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Abstract

The ground state of randomly charged polyampholytes (polymers with positively and

negatively charged groups along their backbone) is conjectured to have a structure sim-

ilar to a necklace, made of weakly charged parts of the chain compacting into globules,

connected by highly charged stretched `strings'. We suggest a speci�c structure, within

the necklace model, where all the neutral parts of the chain compact into globules: The

longest neutral segment compacts into a globule; in the remaining part of the chain, the

longest neutral segment (the 2nd longest neutral segment in the entire chain) compacts

into a globule, then the 3rd, and so on. We show that the length of the nth longest neutral

segment in a sequence of N monomers is proportional to N=n

2

, while the mean number

of neutral segments increases as

p

N . The polyampholyte in the ground state within our

model is found to have an average linear size proportional to

p

N , and an average surface

area proportional to N

2=3

.

We map the charge sequence of the polyampholyte into a one-dimensional random

walk, and investigate the size distribution of the longest neutral segments in the chain

through their analogy to the longest loops inside the random walk. We generalize the

results obtained for a speci�c class of random walks, in which a unit displacement appears

at each step (i.e. each monomer in the chain is charged �1), by de�ning the problem of

longest loops for Gaussian random walks. In such walks the probability density of the

longest loop depends on the chosen distance � de�ning a loop. (Two di�erent steps of

the walk should be located closer than � from each other so that the segment between

them will be called a closed loop). Using Monte-Carlo simulations, along with analytical

methods, we obtain and analyze the dependence of the probability density on the length

of the chain and on �, for di�erent values of �. We show that, independent of �, the

probability density of the longest loop converges with increasing number of steps in the

walk to the probability density of the longest loop in random walks with steps of �xed

length.

We use a scaling process to obtain a probability density of the longest loop, which

(for long walks) is independent of the number of steps and of the nature of the single

step of the random walk. This probability density is identical for random walks with

steps of �xed length and for Gaussian random walks. We prove that this probability

density is universal for large classes of random walks, and we obtain some of its analytical

properties.
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1 Polymers and Random Walks { Review of Previ-

ous Studies

Polymers are multi-linked chains, forming a long and 
exible macromolecule. The units

of a polymer are called monomers, and are assumed to be unbreakable from each other (in

real polymers the bonds between the monomers are unbreakable under normal physiolog-

ical conditions). Polymers in which all the monomers are identical are called homopoly-

mers, and polymers which contain several types of monomers are known as heteropolymers

or copolymers. The desire to understand long chain biological macromolecules, and espe-

cially proteins, stimulates extensive studies of polymers [1, 2, 3]. Proteins are polymer

macromolecules, in which the monomers are amino acids. Di�erent proteins have di�erent

sequences of amino acids. The structure of the protein is determined by the interactions

between its constituent amino acids. According to these interactions, the protein folds

into a speci�c shape, which is an energetically stable ground state, that is responsible for

its activity and properties.

In this section we review previous studies, and quote known results that are needed

to understand our study, or that are relevant to the raised questions, suggested model

and obtained results. We begin by a short review of simple polymer models, followed by

a discussion of randomly charged polyampholytes, focusing on their ground state energy

and structure. In the work we map the problem of size distributions of neutral segments

in a randomly charged polymer into similar problems of one dimensional random walks

(1-d RW's), and we therefore review related RW problems. We devote a special section to

the review of models of randomly broken objects, which are mathematical models related

to the problem of dividing the polymer into neutral segments.

1.1 Simple Polymer Models

Given the large number of monomers and the complexity of the interactions in real

molecules, the primary method for exploring the structure and properties of real polymers

is by introducing very simple models.

One of the simplest models of a polymer is a chain of monomers, separated by bonds

of length a, that are free to take any orientation in a d dimensional space. This model

is known as the ideal chain model or the freely jointed model [2], and is actually a

d�dimensional random walk. The vector between the origin and the end point of the
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chain is called the end-to-end vector, and is denoted by R

ee

.

R

ee

=

N

X

i=1

a

i

; (1:1)

where a

i

are the displacement vectors between two connected monomers (satisfying ja

i

j =

a for all i), and the polymer has N + 1 monomers, labeled 0; : : : ; N . The square root of

the average of R

2

ee

over all possible conformations, which is a measure for the average size

of the polymer, is proportional to

p

N . A more robust measure of the polymer size is the

radius of gyration, de�ned as:

R

2

g

=

1

N + 1

N

X

i=0

�

R

i

�R

�

2

; (1:2)

where R

i

are the positions of the monomers (R

i

=

P

i

n=1

a

n

), and R �

1

N+1

P

N

i=0

R

i

. The

square root of the average of R

2

g

is also proportional to

p

N . Stated generally we see that:

q

hR

2

ee

i �

q

hR

2

g

i � N

�

; (1:3)

where � is the scaling exponent (� =

1

2

in the ideal chain). Furthermore, it is was shown

[3] that restricting the walk to a lattice or to limited angle rotations, does not change the

scaling exponent. This is an example of a universal feature in polymer chains { omitting

the details of the chain's structure and extracting a universal scaling exponent, which is

valid for many classes of polymers.

As in the case of a simple random walk, the thermodynamic limit (large N) of the

freely jointed model can also be reached when the displacement vectors a

i

are no longer

of constant length a, but assigned a Gaussian probability density:

p(a

i

) � e

�da

2

i

=2a

2

: (1:4)

Writing formally the joint probability density of a given con�guration p(fa

i

g) as a Bolz-

man weight (e

�

H

k

B

T

), we can de�ne an e�ective Hamiltonian:

H =

dk

B

T

2a

2

N

X

i=1

(R

i

�R

i�1

)

2

; (1:5)

where k

B

is the Bolzman constant, and T is the temperature. Adopting a continuous

description of the chain (rather than of discrete monomers), in which monomer con�gu-

rations are described by R(x), where x is the internal label for the position of a monomer

2



along the chain, the e�ective Hamiltonian (1.5) becomes [4]:

H =

dk

B

T

2a

2

Z

N

x=0

 

dR

dx

!

2

dx : (1:6)

One of the important aspects of real polymers is that they cannot self intersect {

two monomers cannot come closer than a minimum distance. This is modeled by a self-

avoiding walk (SAW) { a random walk that can never intersect itself (see, e.g., [5]). For

a SAW Eq. (1.3) still holds, but with a value of � di�erent than

1

2

. The Gaussian model

Hamiltonian (Eq. 1.6) can be generalized to describe this excluded volume e�ect:

H

k

B

T

= K

Z

N

x=0

 

dR

dx

!

2

dx + !

Z

N

0

dx

Z

N

0

dx

0

�

d

(R(x)�R(x

0

)) ; (1:7)

where K and ! are some constants. Using scaling arguments, requiring that the interac-

tion energy be the same on all length scales, a result of � = 3=(d + 2) is obtained. This

result was obtained by Flory [6], based on the approximation of taking the free energy as

a sum of an elastic (entropic) energy of a regular RW and a mean �eld estimate of the

repulsive energy, and minimizing the sum in respect to the polymer size. This result for �

is only approximate in 3 dimensions. A current estimate of � for a 3 dimensional SAW is

� = 0:57875 � 0:0003 [7], but there are many other Monte Carlo, exact-enumeration and

renormalization-group predictions of � (see references in [7]). Since the scaling exponent

is di�erent than for ideal random walks (leading to a signi�cant swelling of the chain),

the SAW is said to be in a di�erent universality class than the ideal chain.

Another important aspect of several real polymers is the presence of electric charge

along their backbone. A polymer which contains charged monomers (of only one type) is

known as a polyelectrolyte. This work deals mainly with polyampholytes (PA's), which are

polymers with positive and negative charges along their backbone [8]. Models of PA's are

important to the study of proteins, since under normal physiological conditions, 5 of the

20 naturally occurring amino acids have an excess charge (three are positively charged

and two are negatively charged), each appearing in about 2%-7% of the proteins [1].

1.2 Polyampholytes

We consider a polymer of charged monomers, interacting via unscreened Coulomb in-

teractions. At high temperatures the e�ect of the electrostatic interaction is small (the

3



thermal energy dominates), and the structure is similar to that of an uncharged polymer

(speci�cally, R

g

is proportional to N

0:58

, as in a SAW). We are interested in the ground

state structure of PA's, where the structure becomes sensitive to the charge sequence of

the chain, and especially to its total (excess) charge. Throughout this work, we discuss

PA's that consist of a random mixture of positive and negative charges, which cannot

move along the chain, i.e. they are quenched.

1.2.1 Debye-H�uckel Arguments

It was �rst suggested by Edwards et al. [9] that a neutral PA con�ned to a sphere

smaller than its natural radius, so as to have a uniform density, behaves as a regular

(micro)electrolyte. Elaborating these arguments, Higgs and Joanny [10] assumed that

there exists a collapsed state of the chain, with a volume signi�cantly smaller than the

volume of ideal Gaussian chain (a

p

N)

3

, but signi�cantly larger than the volume of the

completely close-packed monomers Na

3

. They assumed, that taking advantage of the

presence of two types of charges, the electrostatic interactions create correlations between

the positions in space of the positive and negative charges, so that every charge is predom-

inantly surrounded by charges of an opposite sign. The Coulomb interactions are thus

screened at long distances. Higgs and Joanny treated this e�ect for charges on a polymer

in the same way that free charges in an ionic solution are treated, and calculated the

electrostatic energy of the PA as if it were a small volume of a Debye-H�uckel electrolyte

solution [11]. The calculation resulted in a structure of a single globule of close-packed

blobs, where each blob has a typical radius of the Debye-H�uckel screening length. This

screening length, which is the distance determining the dimensions of the ion cloud due to

a given ion, is the length where the electrostatic energy, due to charge 
uctuations in the

polymer, is equal to the thermal energy. Within the blobs the chain remains a SAW, since

the thermal energy dominates, while between the blobs there is a screened electrostatical

attraction, packing them closely together (see Fig. 1). This is a collapsed structure, in

which R

g

� N

1=3

, and hence the solution is self-consistent.

Wittmer et al. [12] discussed the in
uence of the distribution of charges on the con-

formational properties of neutral PA's. They calculated the 
uctuations of charge density

inside the globule (which lead to the collapse) within the framework of the random phase

approximation. By introducing the charge correlations, they obtained an expression which

enabled calculation of both completely random neutral sequence (recovering the results

4



of Higgs and Joanny) and of correlated sequences (recovering results obtained by Victor

and Imbert [13] for alternating sequences).

1.2.2 Scaling Arguments

A di�erent approach to the study of the ground state is by scaling arguments, requiring

that the interaction energy be the same on all length scales. This approach was taken by

Kantor and Kardar [14] for PA's. Adding Coulomb interactions to the Hamiltonian of an

excluded volume polymer (Eq. 1.7), we get:

H

k

B

T

= K

Z

N

0

 

dR

dx

!

2

dx+

Z

N

0

dx

Z

N

0

dx

0

"

!�

d

(R(x)�R(x

0

)) +

q(x)q(x

0

)

k

B

T jR(x)�R(x

0

)j

d�2

#

(1:8)

where q(x) is the charge density, interacting through a d-dimensional Coulomb interaction

decreasing with range as 1=r

d�2

.

In order to explain the nature of the scaling process, we will �rst derive it (after [15])

for homogeneously charged polymers (polyelectrolytes), where q(x) is constant and equal

some q

0

: Under rescaling of the internal coordinate x! �x, and the external coordinate

R! �

�

R, the coe�cients of the �rst (entropic), second (SAW) and third (electrostatic)

terms in Eq. (1.8) scale respectively as �

2��1

, �

2�d�

and �

2�(d�2)�

. For d > 6, choosing

� =

1

2

leaves the entropic term of Eq. (1.8) unchanged under rescaling (since the exponent

equals zero), while the remaining terms decay to zero (since their exponents become

negative). Thus, excluded volume and Coulomb interactions are irrelevant above six

space dimensions. For d < 6, the electrostatic term is most relevant, and is set to be

unchanged under rescaling by choosing � = 2=(d � 2). This value of � is unity for d = 4,

and below this dimension the polymer is fully stretched. Through a full renormalization-

group treatment, Pfeuty et al. [15] proved that the above result is exact, while numerical

results in 4 and 5 dimensions [16] support this picture.

In applying similar scaling arguments to PA's (after [14]), one should note that due

to the averaging of independent charges, the random product q(x)q(x

0

) in Eq. (1.8) con-

tributes an additional factor of 1=� to the rescaling of the electrostatic term. (The sum of

� random charges increases as

p

�, as opposed to the � increase for polyelectrolytes.) The

coe�cient of the electrostatic term now scales as �

1�(d�2)�

, and we �nd that � = 1=(d�2),

for 3 � d � 4, and a stretched polymer (� = 1) is obtained for d � 3.

5



Qualitative views of the PA chain structure in the Debye-H�uckel and in the scaling

approaches are depicted in Fig. 1 (�gure from [21]). According to the Debye-H�uckel mo-

tivated arguments the structure is a collapsed single globule of blobs, while according to

scaling arguments the polymer is stretched.

Figure 1: Qualitative views of the spatial arrangement of blobs in a PA, according to Debye-H�uckel

arguments, where the chain collapses (left), and according to scaling arguments, where the chain stretches

(right). Lighter and darker blobs are positively or negatively charged blobs. Electrostatic interaction

within each blob is dominated by thermal energy.

The apparent contradiction between the scaling and the Debye-H�uckelmotivated argu-

ments, was resolved by Kantor, Li and Kardar [17, 18], noting that the low-T ground state

of the PA is extremely sensitive to its overall (excess) charge Q. The overall neutrality of

a PA is an essential condition for the validity of the Debye-H�uckel approximation. (The

formal derivation of the approximation [11] begins with the free energy of the uncharged

gas, attempting to evaluate the corrections due to Coulomb energy, under the assumption

that introduction of charges without change of particle positions does not change the en-

ergy. This is true only for completely neutral systems.) Under the neutrality constraint,

the PA collapses at low temperatures. In the absence of this constraint (i.e. the complete

ensemble of all quenches), where the neutral con�gurations have negligible probability,

and the typical excess charge is Q �

p

N , the dimensional analysis, predicting � = 1 is

valid. These statements are supported by Monte Carlo (MC) simulations [17, 18] and by

variational mean �eld calculations [19].

6



1.2.3 Energy and Geometry of Polyampholytes

Further studies of the size and structure of randomly charged PA's, and especially the

dependence on the excess charge, were performed by Kantor and Kardar [20, 21, 22]. Nu-

merical results show that the radius of gyration of a PA strongly depends on its charge Q,

and is very weakly in
uenced by other details of the sequence. (Srivastava and Muthuku-

mar [23] claim, however, after studying di�erent randomly charged neutral PA's by MC

simulations, that the locations of charges do play a crucial role in the conformational

behavior of neutral PA's). At high temperatures, the typical electrostatic energy of a

con�guration, composed of a random sequence of N charges of �q

0

, is shown [21] to

change sign at an excess charge of:

Q = Q

c

� q

0

p

N : (1:9)

As the temperature is lowered, chains with excess charge larger than Q

c

expand, while

those with excess charge lower than Q

c

shrink. At low temperatures, R

2

g

is obtained

numerically to be monotonically increasing with Q. Furthermore, for small Q the increase

is small, while for Q > Q

c

an extremely fast increase begins. The dependence of R

2

g

on Q

suggests that the transition from compact to stretched con�gurations at low temperatures

occurs for Q ' Q

c

.

