qi × A → Qi is the transition function that assigns a state to ev
pair of a state and an action of the other player. We say that the transition from a s
constant, if it is independent of the other player’s actions, that is, ifτi(qi, C) = τi(qi, D).
We refer to the triple(Qi, q0

i , τi) as the automaton’sarchitecture. The preferences of th
players over possible pairs of machines are as follows. Playeri prefers the pair of machine
(m1, m2) to the pair(m′

1, m′
2) if and only if he prefers the induced sequence of outco

(at (m1, m2))∞t=1 to the sequence(at (m′
1, m′

2))∞t=1.
In the sections that follow we will often refer to states in the players’ machines

“appear at certain periods” on the play path that is generated by those machines. For
shall use the following notations. Given a pair of machinesm1 andm2 we letqt

i denote the
state thatmi is at in thet th period ofa(m1, m2). The set of states thatmi “passes through
from periodt to t +k will be denoted byQi(t, t +k); that is,Qi(t, t +k) = {qt

i , . . . , qt+k
i }.

3.1. Simplicity

We now define a partial ordering of machines which we interpret as the ranki
a player’s forecasts according to their level of complexity. This ordering is assum
depend only on the machines’ architecture. Letm be a machine with a set of statesQ and
a transition functionτ . We denote byx(m) the number of distinct pairs of states inQ that
are connected by a transition. That is,x(m) equals the number of pairs(q, q ′) in Q such
thatq �= q ′ andq ′ = τ (q, a) for somea ∈ {C, D}. For example, the machinem depicted in
Fig. 3 below satisfiesx(m) = 1.

Fig. 3. Machinem.
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We shall callx(m) the “number of transitions from one state to a different state.”
Similarly, we lety(m) denote the number of states inQ with the property that whenm

reaches each of those states, the next state it visits depends on the other player’s a

y(m) = ∣∣{q ∈ Q: τ (q, C) �= τ (q, D)
}∣∣.

Thus,y(m) measures the number of non-constant transitions inm. For example, in Fig. 3
y(m) = 1.

Definition 1. Let m and m′ be a pair of machines. We say thatm is simpler than m′
whenever(x(m), y(m)) < (x(m′), y(m′)).

The above measure of complexity is meant to capture the intuition that com
descriptions are either more difficult to remember, or a have a higher probability of
distorted (in particular, a complicated description that needs to pass many hands
reaches its final destination has a higher probability of getting distorted along the
The intuition for the assumption that the simplicity of a (forecast of the) machinem is
inversely related toy(m) is the following: The less conditionals a strategy contains,
easier it is to remember and the less likely it is to be distorted. For example, the desc
“Player j choosesb only if you choosea” might be confused with “Playerj choosesb
unless you choosea” or with “Player j choosesa only if you chooseb.” However the
statement “Playerj choosesb” is easier to remember and less likely to be distorted.

If x(m) < x(m′), then a forecast that describes the opponent as usingm is simpler than
a forecast in which the opponent’s machine ism′ in the sense that the description of t
opponent’s strategy is shorter in the former forecast than in the latter. For example, s
you are describing some state of behavior of the opponent. If one of your actions,a,
would cause the opponent to move to a different state of behavior, then you would als
to describe that state of behavior in addition to the one you are describing now. A
shorter description is to say that when you choosea your opponent would remain in th
state which you have just described.

3.2. An equilibrium notion

We now define a Nash equilibrium ofMG(δ) which is immune to forecast simplificatio
A Nash equilibrium having this property satisfies the following: Any player who
responds to a simpler machine than his opponent’s, necessarily reduces his payoff
game.

Definition 2. A Nash equilibrium with stable forecasts (ESF) of a machine gameMG(δ)

is a pair of machines(m∗
1, m∗

2) with the following properties: For every playeri,

(1) m∗
i is a best response tom∗

j , and
(2) for any machinemj simpler thanm∗

j , a best respond tomj is not a best respond tom∗
j .

The definition ofESF is motivated by the interpretation of Nash equilibrium asa steady
state where each player best responds to an accurate forecast of his opponent. According
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to this interpretation, the Nash equilibrium strategy of playeri not only represents thi
player’s best response toj , but also represents playerj ’s belief about playeri ’s strategy.

The solution concept we offer is one answer to the following question. Suppose the
tendency to simplify forecasts, whenever the simplification does not reduce payoffs. W
strategy pairs will remain a Nash equilibrium? That is, which pairs of strategies reta
property thateach player best responds to a correct forecast of his opponent’s strategy.
If a player can obtain the maximal payoffs against his opponent by best respondin
forecast, which is simpler than his opponent’s strategy, then the strategies of the
players are not a Nash equilibrium according to our interpretation.

An ESF may be interpreted as a Nash equilibrium when players have lexicogr
preferences in which the simplicity of the forecast is secondary to material payoff.
preferences imply that a player prefers to rationalize his payoff-maximizing strategy
the simplest forecast. Lexicographic preferences represent a conservative way of a
the simplicity of forecasts to enter into players’ preferences in the sense that the sim
of a forecast never outweighs material payoffs. Lexicographic preferences for s
forecasts can be interpreted as the preferences of a player who receives his foreca
someone who observes his opponents and (a) would like the player to succeed,
is concerned that complicated forecast may not be understood. Lexicographic prefe
can also be interpreted as representing evolutionary forces which favor players who
simplest forecasts to obtain the highest payoffs against their opponent.

It is instructive to note that there exists anESF in any repeated game in which the
exists a pure strategy Nash equilibrium in the constituent game. To see why, letG be a
strategic game with a pure Nash equilibrium(a∗

1, a∗
2). Let m∗

i be a machine with a singl
state in which playeri playsa∗

i . The pair of machines(m∗
1, m∗

2) is a Nash equilibrium o
MG(δ) for all δ ∈ [0, 1]. Since there is no simpler machine than a single-state machi
follows that(m∗

1, m∗
2) is also anESF of MG(δ).

To understand howESF can be applied to repeated games we look at two sim
examples. Each example considers a particular Nash equilibrium of the repeated Pri
Dilemma. The equilibrium in the first example is shown to satisfy the requiremen
ESF, whereas the equilibrium in the second example violates those requirements.

Example 1. SupposeG represents the Prisoner’s Dilemma depicted in Fig. 2. By the N
folk theorem there exists a discount factorδ∗ ∈ (0, 1) such that for allδ � δ∗ when both
players use the machinemi (see Fig. 4), we have a Nash equilibrium ofMG(δ) in which
the players cooperate in every period.

We claim that(m1, m2) is also anESF of MG(δ) for all δ � δ∗. To see why note that it i
optimal for a player to cooperate only if his opponent threatens him with a punishmen

Fig. 4. The machinemi .
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m1 m2

Fig. 6.

only if his opponent’s machine has at least two states (one, which “rewards” coope
and one which punishes defection). The only machine, which is simpler thanmj and has
two states, is one with constant transitions. However, given such a forecast playeri ’s best
response is to chooseD every period. Therefore, any forecast, which induces playi

to chooseC every period cannot be simpler thanmj . Note that for a discount facto
sufficiently close to one,mi is also a best response tom′

j , depicted in Fig. 5. Howeve
m′

j is not simpler thanmj .