To explain the above low-temperature results, Kantor and Kardar [20, 21] started

with the empirical observation that a neutral PA compacts to a spherical globule. This

suggested that the quench-averaged energy can be presented as a sum of condensation

and surface energies:

1

E(Q = 0) = �

q

2

0

a

N + 
S ; (1:10)

where q

2

0

=a is (approximately) the condensation energy gain per particle, since every

monomer is predominantly surrounded by monomers of opposite sign, and 
 � q

2

0

=a

3

is the surface tension, which expresses the fact that the monomers on the surface have

no neighbors outside the globule. Uniformly adding charge Q to each con�guration, the

energy increases by Q

2

=R, becoming:

E(Q) = �

q

2

0

a

N + 
S +

Q

2

R

: (1:11)

The low temperatures critical excess charge was calculated by Kantor and Kardar [21]

through an analogy of charged PA's to charged drops. The optimal shape of a PA is

1

In all the equations of this section we omit dimensionless prefactors of order unity.

7



obtained by minimizing the overall energy of Eq. (1.11): For small values of Q the surface

tension keeps the PA in an approximately spherical shape. However, a spherical drop

charged beyond a certain charge, called the Rayleigh charge Q

R

, which depends on the

surface tension and the volume of the drop, becomes locally unstable to elongation, since

the internal pressure (of Coulomb repulsion) exceeds the surface tension. Even before

the total charge reaches Q

R

, the drop becomes unstable to splitting into two equal drops,

separated by an in�nite distance. Additional splittings of the drop occur for larger charges.

Similar behavior is expected in PA's charged to Q

R

�

p

N . Although a PA cannot

split, the analogy to charged drops can still be exploited: Constraining the structure to

maintain its connectivity by attaching droplets with narrow tubes, results in a necklace-

type structure of droplets connected by strings.

Dobrynin Rubinstein and Obukhov [24] studied the case of polyelectrolytes, and found

that there is a range of temperatures and charge densities, for which a polyelectrolyte in a

poor solvent (corresponding to an e�ective attraction between monomers) has a necklace-

type shape, with compact beads joined by narrow strings. By changing the charge or

the temperature, the polymer undergoes a cascade of transitions between necklaces with

di�erent number of beads. Using the charged drops analogy, Dobrynin el al. characterized

the structure completely (including the number of beads and strings, their sizes, and the

number of monomers in them, for a given temperature and charge density), and concluded

that the necklace structure provides a good picture for polyelectrolytes in a poor solvent.

Trying to apply the necklace model to quenched PA's having random charges [20,

21], several di�culties occur due to the randomness. It was noted, for instance, that a

situation occurs, in which most spherical shapes are unstable, while there is on average

no energetic gain in splitting the sphere into two equal parts. A consistent theoretical

picture for random PA's beyond the instability threshold was not found, but a typical PA

is conjectured to be composed of compact globules connected by long strings. In order

to reduce the electrostatical energy, the globules consist of segments of the chain that

are almost neutral (collapsing according to the Debye-H�uckel picture), while the strings

are formed by highly charged segments. MC simulations and exact enumeration suggest

[21, 22] that the linear size of such a PA (the average of R

g

over the unrestricted ensemble)

grows with the number of monomers faster than the linear size of a SAW, i.e. � > 0:6.

Motivated by the necklace structure of randomly charged PA's, Kantor and Erta�s

[25, 26, 27] discussed the size distribution of the longest segments with total charge Q

8



(\Q-segments") in such PA's. They mapped the charge sequence of the PA to a 1-d

RW, and investigated the probability that the longest Q-segment in such a N step RW

has length L. A probability density was de�ned and investigated in the limit when

N;L;Q ! 1, while the reduced length l � L=N and reduced charge q � Q=

p

N are

�xed. The probability density of the longest loop in a RW was obtained numerically and

investigated analytically, but a complete analytical solution to the problem of longest loop

was not found. Within the class of RW's, in which a unit displacement occurs at each

step, numerical evidence was presented for a continuum limit, where the properly scaled

functions become independent of N . However, the numerical `proof' of such `universality'

was limited to this particular class of RW's.

The elongation of a PA at low temperatures and at excess charge of Q � q

0

p

N

suggested by the necklace model, was also described by Gutin and Shakhnovich [28],

using scaling arguments. However, they claimed that the structure of the polymer is an

elongated compact globule, composed of blobs. Dobrynin and Rubinstein [29] analyzed

the behavior of PA chains in the framework of a two-parameter Flory theory. They found

three di�erent regimes for PA's with excess charge Q > q

0

p

N , and also claimed that

at low temperatures, the charge density 
uctuation causes a collapse into an elongated

globule. The aspect ratio of the globule was determined by the excess charge, and was

independent of temperature. The chain's length was found, however, to be linear with N

(for excess charge �

p

N), and it was noted that it was impossible to �nd the di�erence

between the elongated cylindrical shape, and a necklace con�guration.

We note that there are other related systems in which strings and globules coexist:

Schiessel and Blumen [30] claim that a neutral PA under external electrical �eld exhibit

a transition similar to that of a charged PA with excess charge below and above q

0

p

N .

(This is reasonable since the transition in a charged PA is also induced by an electrical

�eld, due to the charge density 
uctuation). Under a moderate �eld the PA elongates,

and as the �eld increases the PA stretches into an extended form, consisting of a series of

blobs, whose sizes increase towards both ends. A similar structure is taken by polymers

in strong 
ows of the solvent [31].

1.3 One-Dimensional Random Walks

We saw in the previous section, that although the analysis of the structure of a randomly

charged PA within the necklace model did not result in a consistent theoretical picture, a

9



key role was played by the neutral segments in each speci�c chain (forming the beads in

the necklace). In section 2, we map the problem of size distribution of neutral segments

in a random sequence of charges into a 1-d RW (following [25, 26]). From this analogy,

we will see that the distribution of sizes of the longest neutral segments is equivalent

to the distribution of longest loops (i.e. segments that return to their origin) in the

corresponding RW. We therefore review in this section RW problems and models (relying

greatly on [32, 33, 34]), which will help us to analyze problems of longest loops.

1.3.1 Classical Random Walk Problems

The model of 1-d RW describes a particle taking a series of steps of equal length, each step

is taken either forward or backward, with equal probability. The probability W (k;N),

that the particle arrives at the point k after N steps (when starting from the origin:

k = 0), can be written in terms of the binomial coe�cients C

n

r

:

W (k;N) = C

N

(N+k)=2

�

�

1

2

�

N

: (1:12)

The large N limit (N � k) of this probability is obtained by using the Stirling formula. A

continuum limit of the problem is obtained by de�ning a net displacement x = ka (where

a is the length of each step), and a continuous time t = Nt

0

(where the particle takes

a step every t

0

unit times). The probability of a particle to be at a position between x

and x+�x (where we substitute �k = �x=2a, since k can take only even or odd values,

depending on N) at time t is given by [33]:

2

p(x; t)�x =

1

a

q

2�(t=t

0

)

e

�

x

2

2a

2

(t=t

0

)

�x : (1:13)

The average of x

2

, regarding this probability density, satis�es:

hx

2

i =

a

2

t

t

0

: (1:14)

It will become evident from our work, that the problem of longest loop is related to

several classical RW problems. Among these related issues are the probability density of

the maximum and minimum of a RW, the probability of �rst passage through a given

position, and the probability of last return to the origin. A very useful tool in calculating

2

In the following sections we substitute t

0

� 1, and therefore the number of steps N is equivalent to

the time t.
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these properties is known as the method of re
ections, in which one re
ects the path of a

RW about a given point. We will illustrate this method by considering another problem,

which is related to the problem of longest loop { a RW in the presence of an absorbing

wall (after [33]). We are interested in the probability W (k

0

; N ; k

1

) of a particle, making

a RW, to reach the position k = k

0

after N steps, at the presence of an absorbing wall

at k = k

1

. (When the particle arrives at k

1

it is `absorbed' by the wall and stops its

movement). We count the number of sequences which lead to k

0

, excluding all sequences

which arrive at k

1

. It is shown, using the re
ection method, that every excluded sequence

uniquely de�nes another sequence, leading to the position (2k

1

� k

0

): For each sequence

k


N


k
0
0
 k
1
 2k
1
-k
0


Figure 2: Example of re
ection of a path about the line k = k

1

. Every trajectory arriving at k

0

after

passing through k

1

(solid) is re
ected by a trajectory which arrives at 2k

1

� k

0

(dashed), and vise versa.

leading to k

0

and passing through k

1

, an `image' sequence is de�ned, by re
ecting about

the line k = k

1

the part of the trajectory after its last contact with k

1

, before reaching k

0

(see Fig. 2). This sequence is unique, and it reaches the position k = 2k

1

� k

0

. Similarly,

for each trajectory leading to 2k

1

� k

0

we obtain by re
ection a `forbidden' trajectory

leading to k

0

. Therefore:

W (k

0

; N ; k

1

) = W (k

0

; N)�W (2k

1

� k

0

; N) : (1:15)

11



For the continuum limit (de�ning x

1

= k

1

a and x = k

0

a) this leads to:

p(x; t;x

1

) =

1

a

p

2�t

�

e

�

x

2

2a

2

t

� e

�

(2x

1

�x)

2

2a

2

t

�

: (1:16)

The probability Q(k

1

; N), that a particle making a RW will arrive at k

1

after N steps,

without ever having touched the line k = k

1

at any earlier step, (problem known as the

�rst passage problem) can be calculated using W (k;N ; k

1

). The event of �rst passage

through k

1

in the Nth step occurs if and only if the particle reaches the position k

1

� 1

after N�1 steps, in the presence of an absorbing wall at k

1

, and then takes a step forward

(which has probability

1

2

). Hence:

Q(k

1

; N) =

1

2

W (k

1

� 1; N � 1; k

1

) =

k

1

N

W (k

1

; N) : (1:17)

For the continuum limit, this probability leads to the probability density q(x

1

; t) of a

particle to arrive at x

1

for the �rst time after t steps:

q(x

1

; t) =

x

1

t

p(x

1

; t) : (1:18)

The distribution of T , the �rst return time to the origin of a RW with long range correla-

tions (i.e. hx

2

i � t

2H

for 0 < H < 1), is found by Ding and Yang [35] to be P (T ) � T

H�2

,

dependent only on the mean square displacements at large times, and not on the distribu-

tion of the RW steps. In section 4 we shall attempt to prove that the probability density

of the longest loop in a RW is also independent on the distribution of single steps, and

depends only on the displacement at large scales.

Let us consider the probability density M(r; t) of the maximum of a RW r after time

t. We consider the collection of paths, in which X(0) = 0 and X(t) > r > 0 (where

X(t) is the position at time t), and re
ect them about the line in which for the �rst

time the position is r. The re
ected paths satisfy X(t) < r, and for both the original

and the re
ected paths the maximum is greater than or equal to r. Therefore, for every

path with X(t) > r the re
ection argument displays two paths with the same probability,

having maximum greater than r. Elaborating this argument, it can be shown [32] that

the probability of a t�step RW to have a maximum greater than r is twice the probability

of the RW to have a position greater than r exactly at the last step:

Z

1

r

M(x; t)dx = 2

Z

1

r

p(x; t)dx ; (1:19)
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which leads for r � 0 to:

M(r; t) = 2p(r; t) : (1:20)

Similarly, it can be shown [34] that the probability of a N�step RW never to return

to its origin is equal to the probability that it reaches its starting position exactly at the

Nth step. Using this equality, the probability �(�;N), that the last return to the origin

of a N�step RW occurs at the �th step, is obtained:

�(�;N) =W (k = 0; �)W (k = 0; N � �) : (1:21)

The �rst term is the probability to return to the origin at the �th step, and the second

term is the probability to never return to the origin after the �th step.

Most of the results mentioned in this section can be related to the investigation of

longest loops, which start from one speci�ed step. The search for the longest loop of

the RW, among all possible starting steps, however, creates a more complicated problem,

which is actually more related to SAW's, than to regular RW's.

1.3.2 Self-Avoiding Walks

The relation between the problems of longest loops and SAW's lies in the fact that having

a longest loop of some length L, means that for lengths greater than L the walk is a SAW.

Chains in which L = 0 are SAW's, and chains in which L is small are similar to a SAW

(for each step, all the steps in the chain, apart from the closest L steps along the chain,

obey the SAW statistics). As L increases the similarity to SAW vanishes.

A somewhat similar notion, but for shortest loops rather than for longest loops, was

introduced by Fisher and Sykes [36], while trying to �nd upper bounds to the limit:

� � lim

N!1

C

N+1

C

N

; (1:22)

where C

N

is the number of N�step SAW's on a given lattice. The bounds were found

by considering restricted random walks, which are only allowed to intersect themselves

after k or more steps (for k = 2; 3; 4; : : :). The problems of �nding the N ! 1 limit of

C

(k)N

=C

(k)N�1

were solved (for small values of k, up to 12) by direct construction of a

recurrence relation for C

(k)N

, the total number of kth order restricted walks. As k (which

is the length of the shortest allowed loop) increases to in�nity, the bounds become closer

to the required limit �.
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A di�erent model, related to the problem of longest loops, is called the loop erased

self-avoiding walk (LESAW) [37]. A LESAW is constructed from a classical RW, in which

any loop generated by a self intersection is erased, resulting in a SAW. The distribution

of the LESAW di�ers from ordinary SAW in that the probability given to a particular

N�step path depends on the probability that the walk will remain self-avoiding for times

k � N : The LESAW distribution gives zero probability to all `trapped' paths (i.e. all

paths [x

0

; : : : ; x

N

] for which there exists a k � N such that there are no self-avoiding

paths [y

0

; : : : ; y

k

] with y

i

= x

i

for all i � N). Numerical results for the critical exponent

� in two and three dimensions obtained by Guttmann an Bursill [38] and by Bradley and

Windwer [39] showed that LESAW and SAW are in di�erent universality classes (SAW

being closer to an ideal RW). It was shown by Lawler [40] that for dimensions d > 4 the

LESAW behaves as a simple RW (as does ordinary SAW), and that in d � 4 the fraction

of steps remaining unerased in a LESAW, vanishes with increasing number of total steps.

For two and three dimensions it was shown [41], that the scaling exponent � for LESAW

is limited from below by the Flory value for SAW, � = 3=(d + 2). Within this proof, the

probability for the length of the loop originating in the nth step, if the (n� 1)st step was

not erased, was found. Dhar and Dhar [42] studied the distribution of sizes of the erased

loops, in the LESAW model, and obtained the probability P (L) of having a loop of length

L, for large L's:

P (L) � L

��

; where � = 1 +

2

�

; (1:23)

and � is the fractal dimension of the loop erased walks in the graph. This result is valid

for dimensions 1 < d < 4 (with corrections when d < 2).

We see that none of the results mentioned above for the LESAW model consider the

longest erased loops, but rather the length of loops in general, which is of less interest

to us. Moreover, all the results proven are for space dimensions higher than 1, where as

we are interested in the probability of longest loops in a 1-d RW. (It may be possible to

apply some of the properties obtained for the probability of loops in the LESAW model

to the problem of longest loop in higher dimensions. This problem is addressed at [26],

but is beyond the scope of our work.)
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1.4 Models of Randomly Broken Objects

In section 2 of the work we will divide a RW into loops and we will therefore investigate

not only the longest loop in a given RW, but also the second longest loop (which does not

overlap the longest loop - i.e. none of its steps belong to the longest loop), third longest

loop and so on. The problem of dividing (almost) the entire RW into non-overlapping

loops, is related to the problems of randomly broken objects, introduced by Derrida and

Flyvbjerg [43, 44]. In one of these models (the random breaking model), a segment of

unit length is divided into mutually exclusive parts by a self-similar random process. The

analytical expressions for the probabilities P

i

(W ) of the ith longest segment (at the end

of the cutting process) are found to be di�erent on each interval 1=(k + 1) < W < 1=k

(integer k), and therefore, one expects to see singularities of P

i

(W ) at all the values

W = 1=k. These expected singularities were obtained by Derrida et al. [43, 44], while

investigating numerically the random breaking model and several other models, in which

the phase space is broken into non-overlapping unit-sum valleys. Similar singularities,

resulting from similar reasons, were obtained by Frachebourg et al. [45], while studying

the probability distributions of the longest time interval between successive departures

and arrivals to the origin of a 1-d RW.

The basic reasoning for the existence of singularities in all these models seems to be

applicable to the problem of longest loops in a RW. The longest segment in the random

breaking model is analogous to the longest loop, the 2nd longest segment is analogous to

the longest loop in the remaining part of the chain (the 2nd longest non-overlapping loop

in the chain), and so on (the process is detailed in section 2). Continuing the analogy,

we see that P

n

(W ) is equivalent to the probability of the nth longest loop having length

W (when the entire chain is of unit length). The division of a segment into parts in the

random breaking model resembles the `breaking' of a RW into loops: The probability

densities of the longest segments in some models of randomly broken objects [43, 44]

resemble the probability density of the longest loop in [26].

One main di�erence between the models described in [43, 44, 45] and the longest loop

problem, is that the probabilities of the longest loops are not self-similar. The probability

of a certain fraction of the chain to form the longest loop and the probability of the same

fraction of the remaining chain to form a second longest loop are di�erent. The original

chain is a classical RW, while the remaining part of the chain, after the longest loop is
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erased, is not a RW (on average the remaining part of the chain is more `stretched' than a

RW having the same length). We will return to this absence of self-similarity in section 2,

where we will discuss the absence of evidence for singularities in the probability densities

of the nth longest loop in a RW, as opposed to the singularities in P

n

(W ).
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2 Possible Structure of Polyampholyte in a Ground

State

In this chapter we explore a possible ground state of a randomly charged PA: a necklace

of neutral compact blobs connected by highly charged stretched strings. In order to

characterize this state, we determine the typical sizes of neutral segments in a random

sequence of N charges.

2.1 A `Typical' Necklace-Type Structure

As detailed is section 1.2, numerical studies suggest [20, 21, 22] that a PA forms a necklace

of weakly charged globules, connected by highly charged strings. This structure is a

compromise between the tendency to reduce the surface area (i.e. to form globules) due

to surface tension, and the tendency to expand, in order to reduce the Coulomb interaction

caused by the excess charge.

Kantor and Erta�s [25, 26, 27] attempted to quantify the qualitative necklace model,

by postulating that the ground state of a PA will consist of a single globule, formed by the

longest neutral segment of the PA, while the remaining part will form a tail. We follow

[25], and investigate the problem of the size distribution of neutral segments in randomly

charged PA's by mapping the charge sequence into a 1-d RW. The charge sequence ! =

fq

i

g (i = 1; :::; N ; q

i

= �1) is mapped into a sequence of positions S

i

(!) =

P

i

j=1

q

j

(S

0

= 0) of a random walker. (From now we will measure charges in units of the basic

charge q

0

, and therefore q

j

will be dimensionless.) The random sequence of charges is

thus equivalent to a RW, a chain segment with an excess charge Q corresponds to a RW

segment with total displacement of Q steps, and a neutral segment is equivalent to a loop

inside the RW. Throughout the work we will use the terminologies of randomly charged

PA's and of RW's interchangeably.

When the longest neutral segment forms a globule (as assumed in [20, 21, 22]), the

remaining part of the chain is very large (� N). It is natural to assume that neutral

segments on that tail will further reduce the total energy by folding into globules. Even-

tually, the necklace will consist of many neutral globules. However, there are many ways

in which the chain can be divided into neutral segments, and we are interested in a simple

unique structure, which is physically reasonable. We therefore suggest a speci�c necklace-

type structure, and construct the ground state for a randomly charged PA in the following
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way, depicted in Fig. 3: The longest neutral segment contains L

1

monomers; it compacts

into a globule of linear size proportional to L

1=3

1

; in the remaining part of the chain the

longest neutral segment (the 2nd longest neutral segment in the entire chain) of size L

2

also compacts into a globule, then the 3rd and so on, until the segments become very

small (of only a few monomers). Generally, L

n

denotes the number of monomers in the

nth longest neutral segment, which compacts into a globule of radius L

1=3

n

. Eventually,

all the neutral segments are exhausted and we are left only with strings which carry the

PA's excess charge Q, and connect the globules. The total number of monomers in the

chain, is the number of monomers in all the neutral segments, plus the absolute value of

the excess charge. (From now on, we will denote by Q the absolute value of the excess

charge). This process of generating globules out of neutral segments, is similar to the loop

-2


0


2


4


6


8


ω
 = {+ - - - + + - + + + + + - + - + + + + - - + - + + + - + }


S
i
(
ω
)


i


L
1
 L
3
 L
2
 L
4


L

1


L

3


L

2


L
4


L
1/3


R

K


L
1/3

1


2


Figure 3: An example of a charge sequence !, mapped into a 1-d RW S

i

(!), and a typical loops

structure. Filled circles indicate the starting and ending points of loops. The longest loop in the RW

has 8 steps (L

1

= 8), the 2nd longest loop has 6 steps (L

2

= 6), L

3

= 4 and L

4

= 2. The excess charge

(which is equivalent to the total displacement of the RW) is Q = +8 and the total length is N = 28. See

text for explanation of other labels.

erasing process in the LESAW model [37], where loops are erased rather than compact.

The main di�erence between the processes is that in the LESAW model, loops in the

RW are erased in chronological order, as they appear in the walk, and in our process the

neutral segments are compacti�ed according to their lengths, starting from the longest
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one. Division of a charged sequence into neutral or almost neutral segments played an

important role in determination of the ground state properties of a model self-interacting

random polymer, represented by a directed 1-d RW [46, 47]. Both discrete and contin-

uous charge distribution have been considered, and the resulting ground state resembles

a necklace. In that model however, all possible divisions into neutral segments play a

role, while we concentrate on a particular division of the charge sequence into neutral

segments.

The `ground state', generated by this process of longest neutral segments compacting

into globules, does not necessarily minimize the total energy of the PA. First of all, the

process does not consider the possibility of weakly charged globules, which can include

much more monomers than the neutral globules, thus compensating by surface energy for

the additional electrostatic energy. (For instance, two long neutral segments separated

by one or two charges, would probably have lower total energy when they compact into

a large single charged globule. See the segment K in Fig. 3). In addition, even when

considering only neutral globules, it is not necessary that the procedure of compacting

the longest neutral segment at each step generates the lowest energy state: It is possible

that two `medium sized' globules will have lower surface energy than a long one and a

very short one (which remains after the �rst long segment was already chosen).

Using this `longest neutral globules' picture we construct the structure of the ground

state, within our model. We �nd the number of steps in the nth longest neutral segment,

and calculate its dependence on N and n. We also �nd the total number of neutral

segments in a chain, and we show that the total number of monomers not in any neutral

segment (the number of monomers in the `strings' connecting the globules) is exactly Q,

the excess charge of the PA. We de�ne R, the linear size of the chain, according to the

picture of Fig. 3: The neutral segments in the chain compact into globules (each with a

linear size of R

segment

� L

1=3

segment

). If all the globules are linearly packed then the total

linear size is the sum of the linear sizes of all the globules (R =

P

R

segment

). The linear

size of the chain must include the monomers not in any neutral segment (the `strings' in

the necklace, which are the absolute value of the total excess charge Q). We therefore get

a means to describe the chain's size:

3

R �

X

n

L

1=3

n

+Q : (2:1)

3

Here, and throughout this section, we omit prefactors of order unity.
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It is evident that the generated state captures some essential features of the ground state

suggested by the necklace model: The necklace type structure is compact (i.e. R � N

1=3

)

when the PA is neutral (the longest neutral segment is the entire chain) or has very small

excess charge, and begins to stretch as the excess charge increases (the charged strings

become longer). Finally, the PA becomes completely stretched (i.e. R � N) for the fully

charged polymer.

Similarly to the de�nition of R, we can de�ne the surface area S of the chain. Each

neutral segment compacts into a globule of surface area � L

2=3

segment

, all the globules are

linearly packed, and the surface area of the `strings' is proportional to the number of

monomers not in any neutral segment, which is the absolute value of the excess charge.

We can therefore de�ne:

S �

X

n

L

2=3

n

+Q : (2:2)

The absolute value Q of the excess charge in the de�nition (2.2) can be viewed either

as the surface area of the "necks" of the necklace (in the language of continuum drop

model), since their diameter is of order unity (one monomer in diameter) or as the loss of

condensation energy due to removal of the "necks" from the globules. S can have values

ranging from N

2=3

, for a neutral chain, to N , for a completely charged chain.

So far in this section, only the properties of a speci�c chain were mentioned. However,

each of the mentioned properties has a distribution of values for di�erent chains. In the

following section we will analyze these distributions.

2.2 Numerical Results

2.2.1 Size Distribution of Longest Loops

We examine the statistics of the loops in a 1-d RW of N steps, using MC method for

several N 's up to N = 10

4

. For each N we randomly select 10

6

sequences, and for each

sequence we �nd the lengths L

n

of all the (non-overlapping) loops. We then calculate

distributions and averages of the parameters mentioned in the previous section.

We denote by P

N;n

(L

n

) the probability of the nth longest loop in a RW of N steps

to be of length L

n

. The average length of the longest loop was found [25, 26] to be

proportional to N . Expecting the same behavior for the length of the nth longest loop,
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we de�ne the probability density of the nth longest loop:

p

n

(l

n

) �

N

2

[P

N;n

(L

n

) + P

N;n

(L

n

+ 1)] ; (2:3)

where l

n

� L

n

=N . (Note that at least one term in Eq. (2.3) vanishes, since loops can be

only of even length. Therefore, de�nition (2.3) includes average of probabilities for L

n

and L

n

+ 1 as in the de�nitions used in continuum limits for discrete RW's, in order to

prevent even-odd oscillations.)
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Figure 4: Probability densities of 5 longest loops from right to left: p(l

1

)-thick points, p(l

2

)-solid line,

p(l

3

)-dashed line, p(l

4

)-dot-dashed line, p(l

5

)-dotted line, as a function of l = L=N from MC results of

10

6

random sequences of length N = 1000.

The probability densities for the �ve longest loops in a chain are depicted in Fig. 4

for N = 1000. Several properties of p(l

n

)

4

are evident from this �gure. The probability

density of the longest loop p(l

1

) was shown by Kantor and Erta�s [26] to have a square

root divergence at l

1

= 1, and a discontinuous derivative at l

1

=

1

2

. When the length of

the �rst loop L

1

in a speci�c chain is long, then the lengths of the other loops L

n

(for

n > 1) in that chain must be short, since the total length of all the loops cannot exceed

N . Therefore, since in many chains the length of the longest loop is almost equal to N (as

4

Throughout this section we denote the probability density of the nth longest loop by p(l

n

), in order

to avoid the double indexation, i.e. p(l

n

) is a shorthand notation for p

n

(l

n

). The di�erent functions p

n

will be therefore identi�ed by their argument l

n

.
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indicated by the divergence of p(l

1

) when l

1

! 1), the lengths of the other loops approach

zero. This is evident from the divergence of p(l

n

) when l

n

! 0 for all n > 1. Because in

any speci�c chain the length of the nth longest loop is shorter than the length of the kth

longest loop, for n > k, the divergence of p(l

n

) near zero is stronger for large n. Since

the probability densities p(l

n

) are normalized separately for each n, then any two of them

must intersect (i.e. p(l

n

) always intersects p(l

n

0

) for n 6= n

0

). The length of the second

longest loop never exceeds the length of the �rst longest loop, and the sum of their lengths

never exceeds N . Therefore, the length of the second longest loop cannot exceed half the

length of the chain. Consequently, l

2

�

1

2

for all the chains, and p(l

2

) vanishes identically

for l

2

>

1

2

. Similarly we can show that l

n

� 1=n for all n and p(l

n

) = 0 for l

n

> 1=n.

Kantor and Erta�s [26] presented numerical evidence for, but not a mathematical

proof of, the N�independence of p(l

1

), when N ! 1. In the same way, we expect

the probability density of the nth longest loop to approach an N�independent limit,

when N;L

n

! 1, while l

n

is �xed. Fig. 5 depicts the results of MC calculations of sev-
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Figure 5: Probability density of the longest loop, which diverges at l

1

! 1 and of the 2nd longest loop,

which diverges at l

2

! 0 (left) and of the 5th longest loop (right) as a function of l

n

= L

n

=N (n = 1; 2; 5).

MC results from 10

6

random sequences of length N = 10000 (dots), 1000 (solid), 100 (dashed). Note the

di�erent scales in both �gures.

eral p(l

n

) for several values of N . We note that the behavior of the probability densities is

virtually independent of N . However, we note that for larger n the probability densities

are more sensitive to N for small values of N , and higher N 's are needed to reach the

`continuum limit': On the right of Fig. 5 we see that p(l

5

) for N = 1000 and N = 10000

are similar but distinguishable. However, for N = 100 the probability density is di�erent.

The di�erence is understood, since for large n the loop length L

n

is short, and continuum
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limit is expected only when L

n

� 1, i.e. for su�ciently large N .

We note that p(l

2

) is qualitatively similar to the probability densities of the length of

the second segment in di�erent models of randomly broken objects [43, 44] (see Figs. 1(b)

and 3(b) in [43]). However, the probability densities of the length of the second segment

in [43] have strong singularities (of the �rst derivative) at l

2

= 1=4, and are shown to

have singularities at l

2

= 1=k for all integer k � 2. All the probability densities p(l

n

)

of the longest loops have a singularity when they become identically zero (p(l

n

) vanishes

for l

n

> 1=n and therefore is non-analytical at l

n

= 1=n). It is possible that due to the

singularity in p(l

n

0

) at 1=n

0

, all the other probability densities p(l

n

) (for n < n

0

) also

have singularities at 1=n

0

, since all the probability densities are dependent. Apparently,

these singularities do not cause discontinuity of the �rst derivative, and, therefore are not

visible in the numeric data. In several models of randomly broken objects [43, 44], the

probability densities of the length of the nth segment have singularities at l = 1=n

0

(for

n � n

0

). These singularities are due to a self-similar process, which leads to a di�erent

analytical expression for the probabilities on each interval 1=(n

0

+ 1) < l < 1=n

0

. Since

the random process of generating the longest loops in our process is not self-similar (as

indicated in section 1.4), the reason for the singularities in the models of randomly broken

objects does not hold in the case of the nth longest loop (as was suggested by Frachebourg

et al. [45]). Therefore, the probability of the nth longest loop does not necessarily have

singularities at values of l = 1=n

0

.