In the next example we consider again the infinitely repeated Prisoner’s Dile
We show that for any discount factor, a pair of machines, which generates a cy
((D, C), (C, D)) is not anESF.

Example 2. Consider the pair of machines(m1, m2) depicted in Fig. 6.
For δ sufficiently close to one,(m1, m2) is a Nash equilibrium ofMG(δ). However,

this pair does not constitute anESF for any discount factor. To see why, note thatm1 is
also a best response to a forecast, in which player 2 uses a machine with a single
defection.

3.3. Discussion

Before proceeding to the results, we discuss the motivation for studying our pro
solution concept. Our motivation stems from the following interpretations of our mod

3.3.1. A critique of Nash equilibrium
The focus of this paper is on Nash equilibrium and how it is affected when we intro

small costs for maintaining complicated forecasts. By Nash equilibrium I mean a s
state in which each player has a correct forecast of his opponent’s strategy and ch
best response to that forecast. One natural way to extend the standard definition o
equilibrium to a world with costly forecasts is to add the requirement that no player s
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have an incentive to best respond to an incorrect forecast. This is the approach we
defining anESF.

Of course, it is also interesting to check if other solution concepts, which do not re
forecasts to be correct (like self-confirming equilibrium), are also sensitive to the sta
assumption that forecasts are costless to form. This paper takes the view that be
investigate the many existing solution concepts, we should start with the basic not
Nash equilibrium.

3.3.2. Decision makers who rely on the forecast of an expert
Decision makers often rely on experts to provide them with information about

competition. Most experts would like to help their clients make optimal decis
However, it is not uncommon for experts to be concerned with the costs (time, mis
etc.) associated with complex forecasts. Some examples of decision makers and
who fit the above description include the following: intelligence services, which pro
information to operational units; market specialists who provide top managemen
information about competitors; a congressional committee, which needs to decid
strategy against some opponent (be it terrorists, illegal aliens, drug dealers, etc
therefore summons an expert to inform them of the opponent’s behavior.

The approach we take in this paper can be interpreted as areduced form of a model that
attempts to capture the strategic interaction between players who rely on expert fore
with the above concerns. We view our proposed solution concept as the steady state
a model. This view is based on our conviction that the following must be true in a s
state:

(1) experts have no incentive to simplify their forecasts, and
(2) experts do not provide false forecasts.

One limitation of our approach is that the full blown model in which the players and ex
interact is left in the background. Thus, an important extension of our present work
be to explicitly model the decision makers and their expert forecasters. One step to
this direction is taken in Eliaz (2001).

3.3.3. Complexity considerations in repeated games
ESF is in some sense complementary to the solution concepts that have been

in the literature on complexity considerations in games.ESF is the “flip side” of those
solution concepts in the following sense: Instead of assuming that a player prefers
strategies but is indifferent to forecasts of varying complexity, we assume that the
prefers simple forecasts but is indifferent to strategies of varying complexity. This a
us to isolate the effect of preferring simple forecasts from the effect of preferring s
strategies. As we show in the next section, both approaches to complexity conside
result in a one-to-one correspondence between states and actions on the equilibriu
however the two approaches imply different sets of equilibrium play paths.
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4. Characterization of the equilibria

In this section we present the main properties ofESF in infinitely repeated 2× 2
games. We start by describing the main features of the equilibrium machines. In par
the nature of the states on and off the equilibrium path is described. We conclu
providing the conditions that are necessary and sufficient for a sequence of actio
to be sustainable inESF.

The results in this section rely on the Markovian nature of each player’s optimiz
problem in the machine game. Denote byUi(m1, m2) the repeated game payoff of playei
if the players use the machinesm1 andm2. Havingm∗

i = (Qi, q0
i , fi , τi ), for eachq ∈ Qi ,

let Vj (q) = maxmj Ui(m
∗
i (q), mj ), wherem∗

i (q) is the machine that differs fromm∗
i only

in the initial state,q . For eachq ∈ Qi , let Aj(q) be the set of solutions to the problem:

max
aj ∈Aj

uj

(
fi(q), aj

) + δVj

(
τi(q, aj )

)
.

Lemma 1. Player j ’s machine is a best response to m∗
i if for every q ∈ Qi , the action he

takes when player i’s machine is in state q is a member of Aj (q). Conversely, if for every
state q that m∗

i reaches, player j takes an action in Aj (q), then player j ’s machine is a
best response to m∗

i .

Proof. See Rubinstein (1998, p. 153).✷
The first result is concerned with periods on the equilibrium path in which it is opt

for a player to choose the best response in the 2× 2 game to his opponent’s action in tho
periods. In periods that have this property a player does not need to be “threaten
order to induce him to take the right action. That is, ift is a period on the equilibrium pat
that has this property, then to take the optimal action att a player can simply believe tha
his opponent’s machine would move to its next state independently of his actions.

Proposition 1 (no unnecessary punishments).If (m∗
1, m∗

2) is an ESF of the game MG(δ),
then for every period t along the equilibrium path in which player i chooses a G-best
response to his opponent’s action at t , the transition of m∗

j is constant. That is,

τj

(
qt, ai

) = τj

(
qt ,−ai

)
Proof. Suppose there is a periodt∗ in which playeri ’s action,a∗, is a G-best respons
to his opponent. Assume thatτj (q∗, ai) �= τj (q∗,−ai), whereq∗ is the state ofm∗

j at t∗.
Let m′

j denote a machine, which is derived fromm∗
j by letting the transition from stat

q∗ be equal toτj (q∗, a∗) independently of playeri ’s actions (any state, which cannot
reached from the initial state for any sequence of actions by playeri is deleted). Thus,m′

j

is simpler thanm∗
j . By Lemma 1,a∗ ∈ Ai(q

∗). It follows thatm∗
i is a best response tom′

j ,
a contradiction. ✷

Proposition 1 can be interpreted as saying that if it is not crucial for a player to
that his opponent is threatening him, then it is better to ignore the threat. Describi
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opponent’s threat will not change the player’s incentives and may only confuse the
as the description of the opponent’s strategy becomes more complex. Thus, in per
the equilibrium path, in which a player need not know about a threat of punishmen
opponent will not threaten.

However, there are situations in which a player would not choose the correct ac
unless he knows that his opponent would punish him for not choosing correctly. Th
proposition addresses these situations. It says that if a player must know that his op
is threatening him with a punishment, then he should consider only the simplest eff
punishment. This implies that off-equilibrium punishments have a very simple struct

Proposition 2 (characterization of states not on the equilibrium path).Let (m∗
1, m∗

2) be an
ESF of MG(δ). If there is a player i and a state qi in m∗

i such that there exists no period t

that satisfies qt
i (m∗

1, m∗
2) = qi , then qi has the following properties:

(1) fi(qi) = Di;
(2) τi(qi, aj ) = τi(qi,−aj ) = qi .

Proof. Let t∗ denote a period on the equilibrium path in which playerj ’s machine is at
stateq∗ and playeri chooses the actiona∗. Suppose there is no period on the equilibri
path in which the state ofm∗

j is τj (q∗,−a∗). By Proposition 1,a∗ is not aG-best respons
to fi(q

∗). If Condition 2 is not satisfied, then a forecast, which satisfies the two cond
of the proposition, is simpler thanm∗

j . Furthermore, by Lemma 1,m∗
i is a best response t

this forecast. If only Condition 1 is not satisfied, then it is optimal for playeri to choose
−a∗ at t∗, a contradiction. ✷

The implication of Proposition 2 for the infinitely repeated Prisoner’s Dilemma
example, is that any off equilibrium state must be a grim-trigger threat of con
defection.

The previous propositions have characterized the threats and punishments i
player’s strategy. That is, the states and transitions that are not used in equilibriu
now turn to discuss the properties of the equilibrium path.

Because each player’s machine is finite, there is a minimal numbert ′ such that for some
t > t ′, we haveqt

i = qt ′
i for both i = 1 and i = 2. Let t∗ be the minimal sucht . The

sequence of pairs of states starting in periodt ′ consists of cycles of lengtht∗ − t ′. We
refer to this sequence as thecyclic phase; the sequence before periodt ′ is theintroductory
phase.

The next proposition shows that the set of states a player uses in the cycl
introductory phases are disjoint. This means that in anESF the introductory phase of eac
machine consists of states that are visited only once on the equilibrium path, where
cyclic stage consists of those states that appear everyl periods on the equilibrium path
wherel is the cycle’s length.

Proposition 3 (the equilibrium path consists of disjoint states).Let (m∗
1, m∗

2) be an ESF
of MG(δ) for some discount factor δ. Then for every player i there exists an integer
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li < t∗i such that the states in the sequence (qt
i (m

∗
1, m∗

2))
t∗i −1
t=1 are disjoint and qt

i (m∗
1, m∗

2) =
q

t−li
i (m∗

1, m∗
2) for t � t∗i .

Proof. Let tj be the first period on the equilibrium path in which one of the states ofmj
∗

appears for the second time (by the finiteness ofm∗
j such a period exists). That is, there

an integerlj < tj that satisfiesq
tj−lj
j = q

tj
j ≡ q∗

j .

Assume thatq
tj+1
j �= q

tj−lj +1
j . Let (a

tj−lj
i , a

tj−lj
j ) = (a∗

i , a∗
j ). Therefore,a

tj
i = −a∗

i

andτj (q∗
j , C) �= τj (q∗

j , D). Let m′
j denote the machine, which is obtained by changing

transition function ofm∗
j such that

τ ′
j

(
q∗

j , C
) = τ ′

j

(
q∗

j , D
) = q

tj+1
j

whereτ ′
j is the transition function ofm′

j . If as a result of this change there is a stateqj ,
which cannot be reached from the initial state ofm∗

j for any sequence of actions byi, then
this state is deleted. By our definition of simplicity,m′

j is simpler thanm∗
j .

Consider playeri. When playing againstm∗
j his best responsem∗

i generates the
following sequence of action pairs starting at periodtj − lj :

a(tj − lj ,∞) = [
a(tj − lj , tj − 1), a(tj ,∞)

]
,

where

a(tj − lj , tj − 1) = (
a∗

i , a∗
j

)
,
(
a

tj−lj +1
i , a

tj−lj+1
j

)
, . . . ,

(
a

tj−1
i , a

tj−1
j

)
and

a(tj ,∞) = (−a∗
i , a∗

j

)
,
(

a
tj+1
i , a

tj+1
j

)
, . . . .

By Lemma 1, playeri is indifferent between playinga∗
i or −a∗

i whenever playerj is at
stateq∗

j . This means that playeri is indifferent between a sequence consisting of infin
repetitions ofa(tj − lj , tj − 1) and the sequencea(tj ,∞).

Let m′
i denote the machine havingtj + lj states all of which are connected by const

transitions such that

(1) the machine moves from itstj + lj state back to itstj state, and
(2) the machine carries out the firsttj − 1 actions ofm∗

i along the path generated b
(m∗

1, m∗
2) followed by infinite repetitions ofai(tj − lj , tj − 1).

It follows thatm′
i is a best reply to bothm∗

j andm′
j , a contradiction. ✷

The structure of Nash equilibrium in repeated games with finite machines has
characterized by AR. They show that when each player wants to choose a best re
with the minimal number of states against his opponent, there must be a one-
correspondence betweenstates on the equilibrium path. This means that for every playi
and every stateqi on the equilibrium path, there is a unique stateqj such that whenevermi

is in qi , mj is in qj . It turns out that this result also holds when the equilibrium mac
of each player is the simplest machine that rationalizes the machine of the opponen
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Proposition 4 (one-to-one correspondence between states on the equilibrium paIf
(m∗

1, m∗
2) is an ESF of MG(δ), then there exists a period t∗ and an integer l < t∗ such

that for i = 1, 2, qt
i (m∗

1, m∗
2) = qt−l

i (m∗
1, m∗

2) for t � t∗.

Proof. See Appendix A. ✷
It is important to understand that the proof of Proposition 4 is somewhat more inv

than the proof of one-to-one correspondence between states in AR. One source of d
is the fact that in our model it is not necessary that all states be used on the equil
path, and the players’ machines may differ in their number of states. Another sou
difficulty is related to difference between the proofs of the following claims:

Claim 1. Suppose (m1, m2) is a Nash equilibrium of MG(δ) with the property that there
is no one-to-one correspondence between states on the equilibrium path. Then a machine
with fewer states than mi is a best response to mj .

Claim 2. Suppose (m1, m2) is a Nash equilibrium of MG(δ) with the property that there is
no one-to-one correspondence between states on the equilibrium path. Then mi is a best
response to a machine with fewer states than mj .

The proof of the second claim, unlike that of the first, requires us to show th
deleting states frommj , we have not changed the incentives of playeri. That is, we need
to make sure that we do not delete any necessary threats or punishments from plaj ’s
original machine.

The class of 2× 2 games that we are considering can either have two Nash equi
(C, D) and (D, C) or (C, C) and (D, D), or a unique Nash equilibrium in which th
players coordinate ((C, C) or (D, D)).2 Suppose we depict the payoff matrix ofG as
follows:

C D

C

D .

We call the two sets of action pairs,{(C, C), (D, D)} and{(C, D), (D, C)}, themain
diagonal and theoff-diagonal of G, respectively. We can thus say that the Nash equili
of G is either one of the diagonals, or it is a singleton element in the main diag
This classification of the types of Nash equilibria thatG may have will be useful in ou
next results, which characterize the play paths ofESF. These results demonstrate th
accounting for the complexity of forecasts places severe restrictions on the play pat
can be generated in equilibrium.