2.2.2 Conformational Properties of the Constructed Chain

In order to verify the N�independence of p(l

n

) (and therefore the generality of the prop-

erties of p(l

n

) obtained for a speci�c N), we show that as N ! 1 the average hL

n

i

becomes linear with N . Fig. 6 depicts the dependence of the average length of the nth

longest loop hL

n

i (for n = 1 � 5) on N . From the linear dependence with unit slope of

loghL

n

i

5

on logN for n = 1; 2 (two upper graphs in Fig. 6), we deduce that the average

lengths of the longest and second longest loops are proportional to N . The slopes of the

graphs of loghL

n

i vs. logN increase for higher values of n, and the �t of the data to a

straight line becomes worse. All the slopes (for all n) include the value 1 within their error

limits (the linear �t slopes are 1:04�0:06 for n = 3, 1:08�0:11 for n = 4, and 1:14�0:19

for n = 5). The slight increase in the e�ective slope with n is due to e�ects of �nite N :

5

The base of the logarithm in all the following equations and �gures is 10.
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Figure 6: Logarithm of average length of 1st to 5th longest loop (from top to bottom), as a function of

logarithm of chain length N . `�' are averages of numeric data, solid lines are linear �ts, and dashed lines

are extrapolated linear �ts. For the two longest loops (upper lines) the average length is proportional to

N . For n = 3; 4; 5 the slopes of the linear �ts increase with n, while the slopes of the extrapolated �ts

(see text) remain close to unity.

For any given dinite N , a considerable part of the sequences have no nth longest loop.

(For instance, 83% of the random sequences of N = 100 have only 4 or less loops, and no

5th loop, while for N = 10000 only 11% do not have 5th longest loop). The absence of

nth longest loop for small N means that the average length of the nth longest loop (for

n � 1) should increase faster than N for small N . In order to overcome this systematic

error, we determine the N�dependence of hL

n

i, through an extrapolation of the slopes

of the linear �ts of loghL

n

i vs. logN to N !1. For a given n (3, 4 or 5) we calculate,

through a local linear �t (i.e. linear �t for only the neighboring values), the slopes for

several values of N , and estimate them at N ! 1. These extrapolated slopes (dashed

lines in Fig. 6) are much closer to unity than the slopes of the linear �ts for all the data

points: The extrapolated slopes are 1:00 � 0:04 for n = 3, 1:01 � 0:06 for n = 4, and

1:02 � 0:12 for n = 5. We therefore expect that as N ! 1, hL

n

i becomes proportional

to N for any �nite n. Since hL

n

i is proportional to N and therefore hl

n

i is independent

of N , we get that:

hL

n

i = Nhl

n

i = N

Z

1

0

l

n

p(l

n

)dl

n

: (2:4)
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The error bars of the numeric data in Fig. 6 due to statistical errors increase with

increasing N , since the number of random sequences averaged is the same for all N . The

error bars are negligible for N < 1000, and are almost the size of the `�mark' for N = 10

4

.

The error estimates are the same for all the �gures in this chapter with data plotted vs.

logN .

Since in any speci�c RW, L

1

� L

2

� � � � � L

n

, the average length of the nth longest

loop hL

n

i decreases (for �xed N) with increasing loop number n. There is no typical

scale in the problem, and we may expect a power law dependence hL

n

i � Nn

��

, with

� > 0. The total number of steps in all the loops in any given RW cannot exceed N (i.e.

P

n

L

n

� N), and therefore

P

n

hL

n

i � N . The convergence of the sum means that � > 1.
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Figure 7: Logarithm of average reduced length of the nth longest loop as a function of logarithm of

loop number n. The `�' are averages of the numeric data, plotted with their error bars, and the line is

the linear �t, having a slope of �2:3� 0:4.

We depict in Fig. 7 the average reduced length hl

n

i vs. n on a logarithmic scale. To avoid

systematic errors due to �nite N , each value of hl

n

i in the graph was determined through

an extrapolation: For each n, we plotted hl

n

i vs. 1=N , and found the extrapolated value

of hl

n

i near 1=N = 0. These values of hl

n

i are depicted in Fig. 7. The linear �t to the

data points has a slope of �2:3 � 0:4. We therefore conclude that as N !1:

hL

n

i �

N

n

�

; where � = 2:3� 0:4 : (2:5)
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At the end of this section we will argue that � = 2, which is within the error limits of

Eq. (2.5). The linear dependence of hL

n

i on N and the `no-scale' power law will enable

us (in section 3) to treat the problem of the longest loops in the continuum limit.

2.2.3 Neutral Segments in Finite Chains

So far we have discussed only long chains and their properties in the N ! 1 limit.

There are several di�erences between the properties of in�nitely long chains and �nite

size chains. First, in �nite size chains the monomers that do not belong to any neutral

segment constitute a �nite part of the chain, as opposed to a vanishing part as N !1.

In addition, in in�nitely long chains the number of neutral segments is in�nite, while for

�nite N at some point there are no more neutral segments.

Let us consider the total number of monomers which do not belong to any neutral

segment, for �nite N . It is easily shown that the number of monomers left out from all the

neutral segments in any speci�c random sequence is exactly the absolute value Q of the

excess charge (de�ned in section 1.2) of the corresponding PA: The excess charge cannot

exceed the number of monomers left out, because, by de�nition, the neutral segments do

not have excess charge. On the other hand, all the monomers left out from the neutral

segments must be part of the excess charge: If, for instance, a PA has excess positive

charge, then no negative charge can be left out from all the neutral segments. (If there

had been a group of negative charges, it would have joined a group of positive charges to

make a neutral segment, or together with a group of positive charges, would have joined

an existing neutral segment and make it longer). Since the r.m.s. excess charge of a

randomly charged sequence of N charges of �1 is equal to

p

N , the r.m.s. number of

monomers not in any neutral segment in the chain is also equal to

p

N . We note that

this dependence satis�es the general claim shown by Lawler [40] for the LESAW model {

the fraction of the steps remaining unerased, vanishes as N !1 (for d � 4).

At some point the process of search for the next longest loop exhausts all the loops

in the RW. We investigate this stage in the process, by analyzing the number n

f

of loops

in a RW. When N is in�nite, the average length of the nth longest loop is given by

hL

n

i � Nn

��

. Application of this equality for �nite N 's would predict, for large enough

n's, hL

n

i � 1. Since this is not possible (the minimal length of a loop is two steps),

we argue that Eq. (2.5) is valid, for �nite N 's, only to describe the average lengths of

the longest n

f

loops. There is no typical scale to the problem of the total number of
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loops, and we therefore expect a power law dependence of hn

f

i on N . The length of

the last loop, for all chain lengths, is usually very short (consisting of only few positive

and negative charges), having length independent of N , i.e. hL

n

f

i � N

0

, which means

that hl

n

f

i � N

�1

. Since hl

n

f

i � n

��

f

(substituting n = n

f

in Eq. 2.5), we can expect

hn

f

i � N

y

, where

y =

1

�

: (2:6)

Substituting � from Eq. (2.5), leads to a value of y = 0:43 � 0:09.
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Figure 8: Logarithm of average number of loops in a chain hn

f

i vs. logN for N = 100� 10000. `�' are

averages of numeric data, each of 10

6

random sequences, solid line is the linear �t for all the data, and

dashed line is the extrapolated �t in the N !1 limit. The extrapolated �t has a slope of 0:46� 0:06.

In Fig. 8 the average number of loops hn

f

i is plotted as a function of N on a logarithmic

scale. The data �t a straight line, con�rming the power law dependence of hn

f

i on N .

The slope of the linear �t for all the data (solid line in Fig. 8) is 0:43� 0:02. As in Fig. 6,

we estimate the power of the dependence of hn

f

i on N through extrapolating the linear

�t in the N !1 limit (dashed line in Fig. 8), in order to overcome the systematic error

for �nite N . The slope of the �t in the N !1 limit is 0:46� 0:06. We therefore get:

hn

f

i � N

y

; where y = 0:46 � 0:06 : (2:7)

This value of y is within the error limits of the value predicted by Eqs. (2.5) and (2.6).
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At the end of this section we will argue that � = 2 and y = 0:5, values which are

within the error limits of those deduced from the numeric data. In order to con�rm the

hn

f

i �

p

N relation, we show in Fig. 9 the probability density of n

f

divided by

p

N for

several chain lengths (N = 10

2

�10

4

). The division by

p

N causes a reasonable collapse of

the graphs for di�erent values of N to a single function, which is (almost)N�independent.

We see that the probability density has a maximum when n

f

=

p

N is close to zero (the

most probable value of n

f

is �nite and independent of N), and it decreases to zero with

increasing n

f

=

p

N .
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Figure 9: Probability density of n

f

, the total number of loops in a chain, divided by

p

N , for N = 100,

300, 500, 1000, 3000, 5000, 10000 (from right to left).

Knowing the statistical properties of the chain, we try to construct a self-consistent

complete picture, in which our numerical results �t together. We know that the total

length of all the loops (

P

n

f

n=1

L

n

) equals to the entire length of the chain minus the steps

not in any loop (which are the excess charge, which are on the average

p

N). Dividing

this equality by N , taking an average over the random sequences, we get:

1� h

n

f

X

n=1

l

n

i �

1

N

1

2

: (2:8)
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On the other hand, from Eqs. (2.5) and (2.7) we know (omitting constants of order unity):

*

hn

f

i

X

n=1

l

n

+

=

hn

f

i

X

n=1

hl

n

i '

Z

N

y

n=1

n

��

dn � 1�N

y(1��)

: (2:9)

Comparison of the powers of N in Eqs. (2.8) and (2.9) leads to

y =

1

2(� � 1)

; (2:10)

which together with Eq. (2.6) is satis�ed by:

� = 2 ; y =

1

2

: (2:11)

These equalities are satis�ed by the values of y = 0:46� 0:06, and � = 2:3� 0:4 obtained

numerically, and constitute a self consistent picture, in which the average conformational

properties of the constructed ground state �t together.

2.3 Physical Properties of the Ground State

In this section we investigate some of the physical characteristics of the constructed ground

state of randomly charged PA's. We focus on the linear size R and surface area S (de�ned

in Eq. 2.1, 2.2) of the proposed ground state, trying to explain their dependence on N

through the self consistent picture constructed in the previous section.

From the linear �t in Fig. 10, depicting the N�dependence of the average linear size

of a RW of N steps, we deduce that hRi � N

�

, with � = 0:50� 0:01:

hRi � h

n

f

X

n=1

L

1=3

n

+Qi � N

0:50�0:01

: (2:12)

Fig. 11 depicts the probability density of R divided by

p

N for several values of N . From

the data collapse we deduce that the N�dependence in Eq. (2.12) represents a scaling

of the entire probability density. The � '

1

2

power in Eq. (2.12) means that the chain is

not compact (although the distribution is `peaked' near the lowest possible value of R),

and is not completely stretched, but has a linear size as an ideal RW with N steps. We

note that there is an oscillatory behavior near R = R

0

(not shown in the �gure) due to

discrete possible values of R for �nite N . (The smallest value of R is N

1=3

, the next value

is (N � 2)

1=3

+ 2, and so on, such that the values in between have zero probability).

29



1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

log (N)

lo
g 

(<
R

>
)

Figure 10: Logarithm of average size of chain hRi vs. logN for N = 100� 10000. `�' are averages of

numeric data, each of 10

6

random sequences, and the line is the linear �t, having slope 0:50� 0:01.

We can explain the dependence in Eq. (2.12), by assuming that h

~

Ri �

P

n

hL

n

1=3

i and

P

n

hL

n

i

1=3

have the same N�dependence, and by using the power laws of hn

f

i and hL

n

i

(Eqs. 2.5 and 2.7) with � = 2 and y = 0:5 (Eq. 2.11):

h

~

Ri �

n

f

X

n=1

hL

n

1=3

i �

hn

f

i

X

n=1

hL

n

i

1=3

�

Z

N

y

n=1

�

N

n

�

�

1=3

dn � N

0:5

: (2:13)

In order to con�rm this dependence, Fig. 12 depicts h

~

Ri, as a function of N (for N = 100

to 10000) on a logarithmic scale. The slope of the linear �t is 0:49 � 0:02, in accordance

with the prediction of Eq. (2.13). We see that the average linear chain size hRi is a sum

of two terms, each proportional to

p

N { the average linear size of all the loops, and the

average excess charge. The

p

N dependence of hRi is therefore understood.
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Figure 11: Probability density of R, the linear size of the entire chain, for several chain lengths:

N =100 (dotted line), 300 (dot-dashed line), 1000 (dashed line), 3000 (solid line), 10000 (thick points).

The minimal possible value of R (R

0

= N

1=3

) is subtracted from R, and the result is divided by

p

N to

collapse the data.
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Figure 12: Logarithm of h

~

Ri, the average linear size of all the loops vs. logN . `�' are averages of

numeric data, each of 10

6

random sequences, and the line is the linear �t, having slope 0:49� 0:02.
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When we de�ned S, the surface area of the chain (Eq. 2.2), we saw that it can have

values ranging from N

2=3

, for a neutral chain, to N , for a completely charged chain.

These limits indeed correspond to the expected behavior of PA. Obviously S � N

2=3

. We

analyzed the N -dependence of S (Fig. 13), and found that:

hSi � h

n

f

X

n=1

L

n

2=3

+Qi � N

0:67�0:01

: (2:14)

When we subtract from S its minimal value, and divide the result by N

2=3

, we get a

distribution which is (almost) identical for all N (Fig. 14). This dependence means that

the average surface energy of the generated structure has the same N�dependence as the

surface energy of a single compact globule (or several compact globules, each containing

a �nite part of the chain). From the same arguments that led to Eq. (2.13), we get:

hSi = hQi +

hn

f

i

X

n=1

hL

n

i

2=3

�

p

N +

Z

N

y

n=1

�

N

n

�

�

2=3

dn � N

2=3

: (2:15)

This power of N is in accordance with Eq. (2.14), and indicates that the N -dependence

of the average surface area is determined by the neutral segments (i.e. the `beads' in the

necklace), and is not a�ected by the excess charge (the `strings' in the necklace).
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Figure 13: Logarithm of average surface area of chain hSi vs. logN for N = 100 � 10000. `�' are

averages of numeric data, each of 10

6

random sequences, and the line is the linear �t, having slope

0:67� 0:01.
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Figure 14: Probability density of S, the surface area of the entire chain, for several chain lengths:

N =100 (dotted line), 300 (dot-dashed line), 1000 (dashed line), 3000 (solid line), 10000 (thick points).

The minimal possible value of S (S

0

= N

2=3

) is subtracted from S, and the result is divided by N

2=3

to

collapse the data.
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2.4 Discussion and Conclusions

We investigated the expression S +

Q

2

R

, which has the same N -dependence as the energy

of the generated structure. (We considered the energy terms of Eq. (1.11), and omitted

the condensation term, since it is the same for all structures of a given N). Fig. 15 depicts
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Figure 15: Total `energy' of entire chain (omitting the condensation term). Probability density for

several chain lengths (N = 100� 10000), while the minimal possible value of E (E

0

) is subtracted from

E, and the result is divided by N

2=3

to collapse the data (left). loghEi vs. logN (right), where `�' are

averages of the numeric data, and the line is the linear �t, having slope 0:66� 0:01.

the probability density and average of the expression S +

Q

2

R

, denoted as E. From the

value of the slope of the linear �t on the right of Fig. 15 we deduce:

hEi � hS +

Q

2

R

i � N

0:66�0:01

: (2:16)

When subtracting from E its minimal value and dividing the result by N

2=3

, we get a

probability density which is identical for all N . This dependence means that the total

energy is very low: The surface energy term (S) gets its minimal value (� N

2=3

), and

R � N

1=2

, thus bringing the electrostatic energy term to a point where it does not a�ect

the N -dependence of the total energy. The total energy behaves very much like the surface

energy, as if the chain is constructed of a single compact neutral globule.