Proposition 5. Suppose the set of Nash equilibria of G coincides with one of the diagonals
of this game. If (m1, m2) is an ESF of MG(δ) for some discount factor δ, then in every

2 This follows from our symmetry assumption, our assumption thatD is the minmax action of each playe
and the assumption that fori = 1,2, ui(C,C) �= ui(Di ,Cj ) andui(Ci ,Dj ) �= ui(D,D).
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period on the equilibrium path players play a Nash equilibrium of G. Conversely, for all
δ ∈ [0, 1], any play path, in which players play a Nash equilibrium of G every period and
which can be generated by a pair of finite machines, is the outcome of some ESF of MG(δ).

The proof of Proposition 5 is given in Appendix A. To understand the intuition for
proof consider the game of Chicken. Let(m1, m2) be anESF of the corresponding machin
game. Suppose there exists a periodt on the equilibrium path in which the outcome is n
a Nash equilibrium ofG, say(C, C). To prove that this assertion is false, we constru
machine pair(m′

1, m′
2) such thatm′

2 is simpler thanm2, andm′
1 is a best response to bo

m2 andm′
2.

From the assumption that both players chooseC at t it follows that each machin
must have a non-constant transition in the state that it is at in periodt . Therefore, we
can simplifym2, so that its output atqt

2 will be D and it would move to the next sta
independently of the action chosen by player 1. Denote this simpler machine bym′

2. Let
m′

1 be a machine that is identical tom1 except that it has a constant transition atqt
1. It

follows thatm′
1 is a best response to bothm1 andm′

1. For example, consider the machi
m depicted in Fig. 7. For a sufficiently high discount factor,(m, m) is a Nash equilibrium
in which (C, C) is played every period. To see why(m, m) is not anESF, note thatm′
simpler thanm, andm∗ is a best response to bothm andm′.

Proposition 5 has striking implications for theESF of the infinitely repeated Chicken
If for some discount factor a pair of machines is anESF of the infinitely repeated game
then this pair of machines can generate only combinations of the pure Nash equilibr
the one-shot game.

Proposition 6. Suppose (D, D) is the unique Nash equilibrium of G. If the discount factor
δ sufficiently close to one, then there are only two possible ESF play paths in MG(δ): the
play path in which players choose (D, D) each period and the one in which they choose
(C, C) each period.

Proposition 6 implies that in theESF of the infinitely repeated Prisoner’s Dilemm
the two players must coordinate their actions, i.e., they either always defect or a
cooperate. This result is in stark contrast to the Nash folk theorem, which states tha
individually rational play path can be sustained as a Nash equilibrium.

The proof of Proposition 6 is given Appendix A. Example 2 in Section 3.2 demons
the intuition for why there cannot be anESF play path that consists only of outcomes on
off-diagonal. Here, we provide a simple example that illustrates the intuition for the r
that whenever players choose(C, C) they continue to do so in every subsequent per
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Let G be the Prisoner’s Dilemma and assume for simplicity thatu(D, D) is smaller than
the average ofu(C, D) andu(D, C). Consider the machinemi depicted in Fig. 8. Forδ
sufficiently close to one,(m1, m2) is a Nash equilibrium ofMG(δ). However, this machine
pair is not anESF of MG(δ). To see why, note thatm′

2 is simpler thanm2, andm′
1 is a best

response to bothm2 andm′
2.

We now turn to characterize the equilibrium paths for the case in which the u
Nash equilibrium ofG is (C, C). In stark contrast to the standard folk theorem, when
discount factor is sufficiently close to one, the set ofESF play paths is reduced to a subs
of the following four sequences:

(S1) (C, C) each period;
(S2) (D, D) in the first period, followed by(C, C) in every subsequent period;
(S3) (D, D) in every odd period and(C, C) in every even period;
(S4) (D, C) each period;
(S5) (C, D) each period.

Proposition 7. Assume (C, C) is the unique Nash equilibrium of G. Let (m1, m2) be an
ESF of MG(δ), where δ is a discount factor sufficiently close to one.

(i) Suppose ui(Ci, Dj ) � ui(Di, Cj ). Then a(m1, m2) is one of the sequences (S1)–(S3).
Conversely, each of the sequences (S1)–(S3) can be generated by a pair of machines
that constitutes an ESF of MG(δ) for δ sufficiently close to one.

(ii) Suppose ui(Ci, Dj ) < ui(Di, Cj ). Then a(m1, m2) can be any sequence (S1)–(S5).
Conversely, each of the sequences (S1)–(S5) can be generated by a pair of machines
that constitutes an ESF of MG(δ) for δ sufficiently close to one.

Proposition 7 is proven in Appendix A. The intuition for the proof is similar to
intuition underlying Propositions 5 and 6.

Given Propositions 5–7, it is interesting to compare our results with those of
Although our approaches are different, both AR and we obtain a one-to-one corre
dence between statesand actions on the equilibrium paths. However, the set ofESF
play paths is different from the set obtained by AR. For example, consider the rep
Prisoner’s Dilemma. While a play path in which players cooperate every period c
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sustained inESF, it cannot be sustained in the equilibrium concept of AR. Consider
the repeated Chicken. While there is noESF in which starting from some point in time
players cooperate every period, such a play path can be obtained in the equilibrium

5. Equilibrium payoffs

Propositions 5–7 enable us to provide a characterization of the equilibrium payoff
this characterization we need to introduce a few notations.Πδ

ESF will denote the set ofESF
payoffs for a discount factor ofδ. Let Πδ

G denote the set of all payoff pairs obtained fro
some discounted sum of the Nash equilibrium payoffs ofG when the discount factor isδ.
That is,

Πδ
G =

{
(π1, π2): πi = (1− δ)

∞∑
t=0

δtui

(
at

)
andat ∈ NE(G) for everyt

}
.

The next pieces of notation represent the payoff pairs associated with the seq
(S1)–(S5) described in Proposition 7. LetπS(δ) = (πS

1 (δ), πS
2 (δ)) whereπS

i (δ) denotes
the δ-discounted sum of payoffs that playeri obtains from a play pathS ∈ {S1, . . .S5}.
Thus,

πS1
i (δ) = ui(C, C), πS2

i (δ) = (1− δ)u(D, D) + δu(C, C),

πS3
i (δ) = u(D, D) + δu(C, C)

1+ δ
, πS4

i (δ) = ui(D, C), πS5
i (δ) = ui(C, D).

Finally, to denote theESF payoffs whenNE(G) = {(D, D)} we use the notation
πDD

i (δ) = ui(D, D) andπCC
i (δ) = πS1

i (δ).

Proposition 8. Let (m1, m2) be an ESF of MG(δ) for δ sufficiently close to one.

(i) If the Nash equilibria of G lie on one of its diagonals, then Πδ
ESF = Πδ

G.
(ii) If NE(G) = {(C, C)} and ui(Ci, Dj ) � ui(Di, Cj ), then Πδ

ESF = {πS(δ)}S=S1,...,S3.
(iii) If NE(G) = {(C, C)} and ui(Ci, Dj ) < ui(Di, Cj ), then Πδ

ESF = {πS(δ)}S=S1,...,S5.
(iv) If NE(G) = {(D, D)}, then Πδ

ESF = {πDD(δ), πCC(δ)}.