In comparing our results with previous studies of the structure of the ground state

in randomly charged PA's ([17, 18, 20, 21, 22] and discussed in section 1.2.3), we see

that our suggested structure satis�es qualitative properties evident in other studies: The

structure is compact when the chain is neutral or weakly charged, and it stretches as

the excess charge increases. However, the result hRi � N

0:5

(� '

1

2

) is not in complete

accordance with other �ndings. By an exact enumeration, Kantor and Kardar showed [22]
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that the average PA (average over an unrestricted ensemble { not restricting the value of

the excess charge) is not compact, i.e. � >

1

3

(which agrees with our results). Investigating

the N�dependence of short PA's with Coulomb interactions, Kantor and Kardar obtained

a value of about � '

1

2

(although they claimed that the chains were too short to extract

a meaningful value). Moreover, the qualitative behavior of our probability distribution

of R is also quite similar to the one obtained in [22]: The distribution is peaked near its

smallest possible value, and has a tail, which determines the asymptotic behavior of �.

However, the probability distribution of R obtained by Kantor and Kardar in [22] has a

much broader (possibly power law) tail, so that as N increases, the large values of R of

the stretched con�gurations are assumed to dominate the total average. They thus expect

(though not completely prove) that the value of � '

1

2

, extracted from the behavior of

the short loops, underestimates the true asymptotic value. Kantor and Kardar therefore

conclude that the hRi of the unrestricted ensemble increases with N at least as fast as

a SAW (i.e. � > 0:6), as opposed to our � '

1

2

. However, we note that if we allow for

weakly charged globules (and not just neutral ones), we should expect the linear size of

the chains in our model to be proportional to N

�

with � � 0:5: The excess charge will

be partly included in the globules, and therefore may cause an increase in the power in

which h

~

Ri (the average linear size of all the loops without the excess charge) depends on

N . This model of weakly charged globules is worth further study, but is beyond the scope

of our work.
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3 Continuous Random Walks

In this section, we return to the probability density of the longest loop in a 1-d RW,

which serves as a measure for the longest neutral segment in a randomly charged PA.

According to the central limit theorem [34] any RW, in which each step is assigned a

given distribution, approaches a Gaussian RW, when the number of steps increases. (By

Gaussian RW we mean a RW, in which each step is assigned a Gaussian probability of

zero average and a �xed standard deviation. Since the sum of Gaussians is a Gaussian,

then the probability of a position x after t steps is a Gaussian.) Therefore, the Gaussian

RW can serve as a general model for all RW's. Furthermore, every unbiased RW (i.e. the

average displacement of each step is zero) can be characterized by a single parameter {

the standard deviation of the Gaussian. We therefore explore the problem of the longest

loop (introduced in section 1.2.3) for continuous Gaussian RW's. Such a RW is referred

to as a continuous RW, since the position of a given step at a given time can take any

value x, with a certain probability density (see Eq. 1.13), and is therefore a continuous

variable, as opposed to the positions of steps in a `discrete' RW (i.e. a RW with steps

of �xed length). In continuous RW's the steps are still discrete, but the probability of

the position is a continuous Gaussian. The problem of how to de�ne a loop for Gaussian

RW's is not trivial, and seems to determine the probability density of the longest loop.

3.1 Numerical Investigation of the Probability Density

3.1.1 De�nition of the Problem

How can we de�ne a loop for a continuous RW, where the positions are distributed in

continuum, and the path never returns exactly to a position visited before? According to

the de�nition of a loop in a RW with steps of �xed length, where a loop is formed when

the `random walker' returns exactly to a previously visited position, no loops are formed

in a continuous RW. We therefore introduce a new parameter (denoted �), and say that

if two steps in a continuous RW are closer than � from each other, the segment between

them is called a closed loop. Therefore, the probability of having a longest loop of length

L along a RW depends on N , the number of steps in the RW, on a, the standard deviation

of each step in the walk, and on � de�ned above.

We try to decrease the number of parameters in the problem. Let us consider a speci�c

RW of given a and N , where a loop is de�ned by some �, and scale it by some � (i.e.
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a! �a). Each step in the RW becomes � times longer, and therefore the distance between

any two steps is multiplied by �. When we rescale the distance de�ning a loop by � (i.e.

�! ��) then the lengths of the loops in the rescaled walk are identical to the lengths in

the original walk. This scaling argument shows that the probability of the longest loop

depends on � and a only through �=a.

As in the discrete problem (see Eq. (2.3) and [26]), for large N 's it is convenient to

work with a probability density of the longest loop, and explore it as a function of the

reduced length l � L=N .

6

We denote the probability density of the longest loop by:

p(l;N; �=a) = N � P (L;N; �=a) ; (3:1)

where P (L;N; �=a) is the probability of having a longest loop of length L in a RW of given

a and N , when the distance de�ning a loop is �. We use MC simulations to investigate

the probability density p(l;N; �=a) of the longest loop, and especially its dependence on

� and N .

3.1.2 Probability Density in the �;N Plane

For a RW with steps of �xed length, the probability density of the longest loop becomes

universal (i.e. N�independent) for modest values of N (see Fig. 5 in section 2.2 and also

[26]). However, the probability density of the longest loop for the continuous RW seems to

be drastically dependent on the chosen value of �. This dependence is depicted in Fig. 16,

showing p(l;N; �=a) for several values of �=a from 10

�5

to 10, and for a given N = 300

(this dependence is qualitatively similar for all values of N over two orders of magnitude,

from 30 to 3000). When � is extremely small (we shall see later that the requirement is

�� a=

p

N) no loops are formed in all the sequences, the longest loop is thus of reduced

length l = 0, and p(l;N; �=a) becomes identically zero for all l 6= 0. In the other limit,

when � is extremely large (we shall see that the requirement is � � a

p

N), every step

closes a loop which originates at almost all the other steps in the walk, and therefore

the �rst step generates a loop with the last, resulting in l = 1 for all the sequences. We

therefore get that by changing �=a for �xed N , the probability density p(l;N; �=a) changes

gradually from a function similar to �(l), when the value of �=a is extremely small, to a

6

Throughout this section we use the parameters L and l to denote length and reduced length along

the RW (i.e. the internal coordinate).
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Figure 16: p(l;N; �=a) vs. l for several values of �=a: 10

�5

(1), 10

�4

(2), 10

�3

(3), 10

�2

(4), 0.1 (5), 1

(6), 10 (7). All graphs show MC results of 10

6

randomly selected sequences of length N = 300.

function similar to �(l � 1), when the value of �=a is extremely large.

7

Somewhere along

this transition from �(l) to �(l � 1), approximately where � ' a, the probability density

p(l;N; �=a) becomes very similar (at least qualitatively) to p(l), the probability density of

the longest loop in RW's with steps of �xed length, in the large N limit. (We adopt the

notation p(l) rather than p(l

1

) of section 2, since in this section we are interested only in

the probability density of the longest loop.) We note that all the numerical probability

densities for continuous RW's in the following sections are based on MC results of 10

6

randomly selected sequences. Therefore, the statistical errors are of order

q

N=10

6

(when

the probability density is of order of unity), varying from � 5 � 10

�3

to � 0:05 for the

tested values of N from 30 to 3000.

Fixing �=a to some value and investigating the N�dependence of p(l;N; �=a), resulted

in di�erent qualitative behaviors for di�erent values of �=a. These behaviors are shown

in Figs. 17, 18 and 19, for �=a = 10

�3

, 10 and 1, respectively. In Fig. 17 (�=a = 10

�3

)

p(l;N; �=a) changes gradually from �(l) towards p(l) as N increases. These functions are

qualitatively similar to those in Fig. 16 (constant N and changing �=a) in a way that

7

The limit of p(l;N; �=a) = �(l � 1), i.e. � ! 1, is not shown in Fig.16, due to computational

limitations: For �=a�

p

N the total number of loops, and therefore the computation time, increases as

N

2

, since every step closes a loop which originates at almost all the other steps in the RW.
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increasing N (for constant �=a) is equivalent to increasing �=a (for constant N). Similar

results are obtained for all �=a < 1 (10

�5

to 0.5). For all �=a > 1 (�=a=10 in Fig. 18)

p(l;N; �=a) changes from �(l� 1) towards p(l) as N increases, in a way that increasing N

(for constant �=a, as in Fig. 16) is equivalent to decreasing �=a. At the `transition point'

(�=a = 1 in Fig. 19), the N�dependence of p(l;N; �=a) is almost non-existing, and the

probability density converges very quickly to p(l). Even for very small values of N (N=10

{ circles in Fig. 19), where the e�ects of discrete steps should be evident, the probability

density is very close to its N !1 limit.
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Figure 17: p(l;N; �=a) vs. l for �=a = 10

�3

and several chain lengths: N = 30 (dotted line), 100 (dashed

line), 300 (dot-dashed line), 1000 (solid line), 3000 (thick points). All graphs show MC results of 10

6

randomly selected sequences.
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Figure 18: p(l;N; �=a) vs. l for �=a=10 and several chain lengths N (from bottom): N = 30, 100, 300,

1000. All graphs show MC results of 10

6

randomly selected sequences.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Length of longest loop − l=L/N

P
ro

ba
bi

lit
y 

de
ns

ity

Figure 19: p(l;N; �=a) vs. l for �=a=1 and several chain lengths. N = 1000 (dots), 100 (solid line), 10

(circles). All graphs show MC results of 10

6

randomly selected sequences.
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The numerical results can be summarized as follows:

� There is numerical evidence (although the limit was not reached for all �=a) that as

N !1, for any value of �=a we get:

p(l;N; �=a)! p(l) : (3:2)

However, the rate of this convergence depends on the value of �=a. The convergence

of p(l;N; �=a) to p(l) with increasing N and �xed �=a is faster when �=a is closer

to unity. This claim is evident from Fig. 20, depicting p(l;N; �=a) for several values

of �=a (� 1) and N (�=a=1, N=100; �=a=0.1, N=1000 and �=a=0.01, N=3000),

compared with p(l) (with N=1000). The �t of the numeric data to p(l) is better for

�=a closer to unity (even when as the values of �=a become closer to unity, we take

lower values of N). For �=a=1, 82% of the numeric values for di�erent l's �t p(l)

within their error bars, for �=a=0.1, only 65% of values �t p(l) within their error

bars, and for �=a=0.01, 62% of the values �t p(l) within their error bars (but 92%

of the remaining values are above p(l)).

� The di�erent functions p(l;N; �=a), changing gradually from �(l) through p(l) to

�(l� 1), seem to belong to one `family' of functions. By one `family' we mean that

for any �xed value of (large enough) N we can get all the possible functions just by

changing �=a, and that for a given �=a ( 6=1, 6=0) we again can get, by changing N ,

all the possible functions (above or below p(l), depending on �=a). This observation

may indicate that there is only one parameter (i.e. a combination of N and �=a)

that determines p(l;N; �=a) for all values of N and �=a < 1, and another single

parameter that determines p(l;N; �=a) for �=a > 1.

� There is a qualitative di�erent nature to the probability density p(l;N; �=a) for

values of �=a < 1 and for values of �=a > 1, and a very rapid convergence to p(l)

with increasing N is evident at the transition point � ' a.

In the following section we explore the group of probability densities p(l;N; �=a) analyti-

cally, and give qualitative and quantitative arguments to explain the numerical observa-

tions.
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Figure 20: p(l;N; �=a) vs. l for several values of N and �=a: N=100, �=a=1 (thick points); N=1000,

�=a=0.1 (dotted line); N=3000, �=a=0.01 (dashed line), compared with p(l) with N=1000 (solid line).

All graphs show MC results of 10

6

randomly selected sequences. Although the �t seems rather good for

all values of �=a, quantitative measurements show that the �t to p(l) is better as �=a approaches unity

(see text).

3.2 Arguments for the Behavior of p(l;N; �=a)

In this section we present qualitative explanations and partial analytical solutions for the

behavior of the probability density of the longest loop p(l;N; �=a) in its extreme �=a values

�=a � 1, and �=a � 1. Through this behavior we try to understand the behavior and

N�dependence of p(l;N; �=a) in the entire �=a region, and especially at �=a ' 1.

3.2.1 Probability Density for Low �=a

The numerical results indicate that p(l;N; �=a) depends on N and �=a only through a

single parameter. We present qualitative arguments, which are rather intuitive, and lead

to the parameter N

3=2

� �=a in the �=a� 1 limit. A continuous RW of N steps and step

size a is spread over an average length of a

p

N (see Eq. 1.14). In order to make a loop,

the position of one step in the RW should be closer than � to the position of another given

step. The average probability of a loop between two given steps is thus of order of this

distance � divided by the entire spread of the RW, i.e.

�

a

p

N

. Since there are � N

2

pairs of
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steps, which can form a loop (each step can close a loop which originates at all the other

steps), we conclude that the probability for a loop in the � ! 0 limit depends only on

�

a

p

N

N

2

, denoted by B. Obtaining the probability of a loop by multiplying the probability

of a loop for a single pair of steps in the number of pairs, is valid only when there is

no overlap between the `��coverage' (i.e. locations within distance �) of any two steps

(if there is an overlap, we should subtract the overlapping area from the multiplication).

This no-overlap requirement means that N � �, the total `��coverage' of all the steps,

should be much smaller than the length spread by the RW (a

p

N). The single parameter

dependence of the probability density, and the no-overlap requirement can be formed

mathematically:

p(l;N; �=a) = ~p

�

l;B � N

3=2

�

a

�

for

�

a

�

1

p

N

: (3:3)

The qualitative arguments presented above are not valid when there is more than one

loop in the RW, since we only discussed the probability of a loop, and not the probability

of a longest loop. Numerical comparison of several probability densities, having di�erent

values of N and �=a but the same value of B, con�rms the dependence of Eq. (3.3). Fig. 21

depicts the probability density of the longest loop for several values ofN and �=a� 1=

p

N .

It is evident from the �gure, that di�erent functions p(l;N; �=a) of di�erent N and �=a,

having the same value of the parameter B, collapse to a single graph. The collapse was

numerically evident for values of B up to 10 and for all values of N (up to 3000). Note

that for B=10 and N=30 (circles in the upper graph of Fig. 21), where

�

a

' 0:06 and

1

p

N

' 0:18, and the requirement of Eq. (3.3) is not ful�lled (�=a < 1=

p

N , but not �),

the �t becomes quite poor.