Proof. Follows directly from Propositions 5–7.✷
6. Concluding remarks

This paper should be viewed as a critique of the commonly accepted interpre
of Nash equilibrium as a steady state in which players best respond to correct fo
about their opponents. The criticism which is raised in this paper is the following: W
the players’ preferences are affected by their beliefs about others, then the requi
for correct beliefs places severe restrictions on the set of equilibrium outcomes.
when we enrich the standard framework by allowing expectations to enter into the pl
preferences, then we can either look for alternative interpretations of Nash equilib

look for alternative solution concepts.
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Appendix A

Proof of Proposition 4. Let (m1,m2) be anESF of MG(δ) for some discount factorδ. We begin by introducing
a few notations. Letti denote the first period on the equilibrium path in which one of the states ofmi appears for
the second time. That is, letti be the minimal time for which there is a playeri and a periodt∗i < ti such that

q
ti
i = q

t∗i
i . We say thatmi begins its cyclic phase att∗i . We refer to the differenceti − t∗i as the “length of the

cycle” and denote it byli .
Assume there is no one-to-one correspondence between states along the path that is generated by(m1,m2).

Given Proposition 3, this assumption has two possible implications:

(1) Either the two machines enter their cyclic phases at different periods (i.e.,t∗1 �= t∗2 ), or
(2) the two machines enter their cyclic phases at the same time, but the length of their cycles differ (t∗1 = t∗2 but

l1 �= l2).

We consider each of these two cases separately.

Case 1. mi enters its cyclic phase beforemj : t∗i < t∗j .

Let t ′ denote the minimal time in which

(1) bothmi andmj are in the cyclic phase of the equilibrium path, and

(2) mi is in the first state of its cyclic phase, (stateqt∗
i ).

Case 1 corresponds to the case in whicht ′ > t∗i .
Constructmj as follows: LetS ⊂ Qj be a subset of states inQj \Qj (t∗i , t∗j − 1) such that eachq ∈ S

satisfiesτj (q, a) ∈ Qj (t∗i , t∗j − 1) for somea ∈ A. If S is empty, then omit the states inQj (t∗i , t∗j − 1) from
m′

j . Also omit any state that cannot be reached from any of the remaining states. However, ifS is nonempty,

then for eachq ∈ S anda ∈ A satisfyingτj (q, a) ∈ Qj (t∗i , t∗j − 1) let τ ′
j (q, a) = q

t∗i
j wheref ′

j (q
t∗i
j ) = D and

τ ′
j (q

t∗i
j ,C) = τ ′

j (q
t∗i
j ,D) = q

t∗i
j . Omit all the states inQj (t∗i +1, t∗j −1) and any other state that cannot be reac

from any of the remaining states.

If t∗i = 1, let the initial state ofm′
j beq

t∗
i

j . Otherwise, change the transition function ofmj atq
t∗
i
−1

j so that the

modified machine moves directly into stateqt ′
j when playeri carries out his equilibrium action att∗i − 1. That is,

let the transition function ofm′
j satisfy:

τ ′
j

(
q

t∗i −1
j , fi

(
q

t∗i −1
i

))
= qt ′

j .
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If i deviates from his equilibrium action att∗i − 1, thenτ ′
j (q

t∗
i
−1

j ,−fi (q
t∗
i
−1

i )) depends on whether or notS is

empty. If it is, then the transition out ofq
t∗
i
−1

j when playeri does not choosefi(q
t∗
i
−1

i ) remains the same a
in mj :

τ ′
j

(
q

t∗
i
−1

j ,−fi

(
q

t∗
i
−1

i

))
= τj

(
q

t∗
i
−1

j ,−fi

(
q

t∗
i
−1

i

))
.

However, ifS is nonempty, then letτj (q
t∗
i
−1

j ,−fi(q
t∗
i
−1

i )) = q
t∗
i

j .
From the above changes it follows thatx(m′

j ) < x(mj ) while y(m′
j ) � y(mj ). Therefore,m′

j is simpler
thanmj . By Lemma 1, ifmi is a best response tomj , then it must also be a best response tom′

j . Thus,(m1,m2)

cannot be anESF of MG(δ), a contradiction. ✷
Case 2. Both m1 andm2 enter their cyclic phase at the same time, but have different cycle lengths:t∗i = t∗j = t∗
but li < lj .

By Lemma 1, playeri must be indifferent between the equilibrium path fromt∗i onwards and infinite
repetitions of the sequence of outcomes fromt∗ to t∗ + li − 1. We use this observation to construct a simp
machine thanmj to whichmi is a best response.

Let m̂j denote the machine obtained when we make the following changes inmj . Let Ŝ ⊂ Qj be a subse
of states inQj \Qj (t∗ + li , t∗ + lj − 1) such that eachq ∈ Ŝ satisfiesτj (q, a) ∈ Qj (t∗ + li , t∗ + lj − 1) for
somea ∈ A. If Ŝ is empty, then omit the states inQj (t∗ + li , t∗ + lj − 1) from m̂j . Also omit any state
that cannot be reached from any of the remaining states. However, ifŜ is nonempty, then for eachq ∈ Ŝ

and a ∈ A satisfying τj (q, a) ∈ Qj (t∗ + li , t∗ + lj − 1) let τ̂j (q, a) = q
t∗+li
j where f̂j (q

t∗+li
j ) = D and

τ̂j (q
t∗+li
j ,C) = τ̂j (q

t∗+li
j ,D) = q

t∗+li
j . Omit all the states in(t∗ + li + 1, t∗ + lj − 1) and any other state tha

cannot be reached from any of the remaining states.

The next set of changes involves the transition function atq
t∗+li−1
j . We change the transition function ofmj

so that the modified machine moves directly into the stateqt∗
j when playeri carries out his equilibrium action a

t∗ + li − 1. If i deviates from his equilibrium action att∗ + li − 1, thenτ̂j (q
t∗+li−1
j ,−fi(q

t∗+li−1
j )) depends on

whether or not̂S is empty. If it is, then

τ̂j

(
q

t∗+li−1
j ,−fi

(
q

t∗+li −1
j

))
= τj

(
q

t∗+li−1
j ,−fi

(
q

t∗+li−1
j

))
.

Otherwise, we let

τ̂j

(
q

t∗+li−1
j ,−fi

(
q

t∗+li −1
j

))
= q

t∗+li
j .

From the above changes it follows thatx(m′
j ) < x(mj ) while y(m′

j ) � y(mj ). Therefore,m′
j is simpler

thanmj . Note that by construction, the sequencesa(mi,mj ) anda(mi,m′
j ) differ only after periodt∗ + li − 1.

Also note that the sequence that is generated by(mi,m′
j ) from t∗ + li onwards consists of infinite repetitions

the outcomes betweent∗ and t∗ + li − 1 on a(mi ,mj ). By Lemma 1, ifmi is a best response tomj , then it is
also a best response tom′

j . Thus,(m1,m2) cannot be anESF of MG(δ), a contradiction. ✷
Each of the Propositions 5–7, is proven in two steps. In the first step we show that given the Nash eq

of G, any ESF play path must satisfy certain properties. Given any play path with those properties, w
construct a pair ofESF machines that generate that play path. This is done in the second step of the pro
this second step we require the notion of a spanning sequence, which we define below.