In the �=a� 1=

p

N limit it is possible to �nd p(l;N; �=a) analytically. The inequality

�=a � 1=

p

N means that loops are very rear { in the extreme case there are no loops

at all, and p(l;N; �=a) = �(l). The next approximation is having no more than one loop

per chain { in this case, having a loop of length L means that it is the longest loop. We

therefore calculate the probability of having a loop of length L. A loop of length L in a

RW occurs when theMth step of the walk has a position x (this happens with probability

density p(x;M) as in Eq. 1.13), and the (M + L)th step has a position distant y from x,

where �� � y � �. When we keep L constant, M can take any integer value from zero

(i.e. making a loop between the origin ant the Lth step) to N � L (i.e. making a loop

between the (N � L)th step and the end-position). Therefore we get for the probability
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Figure 21: p(l;N; �=a) vs. l for several values of B = N

3=2

�=a (from bottom): B= 0.1, 1, 10. For each

B, several values of chain lengths N are represented (where �=a is matched for the value of B): N =

1000 (dots), 300 (dashed line), 100 (solid lines), 30 (circles). Other values of B (up to B=10) and of N

(up to N = 3000) were tested, and showed the same picture.

of having a loop of length L:

P (L;N; �=a) =

N�L

X

M=0

Z

1

x=�1

Z

�

y=��

p(x;M)p(y; L)dydx : (3:4)

To get Eq. (3.4) we assumed that the events of all possible loops (i.e. a loop starting at

the origin, a loop starting at the second step and so on) are mutually exclusive, which is in

accordance with the assumption of having no more than one loop per chain. Without this

assumption we could not simply sum over M , but should have subtracted the probability

of having two or more loops. Integrating x out (

R

1

�1

p(x;M)dx = 1), substituting p(y; L),

and performing the integral for y, while neglecting termsO

h

(�=a)

2

i

, we get from Eq. (3.4):

P (L;N; �=a) =

s

2

�

N � L

p

L

�

a

; (3:5)

which for probability density in this single-loop (s.l.) approximation and reduced length

l becomes:

p

s:l:

(l;N; �=a) =

s

2

�

N

3=2

�

a

1 � l

p

l

: (3:6)
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We can take this approximation further by assuming that even if there is more than

one loop in a speci�c RW, then all the loops are independent (i.e. having a loop of

length L

1

does not change the probability of having a loop of length L

2

). We denote the

probability density of having a longest loop of length l under this independent-loops (i.l.)

approximation by p

i:l:

(l;N; �=a), and get:

p

i:l:

(l;N; �=a) = p

s:l:

(l;N; �=a) �

�

1�

Z

1

k=l

p

i:l:

(k;N; �=a)dk

�

; (3:7)

where p

s:l:

(l;N; �=a) is the probability of having a loop of length l, and [1�

R

p

i:l:

] is the

probability of not having a loop longer than l. (For dependent loops we should replace

1 �

R

p

i:l:

by the conditional probability of not having a loop longer than l, given a loop

of length l). Solving Eq. (3.7) for p

i:l:

(l;N; �=a) leads to:

p

i:l:

(l;N; �=a) = p

s:l:

(l;N; �=a) � exp

"

�

2

p

�

N

3=2

�

a

�

4

3

� 2

p

l +

2

3

l

3=2

�

#

: (3:8)

As indicated by the qualitative arguments (and although there is more than one loop),

the dependence of p

i:l:

(l;N; �=a) on N and �=a is only through the parameter B = N

3=2
�

a

.

The comparison of this analytical probability density to the numerical results is depicted

in Fig. 22 for values of B ranging up to B = 10. The analytical function agrees with the

numerical results for B < 1 (where about 70% of the numerical values �t the analytic

function within their error limits). For values of N and �=a, which satisfy B = 1, almost

two thirds of the sequences have one or more loops (the probability of having a longest

loop of length l = 0 is 0.37). For these values, the assumption of independent loops is

no longer valid, and the �t of the numeric data to the analytical probability density p

i:l:

becomes rather poor (less than 50% of the numerical values �t the analytic function within

their error limits, and more than 45% of the values' error limits are above the analytical

prediction).

When we look at the analytical function p

i:l:

(l;N; �=a) for larger values of B (Fig. 23),

where the assumption of independent loops is no longer valid, we see that although

p

i:l:

(l;N; �=a) has some of the qualitative properties of the numeric probability density

(such as transition from �(l) to �(l � 1)), it has none of the singularities of the real

probability density. This suggests that all the singularities and the special properties of

p(l;N; �=a) originate from the dependencies between the loops (these dependencies are

absent from p

i:l:

(l;N; �=a) by de�nition).
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Figure 22: Comparing analytic p

i:l:

(l;N; �=a) (solid lines) and numeric (dashed lines) p(l;N; �=a) prob-

ability densities of longest loops vs. l (N = 1000) for several values of B = N

3=2

(�=a) (from bottom):

B= 0.1, 0.3, 1, 10.
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Figure 23: Analytical predictions of the probability density of longest loops p

i:l:

(l;N; �=a) for several

large values of B (from left: B = 1, 5, 25, 125, 1000). The function changes from �(l) to �(l � 1), but

without the singularities of the numeric results.
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3.2.2 Probability Density for High �=a

Through rescaling arguments we �nd a single parameter for the dependence of p(l;N; �=a)

on N and �=a in the �=a � 1 limit. We want to rescale a chain with given N , � and a

to a chain with N

�

`e�ective steps' and �

�

=a

�

= 1. We therefore group n steps of the

original RW to an `e�ective step' of size a

�

= �. In order to �nd n we note that a RW of

n Gaussian steps, each of average size a, is spread over an average size of a

p

n (de�ned as

an e�ective size a

�

). An `e�ective step' (which includes n of the original steps) therefore

spreads over an average size of �, if it includes n = (�=a)

2

of the steps of the original

chain. If we divide the original chain to N

�

=

N

n

=

N

(�=a)

2

`e�ective steps', then each one

will have an e�ective size of a

�

= a

p

n = a

q

(�=a)

2

= � (where �

�

= �). This is an exact

rescaling, since the probability of having a loop of certain length (for loops longer than

(�=a)

2

steps in the original chain) is the same in both chains. We see that any chain with

N steps and �=a > 1 can be rescaled to a chain with N

�

=

N

(�=a)

2

steps and �

�

=a

�

= 1 (if

�=a is large enough, that a RW of (�=a)

2

steps becomes truly Gaussian, but lower than

p

N , where N

�

becomes unity). We therefore get:

p(l;N; �=a) = ~p

 

l;C �

N

(�=a)

2

!

for 1�

�

a

<

p

N : (3:9)

It should be noted that such rescaling arguments for �=a < 1 are problematic, because we

do not know how many steps should be collected to make an `e�ective step' (i.e. we do

not know n). The number n, of steps in the original chain which make an `e�ective step'

in a chain with �

�

=a

�

= 1, should be obtained by the requirement that any added step

(i.e. the (n + 1)th step) will fall within distance � of one of the n previous steps. This

requirement means that the `��coverage' (i.e. locations within distance �) of all the n

steps together, covers the entire size spread by the n steps, and no `holes' (i.e. locations

distant more than � from all the steps) are left. This requirement for no `holes' is ful�lled

(on the average) when �=a � 1 even for a single step (n = 1).

Fig. 24 depicts probability densities p(l;N; �=a) for several values of N and �=a > 1.

The data collapse of probability densities having the same value of C to a single function

is not so good, since in each probability density one of the limiting conditions of �=a

(Eq. 3.9) is not completely met: For C = 10 and C = 5 there is a probability density with

a value of �=a = 5, which is not enough to produce a truly Gaussian RW, while for C = 1,
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there is a value of �=a =

p

N .

8

Nevertheless, we deduce that the rescaling arguments are

correct and the single parameter in this limit is indeed C =

N

(�=a)

2

.
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Figure 24: p(l;N; �=a) vs. l for several values of C =

N

(�=a)

2

. For each C, two values of chain length N

are represented, where �=a is matched for the value of C. From top: C = 10 - dots (N = 10

3

, �=a=10;

N=250, �=a=5 ), C = 5 - dashed lines (N=75, �=a=5 ; N=300, �=a=10), C = 1 - solid lines (N=100,

�=a=10; N=900, �=a=30).

3.2.3 Probability Density for �=a ' 1

The most prominent property of p(l;N; �=a) for �=a ' 1 is the rapid convergence with

increasing N to p(l). The fact that p(l;N; �=a) becomes N�independent means that

increasing the number of steps, while keeping �=a constant, does not change the statistics

of the lengths of the loops. We demonstrate that for �=a ' 1, an increase in the number

of steps N , for a �xed value of �=a, should not change the statistics of the lengths of

the loops: We compare the loops statistics of an `original' RW of N steps of size a, and

distance de�ning a loop � = a to a scaled RW with 2N steps of size a=

p

2 and a distance

de�ning a loop �=

p

2. The distribution of positions of every second step in the scaled RW

is identical to that of the steps in the original RW, so we can look at the scaling as a

8

Higher values of �=a and N , required for the data collapse, were not tested due to the long computation

times, proportional to N

2

for �=a� 1, where every step closes a loop which originates at almost all the

other steps.
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process of adding a new step in the RW between any two existing steps, while dividing �,

the distance de�ning a loop, by

p

2. We argue (statistically speaking) that all the loops of

the original RW remain in the rescaled RW, and on the other hand, no new loops appear

in the rescaled RW:

� The decrease in � in the scaled RW (which causes that only about 1=

p

2 of the

original loops which close with each step remain in the scaled walk) is compensated

by the increase in N (there are twice the possibilities for a loop closing with each

step), and therefore, on average, all the loops in the original RW remain in the

scaled RW. This argument is not valid for �� a, where the decrease in the number

of loops with decreasing � is much greater than can be compensated by the increase

in N .

� The newly added steps are (statistically) closer than �=

p

2 to an existing step in

the original RW, and any loop generated by the new steps already exists for one of

the neighboring old steps in the original RW. If we look at each step as `covering'

range � of the position axis, then for � = a the entire RW path is covered, in a way

that adding steps to the walk does not generate new loops. Therefore, no new loops

appear in the rescaled RW. This argument is not valid for � � a, where not the

entire position axis is covered by the RW.

The fact that in the rescaling process all the original loops remain and no new loops

appear, means that the statistics of the loops lengths is unchanged by increasing N (when

�=a ' 1), and a rapid convergence of p(l;N; �=a ' 1) with increasing N is evident.

Another way to understand the fast convergence of p(l;N; �=a ' 1) to p(l) (faster

than at any other value of �=a) is to look more carefully at the parameters B and C

(de�ned in the previous sections). For �=a � 1 we showed through rescaling arguments

that the probability density depends only on C =

N

(�=a)

2

, which means that increasing

N is equivalent to decreasing �=a, i.e. making it closer to unity. For �=a � 1 however,

the single parameter is B = N

3=2

(�=a), which means that increasing N is equivalent to

increasing �=a, again making it closer to unity. We see that making �=a closer to unity

is equivalent to increasing N . Therefore, when �=a ' 1 the convergence with N is the

fastest.
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3.2.4 Conclusions

Many of the properties mentioned in the previous sections, including the concluding re-

marks of section 3.1, are evident from the following �gure. The curves in Fig. 25 are lines
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Figure 25: `Equi-average' lines, along which hli is constant (see text), as a function of N and of �=a on

a logarithmic scale (N = 30 to 1000 and �=a = 0.001 to 10). The labels above the lines are the average

lengths hli along them. The values of hli along adjacent lines di�er by 0.05.

in the `�� N ' plane (on a logarithmic scale), along which the average reduced length of

the longest loop hli, (calculated by p(l;N; �=a) from 10

6

random sequences) has constant

value ('Equi-average' lines). The labels above the lines are the values of these averages.

The values of hli along adjacent lines di�er by 0.05. Therefore, the distance between

the curves represents the rate of change of the average. Since p(l;N; �=a) are normalized

functions which change gradually from �(l), where hli = 0 to �(l�1), where hli = 1, equal

averages indicate equal (or at least very similar) probability densities for all l. We review

the properties evident from this �gure:

� The uniqueness of �=a ' 1 emerges again. The value �=a ' 1 is the only value of

�=a for which the probability density is (almost) the same for all N (resulting in

hli ' 0:76) { indicated by the (almost) horizontal line at log(�=a) ' 0.
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� The curves from both sides of the �=a ' 1 line are not identical, con�rming that the

dependence of p(l;N; �=a) on �=a is di�erent in value (and not just in sign) between

�=a < 1 (where p(l;N; �=a) depends on N

3=2

�=a ) and �=a > 1 (where it depends on

N(�=a)

�2

).

� For all values of �=a, when N ! 1, we get p(l;N; �=a) ! p(l): Moving parallel

to the horizontal axis, (increasing N), the value of hli gets to a region between the

curves of hli = 0:71 and hli = 0:81 (above and below the log(�=a) = 0 line). In this

region the probability density is very similar to p(l). In this sense the probability

density p(l;N; �=a) is universal: at the N ! 1 limit it does not depend on the

values of �, a and N .

3.3 Alternative De�nitions of a Loop

All the results obtained so far in this chapter were for a speci�c de�nition of what is called

a loop (given at the beginning of the chapter). In order to demonstrate that the obtained

results are not just an e�ect of this de�nition, and are typical for continuous Gaussian

RW's, we repeat the numerical processes for several other de�nitions of a loop. For

instance, we can de�ne a loop between two steps in a continuous RW, if their positions

are closer than a certain �, randomly generated (for each two steps) from a Gaussian

distribution of zero average and standard deviation �. The probability of having a loop

between two steps distant � from each other along the position axis is thus:

P (loop) = 2

Z

1

�=�

1

p

2�

1

�

e

�

�

2

2�

2

d� =

2

p

2�

Z

1

y=�=�

e

�y

2

=2

dy = P (�=�) : (3:10)

Repeating some of the procedures of section 3.1.2 for this de�nition, resulted in similar

qualitative and quantitative behaviors. In Fig. 26 we compare the probability density

of the longest loop for the two de�nitions, for several values of �=a. We note that the

same considerations of section 3.2 apply to this de�nition, and can be used to explain the

behavior of the probability density of the longest loop. Results obtained for several other

distributions of � (so that the probability of a loop will become a Gaussian, for instance)

were also very similar to those obtained in section 3.2.

The similar results for several de�nitions of a loop lead us to the notion that the

probability density of the longest loop is universal, not just in the sense that it does not

depend on the values of � and a, but that it does not depend on the details of the de�nition
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of what is called a loop. In the next section we characterize this universality, and try to

prove it rigorously.
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Figure 26: p(l;N; �=a) vs. l for several values of �=a. Comparing results of deterministic �=a (line) with

normally distributed �=a (dots). The values of �=a are: 10

�4

(1), 10

�3

(2), 10

�2

(3), 0.1 (4), 1 (5). All

graphs show MC results of 10

6

randomly selected sequences of length N = 100.
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4 N�independence of the Probability Density

In this section we want to prove that the probability densities of the longest loop for both

discrete and continuous RW's

9

become (for long walks) independent of N , the number

of steps in the walk. Furthermore, we show that the probability densities in both cases

converge with increasing N to the same `universal' probability density. This probability

density is universal in the sense that it does not depend on N or on the details of the

probability of a single step of the RW. The main part of the section is devoted to prove the

N�independence of the probability density for discrete RW's, while later we generalize

the proof to continuous RW's.

4.1 Discrete Random Walks

We are interested to prove the existence and to �nd the N�independent probability

density of the longest loop for discrete RW's. We therefore divide a long RW into several

parts, where each such sub-RW is long enough to have a Gaussian statistics, and calculate

the probability of having a loop between two sub-RW's. Based on this probability we

rescale the long RW of discrete steps to a relatively short RW, where each `e�ective step'

is actually a sub-RW. The probability density of the longest loop calculated from the

scaled RW is independent of the number of steps and of their discrete characterization in

the original RW.