Let (at ) be a sequence ofG outcomes, which is generated by some pair of finite machines. It follows
there exists a finite sequence of action pairsb(K,L),

b(K,L) = (
b1, . . . , bK ,bK+1, . . . , bK+L

)
such that a single repetition of(b1, . . . , bK ), followed by infinite repetitions of(bK+1, . . . , bK+L), yield the
sequence(at ). We say thatb(K,L) spans the sequence(at ). We letb(K,L) denote the shortest sequence, wh
spans(at ). Since we are considering only finite machines, there exists a shortest sequence that spans a p
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Proof of Proposition 5. Suppose the set of Nash equilibria ofG is one of the diagonals of this game; that is,
set of Nash equilibria ofG is either{(C,C), (D,D)} or {(C,D), (D,C)}. This implies that if(a1, a2) is not a
Nash equilibrium ofG, then no player is best responding to his opponent.

Step 1. Let (m1,m2) be anESF of MG(δ) for some discount factorδ. For each playeri denote the output function
and the transition function ofmi by fi andτi , respectively. Assume that(m1,m2) generates a play path(at ) in
which there is at least one period in which the outcome isnot a Nash equilibrium ofG. Let QESF

1 andQESF
2 be

the set of states ofm1 andm2, respectively that appear on(at ). For each playerj and for each stateqj ∈ QESF
j

let Si(qj ) ⊆ QESF
i be the set of states that satisfy the following: Along the path(at ), whenevermj is in stateqj

the machinemi enters a state inSi(qj ). By Proposition 4,Si(qj ) is a singleton. For eachqj ∈ QESF
j we denote

the single member ofSi(qj ) by si(qj ).
For each playerj defineQ∗

j to be the set of equilibrium states inQESF
j with the property that the pair o

actions,fj (qj ) andfi(si(qj )), is not a Nash equilibrium ofG (that is, whenever a state inQ∗
j appears on the

equilibrium path, the two players donot play a Nash equilibrium ofG). Thus, for everyqj ∈ Q∗
j ,

τj (qj ,C) �= τj (qj ,D).

We now show thatmj can be turned into a machinem′
j with the following properties:

(1) each period it chooses an action, which is different from the equilibrium action ofmj at that period, and
(2) it moves from one state to another independently of playeri ’s actions.

Denote the set of states, the output function and the transition function ofm′
j by Q′

j , f ′
j andτ ′

j , respectively. Let

Q′
j = QESF

j . For eachqj ∈ Q∗
j let f ′

j (qj ) �= fj (qj ) and

τ ′
j (qj ,C) = τ ′

j (qj ,D) = τj

(
qj , ai (qj )

)
whereai (qj ) = fi(si(qj )). Clearly,y(m′

j ) < y(mj ) andx(m′
j ) � x(mj ). This implies thatm′

j is simpler thanmj .
Let m′

i be a machine that carries out the equilibrium actions ofmi irrespective of the actions by playerj ’s
machine:

(1) Q′
i = QESF

i .
(2) f ′

i (qi ) = fi(qi) for eachqi ∈ Q′
i .

(3) For allqi ∈ Q′
i , τ ′

i (qi ,C) = τ ′
i (qi ,D) = τi (qi , aj ) whereaj = fj (sj (qi)).

Clearly,m′
i is a best response to bothmj andm′

j . Thus,(m1,m2) cannot be anESF of MG(δ), a contradiction.

Step 2. Consider a play path in which every period players play a Nash equilibrium ofG. Let b(K,L) be the
shortest sequence that spans that play path. Consider a machinemi with K + L states. For each stateqk , where
k = 1, . . . ,K + L, let the output bebk . The machine starts atq1 and passes to the other states according
transition function with the following properties:

τi

(
qk,C

) = τi

(
qk,D

) =
{

qk+1 if k < K + L,

qK+1 if k = K + L.

It is straightforward to verify that(m1,m2) is anESF of MG(δ) for any discount factorδ.

Proof of Proposition 6.
It is easy to see that a pair of single state machines with outputD is anESF of MG(δ) for any discount factor

δ ∈ [0,1]. It is also easy to see (recall Example 1) that a pair of grim trigger machines, which generate a pl
with constant cooperation, is anESF for a discount factor sufficiently close to one. It remains to show that w
δ is sufficiently close to one, there is no otherESF play path.

Let (m1,m2) be anESF of MG(δ), whereδ is a discount factor sufficiently close to one. The transit
function and the output function of each equilibrium machine is denotedτi andfi , respectively. The following
series of claims relate to the path generated by(m1,m2).
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Claim 6.1. If both players choose C in the first period, then they must continue to do so in every subsequent
period.

Proof. Assumea1 = (C,C) and let t∗ be the first period with the following property: Both players chooseC

in this period (at∗ = (C,C)), but at least one of the players, sayj , switches toD in the subsequent perio
(at∗+1 ∈ {(Ci,Dj ), (D,D)}). Assume there exists such a periodt∗.

From our assumption that both players cooperate in periods 1 tot∗ it follows that mj has a non-constan
transition in each of the states that are visited in those periods:τj (qt

j ,C) �= τj (qt
j ,D) for t = 1, . . . , t∗ where

τj (qt∗
j ,C) = qt∗+1

j . Moreover, for playeri to cooperate att = 1 it must be the case thatτj (q1
j ,D) �= q1

j . From

our assumption that playerj does not cooperate att∗ +1 it follows thatmj has at least one state distinct fromqt∗
j .

From our conclusion that

τj

(
qt∗

j ,D
)

/∈ {
qt∗

j , qt∗+1
j

}
it follows thatmj has one other state distinct from bothqt∗

j andqt∗+1
j . Hence,mj must have at least three state

Let m′
j be a machine with only two statesqD

j andqC
j and a transition functionτ ′

j . The machine starts from

stateqD
j where the output isD and the transition function satisfiesτ ′

j (qD
j ,D) = qD

j and τ ′
j (qD

j ,C) = qC
j . In

stateqC
j the output isC and oncem′

j enters this state, it remains there regardless of the output ofmi , i.e.,

τ ′
j (qD

j ,D) = τ ′
j (qD

j ,C) = qC
j . From our conclusions regarding the properties ofmj it follows thatm′

j is simpler
thanmj .

Let m′
i be a machine with the following properties. The set of states ofm′

i is Q′
i = Qi ∪ {qD

i } such that both
machines start from the same initial stateq0

i . In each of the statesqi ∈ Qi the output of both machines is the sam
i.e.,f ′

i (qi) = fi(qi) for all qi ∈ Qi . In addition,τ ′
i (qi , aj ) = τi(qi , aj ) for all qi ∈ Qi\{q0

i } andaj ∈ {C,D}. At
the initial state, which is common to both machines, we haveτ ′

i (q
0
i ,C) = τi(q

0
i ,C) andτ ′

i (q
0
i ,D) = qD

i where
qD

i is a state in which the output isD and the transition function isτ ′
i (q

D
i ,D) = τ ′

i (q
D
i ,C) = qD

i . Clearly,m′
i is

a best response tom′
j for δ sufficiently close to one. Moreover, by construction,m′

i is also a best response tomj .
This contradicts our assumption that(m1,m2) is anESF of MG(δ). ✷
Claim 6.2. If both players choose D in the first period, then they must continue to do so in every subsequent
period.