4.1.1 Probability of a Loop Between Random Walks

We want to calculate the probability of having a loop between two sub-RW's of a long

discrete RW. By a loop between the sub-walks we mean a loop (in the long RW), which

starts at a step in the �rst sub-walk and ends at a step in the second sub-walk. Such a

loop is formed when the two sub-walks intersect (both of them reach the same position),

and we therefore calculate the probability of intersection of two RW's. Fig. 27 depicts two

such sub-RW's (solid lines), which are part of one long RW (dashed line). Each sub-walk

is a discrete RW, having � steps of size a. (We are interested in the limit where � !1

and a! 0 so that a

p

� is �nite.) The �rst sub-RW starts at the origin, and the position

9

Throughout this section we use the terms discrete RW's and continuous RW's relating to a single

step in the RW, according to the meaning de�ned in the previous section. (In a discrete RW the steps

are of �xed length, and in a continuous RW each step is assigned a Gaussian probability).
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Figure 27: Two discrete RW's (solid lines), each of � steps, which are sub-walks of a single RW

(connecting dashed line). The origin of the second walk is shifted � along the position axis. See text for

explanations of other labels.

of its last step is x. The second sub-RW begins at a position � relative to the origin, and

� steps (along the original RW) after the �rst sub-RW ends. We denote the maximal

coordinate reached by the �rst sub-walk by r, and the minimal coordinate reached by the

second sub-walk by z. The two sub-walks intersect (forming a loop in the original RW)

if and only if the maximum of one walk (the �rst walk in Fig. 27) is greater or equal the

minimum of the other walk.

Two sub-walks, which are part of one long RW, are not independent RW's: Fixing

the position � of the origin of the second sub-walk a�ects the probabilities of the possible

states of the �rst sub-walk (and speci�cally the probability of the end-step position), thus

making it not completely random. This `dependence' between the sub-walks is stronger

when they are closer along the original RW (i.e. � is small). In the extreme case, of

neighboring sub-walks (i.e. � = 0 and the second sub-walk begins where the �rst one

ends), the end-position of the �rst sub-walk is �xed to be equal �. When the sub-walks

are distant � (> 0) steps from each other along the original RW, the in
uence of �xing

� on the possible states of the �rst sub-walk decreases. When the sub-walks are very far

from each other along the original RW (i.e. �� � ), then �xing � has almost no e�ect on
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the statistics of the �rst sub-walk, and its end-position x can take any value, according to

a true RW statistics probability density. In this � � � limit we say that the sub-walks

are independent RW's.

We �rst solve the simplest case, of the intersection probability of two independent

RW's. In section 1.3, the probability density M(r; � ) of the maximal coordinate of a RW

after � steps was found to be (for r > 0) twice the probability density of the position of

the RW after � steps (see Eq. 1.20). For r < 0 the probability density M(r; � ) vanishes,

since the maximum of a RW cannot be lower than its origin. By re
ecting each RW

about its origin (replacing +a with �a and vise versa), we see that for every RW having

a maximum position of r, there is a re
ected RW having a minimum position of �r.

Therefore, the probability density m(r; � ) of the minimal coordinate of a RW after �

steps equals M(�r; � ). We thus get:

M(r; � ) = m(�r; � ) =

8

<

:

2p(r; � ) =

2

a

p

2��

e

�

r

2

2a

2

�

; for r � 0

0 ; for r < 0

(4:1)

where we substituted p(r; � ) from Eq. (1.13). The two independent RW's intersect if the

maximum of the �rst walk r takes a higher value than the minimum of the second walk z

(which is z � � relative to the origin of the second walk) for any value of z. Therefore,

the intersection probability of two independent RW's, which is the probability of a loop

between independent sub-walks in one long RW is:

P

ind

=

Z

1

z=�1

�

Z

1

r=z

M(r; � )dr

�

�m(z ��; � )dz : (4:2)

By de�nition, for z > �, we get m(z � �; � ) = 0, and for z � 0 the inner integral

becomes unity, since the maximumof a RW is always greater than its origin. The resulting

probability (4.2) is thus:

P

ind

=

Z

0

z=�1

2p(z � �; � )dz +

Z

�

z=0

�

Z

1

r=z

2p(r; � )dr

�

2p(z ��; � )dz : (4:3)

Using the de�nitions (see [34]) of the normal density function

�(y) �

1

p

2�

e

�

y

2

2

; (4:4)

and of the normal distribution function

�(y) �

1

p

2�

Z

y

�1

e

�

�

2

2

d� ; (4:5)
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we rewrite Eq. (4.3) in the form (using the equality �(�y) = 1 � �(y) ):

P

ind

(�) = 2�(�)� 4

Z

0

y=��

�(y)�(y +�)dy ; (4:6)

where

� �

�

a

p

�

: (4:7)

This probability depends only on one parameter, which is the `normalized' distance (along

the position axis) between the origins of the walks. P

ind

(�) is depicted by the solid line

in Fig. 28.
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Figure 28: Probability of a loop between two independent RW's (which are sub-walks in one long RW)

of � steps of size a, distant � from each other along the position axis, as a function of � = �=(a

p

� ). The

analytical probability P

ind

(�) (line), can be represented by a (non-normalized) Gaussian, having width

1:274 (circles).

For small � we get:

P

ind

(�) ' 1�

�

2

�

: (4:8)

This result could be expected, since not having a loop when �! 0 means that one RW

must be always below its origin, while the other always above it. Because the probability

of a � steps RW never to return to its origin is equal to the probability that it reaches its

origin exactly at the � th step (see [34] and section 1.3.1), the probability of not having a
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loop is proportional to p(0; � )

2

, which grows like 1=(a

2

� ) ' �

2

. For large � we get:

P

ind

(�)!

4

p

�

1

�

e

��

2

=4

: (4:9)

For practical purposes P

ind

(�) can be represented by a (non-normalized) Gaussian (circles

in Fig. 28), having width of 1.274.

Let us consider an opposite extreme, where the RW's are neighboring (i.e. � = 0).

Such RW's do not intersect (apart from their meeting point) only when the �rst walk

reaches its maximal position for the �rst time at its last step, and the second walk is

always above its origin. The probability that a RW arrives at a position � for the �rst

time at the � th step is given by

�

�

p(�; � ) (see Eq. (1.18), where p(�; � ) is the probability

density of the position � at time � de�ned in Eq. (1.13) ), while the probability of a

RW to always be above its origin is

1

2

p(x = 0; � ) (see section 1.3.1 and [34]). Thus, the

probability of having no intersection (i.e. no loop) between neighboring RW's is:

P

no�loop

=

�

�

p(�; � )

1

2

p(x = 0; � ) =

�

4��

2

a

2

e

�

�

2

2a

2

�

: (4:10)

In the limit where � !1 and a! 0 while a

p

� is �xed, this probability vanishes, which

means that in the continuum limit there is always an intersection between neighboring

RW's. (Neighboring sub-walks in a chain always form a loop).

Let us consider the general case, of the probability of a loop between two (dependent)

sub-walks, that are part of one RW. The dependence is represented by stating that the

two sub-walks are separated by � sub-walks in the original RW (i.e. � = �� in Fig. 27).

In order to have a loop, three independent events must occur:

(1) The maximal coordinate reached by the �rst sub-walk must be greater or equal to

the minimal coordinate reached by the second sub-walk.

(2) There is a sub-RW of �� steps, that starts at the end position of the �rst sub-walk,

and ends at the origin of the second sub-walk.

(3) The minimal coordinate of the second sub-walk equals to some value z.

Integrating the probabilities of these events for all possible end-positions of the �rst sub-

walk and minimum positions of the second sub-walk, we get the probability of a loop

between two sub-walks, denoted by P

RW

(�;�). This derivation is detailed in appendix A.

Fig. 29 depicts P

RW

(�;�) as a function of � for several values of �. These probabilities
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Figure 29: P

RW

(�;�) vs. �. Di�erent lines for di�erent values of � (from top): 1, 3, 10, P

ind

(�).

The `+' are Gaussian �ts (The widths of the �ts are 1.96 for �=1; 1.50 for �=3; 1.34 for �=10; 1.27 for

P

ind

(�) ).

are qualitatively very similar to P

ind

(�), the independent-walks probability. We see that

P

RW

(�;� = 0) = 1, and it decreases in a Gaussian-like manner to zero with increasing

�. The probability of a loop between dependent sub-walks is always higher than the

probability of a loop between independent sub-walks, and it increases as the walks become

more dependent (i.e. smaller �). This is to be expected, since sub-walks that are closer

within the path of the original RW are also closer in their positions, and are more likely

to `intersect'.

It is evident from Fig. 29 that P

RW

(�;�) approaches P

ind

(�) with increasing �. This

is reasonable because two remote sub-walks (� � � or equivalently � � 1) become

independent RW's. To �rst order in 1=� we show in appendix A that:

P

RW

(�;�) = P

ind

(�) +

1

�

� f(�) ; (4:11)

where f is some function. Since the di�erence between P

RW

(�;�) and P

ind

(�) decays

only as 1=�, we cannot assume that for most values of �, the function P

RW

(�;�) is

approximated by P

ind

(�).

The probability of a loop between two sub-walks on a RW is de�ned by P

RW

(�;�),

according to the distance between the sub-walks along the original RW (�) and the nor-
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malized distance between the origins along the position axis (�). The de�nition of a loop

according to a probability (rather than a deterministic de�nition) is similar to the de�ni-

tion in section 3.3, where a loop between two steps in a RW was formed if the distance

between them � was smaller than a randomly generated number (from a Gaussian distri-

bution). The de�nition of a loop according to P

RW

(�;�), and the fact that each `e�ective

step' (or sub-walk) is actually a RW by itself, set the ground for a rescaling process of

the problem, which leads to a proof of the universality of the probability density of the

longest loop.

We rescale a long RW of discrete steps into a relatively short RW of Gaussian steps

in the following way: We divide the original RW into equal sub-walks, which are the

`e�ective steps' in the new scaled RW. Each such e�ective step includes � steps of the

original walk, and is by itself a RW already in the continuum limit (with step size a! 0

and � ! 1). Between any such two e�ective steps the probability of a loop is known

(de�ned by P

RW

(�;�) ), and the probability of having a loop of a given length can be

calculated. This calculation results in probability densities which are independent of

the number of steps N in the original RW and independent of the original step size a.

However, this calculation, apart from being very cumbersome, does not enable us to �nd

the probability density of the longest loop, since it disregards the dependencies between

the probabilities of loops. (As evident in section 3.2, the probability of having a loop

of length l and the probability of not having a loop longer than l are dependent. These

dependencies are the source of the singularities in p(l). ) P

RW

(�;�) is the probability

of having a loop between two e�ective steps, when nothing is known about the walk.

However, the fact that there is a loop (or that there are no loops) between two other steps

in the walk, changes this probability. In the following section we alter the scaling process

a little, in order to obtain the probability density of the longest loop.

4.1.2 Rescaling The Problem

In the previous section a loop between two sub-walks, which were the `e�ective steps'

of one long RW, was de�ned if the sub-walks intersected each other, i.e. if the maximal

coordinate of one sub-walk was higher than the minimal coordinate of the other. Following

this idea, we perform a rescaling process: We divide a given long RW with steps of �xed

length into m equal sub-walks, which are the `e�ective steps' of the rescaled walk. Each of

the m segments, still long enough to be an ideal Gaussian RW (the steps in each segment
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are of �xed length, but the probability of the positions is Gaussian), is assigned a minimum

value and a maximum value. These values are assigned to each segment according to the

mutual distribution of a minimum and a maximum of a RW, given its origin and end

position (the distribution is independent of the positions of steps `inside' the sub-walk

and on distributions of other segments). These minima and maxima therefore depend

only on the positions of the �rst and last steps of each sub-walk, and not on other details

of the original RW. A loop between such two segments is de�ned if they `intersect' each

other (i.e. if either the assigned minimum or maximum of one segment has a value lower

than the other segment's assigned maximum and higher than its assigned minimum).

This rescaling process is statistically exact: The probability of having a loop between any

two segments, when a loop is de�ned according to the randomly assigned minima and

maxima, is exactly the probability of having a loop (in the original RW), which starts

with a step in the �rst segment, and ends with a step in the second segment. When all

the loops in a speci�c scaled RW of m segments are obtained, the longest loop can be

found. The probability density of the longest loop is obtained by �nding the longest loop

for many independent RW's of m `e�ective steps'.

We note that the rescaling process does not result in an analytical expression for the

probability density of the longest loop, since the independent RW's of m `e�ective steps',

required in order to get a probability density, are generated numerically by MC simula-

tion. However, since the rescaling process is statistically exact, the generated probability

density of the longest loop is equal to the probability density of the longest loop obtained

numerically for discrete RW's in the N !1 limit [25, 26]. The equality of the probability

density for a RW of m `e�ective steps' to the N ! 1 probability density of a `discrete'

RW is exact up to the number of e�ective steps into which the initial RW was divided:

For instance, a loop between the 2nd segment and the 7th segment in a 20-segments RW

includes loops of lengths ranging from 4/20 to 6/20 of the chain's length, depending on

the exact location of the steps which generated the loop in these segments. (If the steps

generating the loop in the rescaled chain were located at the beginning of the 2nd segment

and at the end of the 7th segment in the original chain, then the loop length in the original

chain is almost 6/20 of the chain's length. Similarly a loop of length just over 4/20 of

the original chain's length can be generated between those segments.) In general, when

there is a loop between two given segments it is impossible to know (in the scaled chain)

where in the segments were the `original' steps which generated the loop. Therefore, for
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each loop in the rescaled chain there is an inherent inaccuracy of up to (plus or minus)

one segment.

The essence of the described scaling process is the assigning of a mutually generated

minimum and maximum to each sub-walk. We therefore explain in the remaining of this

section how to determine the minimum and maximum for each segment. The mutual

probability density of minimum and maximum of a RW, is closely related to the problem

of di�usion between two absorbing walls. When a di�usive particle does not hit the walls,

then its corresponding path is a RW, with a minimum greater than the position of one

wall and maximum lower than the position of the second wall. We therefore solve the

di�usion equation in the presence of absorbing walls, and relate the solution to the mutual

probability density of minimum and maximum of a RW. We solve the di�usion equation

in one dimension [32]:

a

2

2

@

2

p(x; t)

@x

2

=

@p(x; t)

@t

; (4:12)

for the probability density p(x; t) of a particle starting at the origin and taking steps of

size a to be at a position x after t steps. The solutions are of the form [48]:

p(x; t) =

X

k

A

k

sin(kx+ '

k

)e

�

1

2

k

2

a

2

t

: (4:13)

The boundary conditions of absorbing walls at �w and at W are:

p(x = �w; t) = p(x = W; t) = 0 : (4:14)

These conditions lead to the possible values of k and ':

k

n

x+ '

n

=

n�(w+ x)

w +W

; (4:15)

where n is any integer number. A

k

of Eq. (4.13) is obtained through the initial condition

p(x; t = 0) = �(x). The expansion of �(x) in a Fourier sine series in the interval (�w;W )

is given by [48]:

�(x) =

2

w +W

1

X

n=1

sin

�

n�w

w +W

�

sin

 

n�(w+ x)

w +W

!

: (4:16)

Comparing Eq. (4.16) to Eq. (4.13), after substituting there t = 0 and k

n

, '

n

from

Eq. (4.15), leads to an expression for A

k

. The resulting probability density (with respect

to x) p

w;W

(x; t) of a particle to be at a position x after t steps, when there are absorbing
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walls at �w and W (which is the mutual probability density of M(W; t) and m(�w; t) of

Eq. 4.1) is given by:

p

w;W

(x; t) =

2

w +W

1

X

n=1

sin

�

n�w

w +W

�

sin

 

n�(w + x)

w +W

!

e

�

1

2

(

n�

w+W

)

2

a

2

t

: (4:17)

We are interested in the conditional probability of a given RW not to hit absorbing walls

at �w and W (i.e. the probability of a given RW, of t steps of size a starting at the origin

and ending at x, to have a maximum lower than W , and a minimum higher than �w).