Proof. Assumea1 = (D,D) and let t∗ be the first period with the following property: Both players choo
D in this period (at∗ = (D,D)), but at least one of the players, sayi, switches toC in the subsequent perio
(at∗+1 ∈ {(Ci,Dj ), (C,C)}). Assume there exists such a periodt∗ .

Let m′
i be a single state machine with outputC. Clearly,m′

i is simpler thanmi . Let m′
j be a machine, which

is different frommj only in the following respect:

τ ′
j

(
q0

j ,C
) = q0

j .

It is easy to see thatm′
j is a best response to bothmi andm′

i . ✷
Claim 6.3. Suppose there exists some period t in which at = (Ci,Dj ). Let qt

j be the state of mj in period t . Then

τj (qt
j ,D) = qt

j .

Proof. Assume thatτj (qt
j ,D) �= qt

j . Then mj can be simplified by letting it remain inqt
j , unless playeri

choosesC. Denote this simpler machine bym′
j . Sinceδ is sufficiently close to one, it follows thatmi is a

best response to bothmj andm′
j , a contradiction. ✷

Claim 6.4. If there exists some period t in which at = (Ci,Dj ), then t > 1.

Proof. Supposea1 = (Ci,Dj ). We show that(m1,m2) cannot be anESF of MG(δ). SinceD is a dominant
strategy the transition from the initial state ofmj must satisfy:

τj

(
q0

j ,D
) �= τj

(
q0

j ,C
)
.
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By Claim 6.3,τj (q0
j ,D) must be equal toq0

j . Thus,mi can be simplified such thatmj will be a best respons
to bothmi and its simplification. To see why, letm′

i be a single state machine with a constant output ofD. Clearly,
m′

i is simpler thanmi , andmj is a best response tom′
i . Since this contradicts our assumption that(m1,m2) is an

ESF of MG(δ), it must be the case thata1 �= (Ci,Dj ). ✷
Claim 6.5. There exists no period in which the outcome is (Ci,Dj ).

Proof. Let t∗ be the earliest period in which one player choosesC while the other choosesD. By Claims 6.1 and
6.2, the outcome in the first period cannot be(C,C) or (D,D). Hence,t∗ = 1, in contradiction to Claim 6.4. ✷

From Claims 6.1–6.5 it follows that the only possibleESF play paths are ones in which the players coordin
each period. ✷
Proof of Proposition 7.

Step 1. Let (m1,m2) be anESF of MG(δ) whereδ is a discount factor that is close to one. Lett∗i denote the
first period on the equilibrium path in which machinei enters a state that had already appeared beforet∗i . By
Proposition 4,t∗1 = t∗2 = t∗ .

Claim 7.1. If there exists a period t < t∗ in which both players choose C , then both players continue to choose C

in every period between t and t∗ .

Proof. Assume the claim is false, so that on the equilibrium path there is a periodt � t ′ < t∗ in which the
outcome is(C,C), while att ′ + 1 at least one player, sayj , choosesD. Let qt ′

j be the state ofmj at t ′ . Consider

making the following change inmj . First, change the output ofmj in stateqt ′
j from C to D, and let the machine

remain in that state for every action by playeri. Second, omit the states inQj (t ′ + 1, t∗) from m′
j . Also omit

any state that cannot be reached from any of the remaining states. LetS ⊂ Qj (1, . . . , t ′ − 1) such that for each
q ∈ S there existsa(q) ∈ A satisfyingτj (q, a(q)) ∈ Qj (t ′ + 1, t∗). If S is nonempty, then for eachq ∈ S let

τ ′
j (q, a(q)) = qt ′

j .
Denote the machine that results from this change bym′

j . Clearly,x(m′
j ) < x(mj ) andy(m′

j ) < y(mj ), and
som′

j is simpler thanmj .
Consider next a machinem′

i , which is identical tomi except for the following difference: The machin

remains in stateqt ′
i unless the output of playerj ’s machine isC, in which casem′

j moves to stateqt ′+1
i (i.e.,

τ ′
i (q

t ′
i ,D) = qt ′

i , while τ ′
i (q

t ′
i ,C) = qt ′+1

i ). It is easy to see thatm′
i is a best response to bothm′

j and tomj , in
contradiction to the assumption that(m1,m2) is anESF of MG(δ). ✷
Claim 7.2. Suppose that on the equilibrium path there is a period t in which the outcome is (Di ,Cj ). Then the
outcome in every subsequent period must also be (Di,Cj ).

Proof. Let t̂ be the smallestt that satisfies: There existsi such that

at (m1,m2) = (Di,Cj ), at+1(m1,m2) �= (Di,Cj ).

Assume the claim is false so that a periodt̂ , as defined above, exists on the play path of(m1,m2). Let qt̂
i be the

state ofmi at t̂ . From Proposition 4 it follows that regardless of the output ofj ’s machine,mi does not remain in
qt̂

i in period t̂ + 1.
By Claim 7.1, there is no period beforet̂ in which the outcome is(C,C). Thus, in every periodt beforet̂ the

outcome is either(D,D) or (Di ,Cj ). It follows that the transition function ofmi must satisfy the following:

τi

(
qt ,C

) =
{

qt if at (mi,mj ) = (D,D),

τ
(
qt ,D

)
if at (m ,m ) = (D ,C ).
i i j i j
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This has three important implications. First, the only state inmi , that appears on the equilibrium path beforet̂ and

which has a transition intoqt̂
i , is qt̂−1

i . Second, none of the states, which appear on the equilibrium path beft̂ ,
have a transition into a state that does not appear on the path in the firstt̂ periods: For everyt < t̂ anda ∈ {C,D},
τi(q

t , a) ∈ {qt , qt+1}.
Suppose we make the following changes inmi . First, we change its output atqt̂

i from D to C. Second, we

change the transition function atqt̂
i such that the machine remains in that state for every action by playj .

Finally, we delete any state that does not appear in the firstt̂ periods of the equilibrium path. Denote the resulti
machine bym′

i . Thenx(m′
i ) < x(mi) andy(m′

i ) < y(mi), which means thatm′
i is simpler thanmi .

Consider a machinem′
j , which is identical tomj except perhaps for the transition function atqt̂

j : m′
j remains

in that state unless playeri choosesD, in which case,m′
j moves toqt̂+1

j .

To complete the proof we need to show that the assumption that a periodt̂ exists necessarily leads
a contradiction. We show this by proving thatm′

j is a best response to bothmi and m′
i . We first show that

m′
j is a best response tomi . Note that the only difference betweenmj andm′

j can be the transition out of stateqt̂
j

when the output of playeri ’s machine isC. Since the output ofmi at t̂ is D, both(mi,mj ) and(mi,m′
j ) generate

the same play path. Since by assumption,mj is a best response tomi , so ism′
j .

We now show thatm′
j is a best response tom′

i . First, note thatm′
i includes all the states ofmi that appear

on the play path of(mi,mj ) before t̂ . Moreover, both the transition function and the output function ofm′
i at

those states are the same as inmi . Second, note that the firstt̂ − 1 outcomes in the play path of(mi,mj ) are also
the first t̂ − 1 outcomes in the play path of(m′

i ,m′
j ). However, fromt̂ onwards playerj prefers the play path

of (m′
i ,m′

j ) to that of(mi,mj ). In addition, whenm′
i reachesqt̂

i it is optimal for playerj to constantly playC.

Hence, from the result thatm′
j is a best response tomi , and from the fact that the output ofm′

j at qt̂
j is C andm′

j

remains in that state when playeri choosesC, it follows thatm′
j is a best response tom′

i . ✷
Claim 7.3. Let t be the earliest period on the equilibrium path that satisfies t < t∗ and at = (C,C). Then t � 2.

Proof. Assumet > 2. By Claims 7.1 and 7.2, the first two outcome on the equilibrium path must be(D,D).
SinceC is dominating for each player, bothmi andmj must have non-constant transitions in the first two sta
on the equilibrium path. Therefore,y(mj ) � 2. It is also easy to see thatx(mj ) � 2. We now construct a pair o
machines(m′

i ,m′
j ) as follows.

• m′
j has three states,q0, qD andqC . It begins atq0 where the output isC. It moves toqD if the initial move

of i is C. Otherwise, it moves to stateqC . The output atqD is D, and ifm′
j reaches that state, it remains the

for every action of playeri. Similarly, the output atqC is C, and if m′
j reaches that state, it remains the

for every action of playeri. The machinem′
j is depicted in Fig. 9. It follows thatx(m′

j ) = 2 buty(m′
j ) = 1.

Therefore,m′
j is simpler thanmj .

• m′
i is constructed by adding a state tomi and changing the transition function atmi ’s initial state. Let

q0
i andq1

i be the two states ofmi such thatq0 is the initial state, andq1 is the state that followsq0 on the
equilibrium path. If the initial action of playerj ’s machine isD, m′

i moves to stateq1
i . However, if playerj ’s

initial move isC, thenm′
i moves to a new state (one that is not inmi ) in which the output isC. m′

i remains
in that new state for every action of playerj . Figure 10 displays an example of a three-statemi and the
correspondingm′

i .

By construction,m′
i is a best response to bothmj andm′

j . This implies that(mi,mj ) cannot be anESF of
MG(δ), a contradiction. ✷
Claim 7.4. If ui(Ci,Dj ) � ui(Di ,Cj ), there exists no period on the equilibrium path in which the outcome is
(Di,Cj ).

Proof. Assume there exists some period ona(m1,m2) in which the outcome is(Di,Cj ). Let t∗ be the earliest
period with that property. By Claim 7.2, the outcome in every subsequent period must also be(Di ,Cj ). This
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Fig. 9. The machinem′
j .

mi m′
i

Fig. 10.

implies that playeri necessarily prefers to have the outcome(Di,Cj ) from t∗ onwards to having the outcom
(Ci,Dj ) onwards. This in turn implies thatui(Ci,Dj ) < ui(Di ,Cj ), a contradiction. ✷

Suppose there exist a pair of periods such that the outcome in one is(C,C), while the outcome in the other i
(Di,Ci ). Let t andt ′ be the earliest periods with this property, so that max{t, t ′} < t∗ . Let (at

i , at
j ) = (C,C) and

(at ′
i , at ′

j ) = (Di,Cj ). Assumet < t ′ . By Claim 7.1,(as
i , as

j ) = (C,C) for all t∗ > s > t , a contradiction. Assum
t > t ′ . By Claim 7.2,(as

i , as
j ) = (Di,Cj ) for all s > t , a contradiction. Thus,a(m1,m2) can be of only two types

(1) Each period the players miscoordinate, i.e., the outcome each period is either(D,C) or (C,D).
(2) Each period the players coordinate, i.e., the outcome each period is either(C,C) or (D,D).

Supposea(m1,m2) is of the first type. Then by Claim 7.3,a(m1,m2) consists of infinite repetitions of eithe
(C,D) or (D,C). Supposea(m1,m2) is of the second type. Then by Claims 7.1 and 7.3,a(m1,m2) can be one
of three types:

(1) (C,C) each period.
(2) (D,D) in the first period, followed by infinite repetitions of(C,C).
(3) Infinite repetitions of the sequence(D,D), (C,C).

Step 2. Let ((at
1, at

2))∞t=1 be a sequence of action-pairs that can be generated by a pair of finite machines.
Suppose(at

1, at
2) = (Di ,Cj ) for all t . Let (mi,mj ) be the following pair of machines.mi has a single state

in which the output isD. mj has two states, the initial stateqC and a “punishment state”qD . The output at
qC is C, andmj remains in this state unless playeri choosesC, in which casemj moves toqD . The output at
qD is D, andmj remain in this state regardless of what playeri ’s actions. Clearly,a(mi,mj ) = ((at

1, at
2))∞t=1.

If ui(Ci,Dj ) < ui(Di,Cj ), then bymi is a best response tomj for δ sufficiently close to one. Furthermore,
is easy to verify thatmj is the simplest machine that induces playeri to constantly chooseD. It follows that
(mi,mj ) is anESF of MG(δ) for δ � δ∗.
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Suppose next that((at
1, at

2))∞t=1 consists only of outcomes on the main diagonal (i.e.,(C,C) or (D,D)).
There are three possible play paths. For each possible path, we construct a pair of identical machines(m∗,m∗)

that generate that path.

Case A. Suppose players choose(C,C) each period. Letm∗ be a single state machine with an output ofC.
Clearly,(m∗,m∗) is anESF of MG(δ) for any discount factor.

Case B. Suppose the initial outcome is(D,D), followed by a constant play of(C,C). Let m∗ have two states
qD andqC . The output atqD is D, while the output atqC is C. The machine begins atqD and remains there
unless the opponent’s initial move isD. In that casem∗ moves to stateqC where it stays regardless of the actio
of the other player.

If δ is sufficiently close to one, thenm∗ is a best response against itself. Letm′ denote a machine that
simpler thanm∗. If x(m′) < x(m∗) (i.e., m′ has only one state), then clearly any best response tom′ would
require a player to chooseC each period. Ifx(m′) = x(m∗), theny(m′) = 0. This means any best response tom′
cannot have an output function that assigns the actionD to the initial state. It follows that(m∗,m∗) must be an
ESF of MG(δ) for δ sufficiently close to one.

Case C. Suppose the path consists of infinite repetitions of the sequence(D,D), (C,C). The machine here i
almost identical to the one described in point 2 above. The only difference is, that from stateqC the machine
returns to stateqD regardless of the action chosen by the other player. By using the same arguments as in
one can verify that(m∗.m∗) is anESF of MG(δ) for δ sufficiently close to one.

This completes the proof of Proposition 7.✷
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