This conditional probability is equal to the derived probability density p

w;W

(x; t), divided

by the probability density p(x; t) of the RW to be at a position x after t steps. When

measuring all distances (i.e. w, W and x) in units of a

p

t, we get for the conditional

probability:

G(w;W ;x) =

2

p

2�

w +W

e

x

2

2

1

X

n=1

sin

�

n�w

w +W

�

sin

 

n�(w + x)

w +W

!

e

�

1

2

(

n�

w+W

)

2

: (4:18)

This function is the conditional probability of a given RW to have a minimumhigher than

�w and a maximum lower than W .
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Figure 30: G(w;W ;x = 1) vs. w and W . All lengths are measured in units of a

p

t. It is clear that for

W < max(x; 0) and for w < max(�x; 0) the function vanishes. For w;W !1, we get G! 1.
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We approximate the function G(w;W ;x) in order to facilitate the computational

process of obtaining its values (which otherwise requires in�nite summation): When

W � max(x; 1) the probability G(w;W ;x) becomes independent of W , since the proba-

bility of a RW from 0 to x not to hit a very far absorbing wall, is unity (i.e. G(w;W

1

�

max(x; 1);x) ' G(w;W

2

� max(x; 1);x) ). Similarly, G(w;W ;x) becomes independent

of w, when w� max(�x; 1). Therefore, it is su�cient to �nd G(w;W ;x) for values of w

and W where the value of (w+W ) is less or equal to several times the value of max(x; 1).

In these cases, due to the �n

2

numerator in the fraction in the exponent, only the �rst

few terms of the in�nite series of Eq. (4.18) are important. Fig. 30 depicts G(w;W ;x) as

a function of w and W , for a speci�c value of x = 1. It is clear that for W < x or for

W < 0 (and in the same manner for w < �x or w < 0) the probability is zero, since

the origin or end-position of the RW are beyond one of the walls. It is also evident that

G! 1 when W;w !1, since when the walls are `far enough', the RW never hits them.
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Figure 31: Mutual probability density of having a RW with a minimum �w and a maximum W :

g(w;W ;x = 1) vs. w and W . All lengths are measured in units of a

p

t. The function is de�ned only for

W > max(x; 0) and for �w < min(x; 0). For w;W ! 1 we get g ! 0. (Note the di�erent view angle

than Fig. 30).
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The derivative of G in respect to w and W :

g(w;W ;x) =

@

2

G(w;W ;x)

@w@W

; (4:19)

is the joint probability density (in respect to w and W ) of a given RW, ending at a

position x, to have a minimum �w and a maximumW . Fig. 31 depicts this probability

density. According to this probability density we randomly generate the minimum and

maximum of a RW, ending at a position x (again, all distances are measured relative to

the origin and are in a

p

t units). According to the behavior of G(w;W ;x) we can see

that the function g(w;W ;x) is de�ned only for W > max(x; 0) and for �w < min(x; 0),

where the origin (0) and the end position (x) of the RW are between the minimum and

the maximum. For w;W !1, we get g ! 0, since the walls are far, and the probability

to hit them vanishes. The process of randomly generating w and W from g(w;W ;x) is

detailed in appendix B.

The rescaling process described above constitutes a proof for the N�independence

(for large N 's) of the probability density of the longest loop, for discrete RW's: We can

perform this rescaling process to any given discrete (long) RW, and obtain the same

probability density of longest loop, independent of the number of steps N , and of the

step size a of the given RW. Since the scaling process is statistically exact, the probability

density of the longest loop, calculated from the rescaled RW, is equal to the probability

density calculated from the given long RW. We therefore conclude that the probability

density of the longest loop for discrete RW's is universal, and for large N 's it does not

depend on the number of steps N , and on the step size a of the RW.

4.2 The Continuous Case

In this section we show that the probability density of the longest loop for Gaussian RW's

for large N 's is independent of N and of �, the distance between steps de�ning a loop

(see section 3.1.1). Furthermore, we show that this probability density is equal to the

`universal' probability density obtained in the previous section for discrete RW's.

We perform the rescaling process, discussed in the previous section, on a given (long

enough) Gaussian RW. (We divide the Gaussian RW into m equal segments, randomly

generate a minimum and a maximum for each segment according to the probability den-

sity g(w;W ;x) of Eq. (4.19), and de�ne a loop if two such segments intersect each other.)

The emerging probability density of the longest loop is the `universal' probability density,
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obtained for the discrete RW's, because when performing the rescaling in the previous

section, we did not limit the RW to be discrete. However, we must show that the proba-

bility of a having a loop of certain (reduced) length between any two segments according

to this process, is equal to the probability of having a loop of the same length in the

original Gaussian RW (i.e. a loop which starts with a step in the �rst segment, and ends

with a step in the second segment). In order to show that the probabilities of a loop are

the same in the rescaled and original RW, we must prove two claims:

(1) The minimum and maximum, randomly assigned to each segment in the rescaled

RW according to g(w;W ;x), are valid (i.e. statistically exact) for Gaussian RW's.

(2) When two segments in the rescaled RW intersect (i.e. the minimum of one being

between the minimum and maximum of the other), a loop between them is formed

in the original Gaussian RW.

The �rst claim is valid since g(w;W ;x), the mutual probability density of the minimum

and maximum for discrete RW's, was calculated only based on the Gaussian statistics of

each sub-walk, and is therefore also the mutual probability density of the minimum and

maximum for Gaussian RW's.

We prove the second claim by considering a Gaussian RW of N steps of size a, where

a loop between two steps is de�ned if their positions are closer than an arbitrary � from

each other. We scale the positions of steps of the RW by a

p

N , the average distance

between the minimum and the maximum (the distance `spread' by the RW), making the

distance between the minimum and maximum of order unity. The N steps of the RW

are spread along the position axis between the minimum and the maximum of the RW,

according to some probability density q(x) (where

R

max

min

q(x)dx = 1). The average number

of steps of the RW at a certain position x within the (rescaled) interval de�ning a loop of

�x = �=(a

p

N) is given by:

Nq(x)�x = Nq(x)

�

a

p

N

�

p

N : (4:20)

The

p

N dependence means that the average number of RW steps within the �x interval

diverges with increasing N , for all the positions along the RW between the minimum and

the maximum, and for all � > 0. We see that in the largeN limit the entire range along the

position axis between the minimum and the maximum is covered by the `��ranges' (i.e.
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positions closer than �) of the steps in the Gaussian RW. Therefore, when the minimal

coordinate reached by one Gaussian sub-RW is between the minimum and maximum of

another Gaussian sub-RW, it is always closer than � to a position of a certain step in the

second sub-RW, and a loop is formed in the original Gaussian RW.

This second claim is also valid when a loop between two steps in a Gaussian RW is

de�ned by a probability, proportional to the distance between the steps divided by � (as

in section 3.3): As N increases, there is an in�nite number of steps closer than � to a

certain given step, each having a �nite probability to make a loop with the given step,

and therefore a loop is generated with unit probability.

We have thus proved the `universality' of the probability density of the longest loop:

We showed that the probability density of the longest loop (for large enough N 's) is

independent of N and is the same for both continuous RW's with a loop de�ned according

to an arbitrary � > 0, and for discrete RW's. In the notations of section 3, we have shown

that:

lim

N!1

p(l;N; �=a) = p(l) : (4:21)

4.3 The `Universal' Probability Density

We have seen that the probability density of the longest loop is `universal' for many classes

of RW's, in which the probability of the position of steps after a large number of steps

is Gaussian, and the entire region between the minimum and maximum of the RW is

`covered' by the distance de�ning a loop for each step. For all these classes of RW's the

scaling process of section 4.1.2 can be repeated, resulting in the same universal probability

density, independent of the details of the RW or of what is called a loop.

For continuous RW's we have lost through this scaling process the parameter � which

de�ned a loop. This was accomplished by assigning to each `e�ective step' a certain

width, randomly generated from a given probability, determined only by the position of

the next step in the RW. We also note that by the de�nition of an `e�ective step', which

is actually a RW in the general continuum limit, the discretization of the problem and the

distribution of a single step are lost (each sub-walk can represent a sequence of n steps of

size a, or kn steps size a=

p

k or a single step of size a

p

n in a Gaussian RW).
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4.3.1 Comparison to the Probability Density for Discrete Random Walks

In this section we explore the universal probability density emerging from the scaling

process, and compare it to the probability density of the longest loop for discrete RW's.

We show that as the number of sub-walks (to which the original RW was divided in order

to get the rescaled walk) increases, the universal probability density converges to the

N ! 1 limit of the probability density for discrete RW's. We denote the probability

density of having a longest loop of (reduced) length l = L=m, in a RW ofm `e�ective steps',

by f

m

(l). We have numerically obtained f

m

(l) for m=4, 10, 20, 50 and 100 (each from

10

5

independent random sequences of length m), and compared them to p(l), obtained by

MC simulation of 10

6

random sequences of N = 1000 discrete steps. These functions are

depicted in Fig. 32. For each value of m, the possible values of l are

1

m

;

2

m

; � � � ;

m�1

m

. The
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Figure 32: f

m

(l) vs. l for several values of m: 4 (star), 10 (plus), 20 (circle), 100 (dot) compared

with p(l) (line) as generated by MC simulation of 10

6

random sequences of length N = 1000. The rapid

convergence is evident (see text).

length of the longest loop is never zero, since neighboring sub-walks always make a loop

(as evident in section 4.1.1), and is never equal to m, since a loop from the �rst to the

last (mth) step is m � 1 segments long. It is evident from Fig. 32 that f

m

(l) converges

very quickly with increasing m to p(l) (even for m = 10 the function f

m

(l) �ts p(l) very

well for l < 0:8). We note that (for small values of m), there is no convergence in the
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l! 1 limit. We will come to this issue at the end of the section.

The convergence of f

m

(l) to p(l) is analyzed quantitatively at table 1, where for each

m we calculate the average (over all values of l) distance jf

m

(l)� p(l)j, compare it with

the average errors of f

m

(l) (errors resulting from the numeric process), and �nd the per-

centage of numeric data which �t the simulation value within their error bars.

10

Although

m 4 10 20 50 100

hjf

m

(l)� p(l)ji 0.12 0.038 0.029 0.032 0.031

hjf

m

(l)�p(l)ji

hnumeric errori

24 5.1 2.6 1.8 1.2

�t to simulation 0% 67% 79% 65% 78%

Table 1: Convergence measurements of f

m

(l) to p(l) for several numbers of `e�ective steps' m in the

rescaled RW. The measurements include the average (over l) distance between the functions, the distance

divided by the average error resulting from the numeric process, and the percentage of numeric values

which �t the simulation within their error limits.

some of these convergence measurements depend on the size of the sample (which is 10

5

independent random sequences of length m), their relative sizes for di�erent m's indicate

the fast convergence of f

m

(l) to p(l) with increasing m. We see that for m � 10, most

of the data �t the simulation within their error limits, and for m � 20 the errors due to

the numeric process become in order of the inaccuracy of the scaling process. As stated

in section 4.1.2 the inherent inaccuracies of the rescaling process are proportional to the

length of the segments (i.e. for m = 10, the inherent inaccuracy is of order of one tenth of

the chain). These diminishing inaccuracies explain the convergence of f

m

(l) to p(l) with

increasing m.

The probability density of the second longest loop (or third longest loop and so on)

can be calculated similarly to the probability density of the longest loop. In Fig. 33 the

probability density (from 10

5

random sequences) of the second longest loop of a rescaled

chain, having m = 20 segments, is compared to the same probability density of a discrete

RW of N = 1000 steps, obtained by MC simulation of 10

6

random sequences. These

probabilities are found to be (qualitatively) very similar. However, we cannot derive

the universality of the probability density of the second longest loop from exactly the

same considerations that led to the universality of the probability density of the longest

10

When we measure distance or �t to the simulation, we do not compare the numeric value to the

speci�c value of the simulation at a given point L, but rather to the average over

L�0:5

m

to

L+0:5

m

, which

is the most reasonable representation of the simulation with m steps.
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loop. The remaining part of the chain, after the longest loop is `erased', does not follow

the statistics of a classical RW (on average, it is more stretched than a RW having the

same length). Therefore, we cannot perform the scaling process of section 4.1.2 on the

remaining part of the chain, and derive the probability density of the second longest

loop in a universal way (the mutual probability density of the minimum and maximum

g(w;W ;x) is valid only for unbiased RW's). To prove the universality of the second

longest loop, the mutual probability of minimum and maximum should be generalized for

the statistics of RW's with erased longest loop, and shown to be independent of the single

step probabilities in this case. This proof is beyond the scope of our work.
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Figure 33: Probability density of the second longest loop of a rescaled chain of m=20 segments (�),

compared with the probability density of the second longest loop of a discrete RW with N=1000 steps

(line).

4.3.2 Analytical Properties in the Limit of Long Loops

In this section we investigate p(l) in the l! 1 limit, using the rescaled probability density.

An in�nitely long RW with N steps of �xed length a, is divided into m segments of �

steps. We are interested in f

m

(

m�1

m

), the probability of having a loop between the �rst

and the last segments. It was found in section 4.1.1 that when the last segment's origin

is shifted � from the origin of the RW, the probability of a loop between the �rst and
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last segments is P

RW

�

� = m� 2; � =

�

a

p

�

�

. In order to obtain the probability of a loop

between the �rst and last segments, P

RW

is integrated over all possible values of � with

the probability of the RW to reach � after m� 1 segments:

f

m

(

m� 1

m

) =

Z

1

�=�1

P

RW

 

m� 2;

�

a

p

�

!

p(�; (m� 1)� )d� : (4:22)

We therefore get:

f

m

(

m� 1

m

) =

1

p

2�

1

p

m� 1

� I(m) ; (4:23)

where

I(m) �

Z

1

�=�1

e

�

1

2

�

2

m�1

P

RW

(m� 2;�) d� : (4:24)

In the m!1 limit, Eqs. (4.23) and (4.24) become:

f

m

(

m� 1

m

) =

1

p

2�

1

p

m

� I ; (4:25)

where

I =

Z

1

�=�1

P

ind

(�)d� ' 3:2 : (4:26)

Substituting l

0

=

m�1

m

in Eq. (4.25), we get:

f

m

(l

0

) =

1

p

2�

q

1� l

0

� I : (4:27)

The behavior of p(l) in the l! 1 limit was obtained by Kantor and Erta�s [26]:

p(l! 1) =

A

q

�(1� l)

; (4:28)

where A is a numerically obtained constant (A = 1:011 � 0:001). This means that the

probability P

l

0

of a loop to be longer than l

0

is (in the l

0

! 1 limit):

P

l

0

=

Z

1

l=l

0

p(l! 1)dl =

2

p

�

A

q

1 � l

0

: (4:29)

We see (by comparing Eq. (4.27) to Eq. (4.29) ) that the l�dependence of f

m

(l) is in

accordance with the behavior of p(l) in the l ! 1 limit as derived by Kantor and Erta�s.

As indicated before, the probability f

m

(

m�1

m

) includes events of longest loops being both

shorter and longer than exactly m � 1 segments long. We can see that any loop longer

than

m�1

m

of the chain, begins at the �rst segment and ends at the last one (and therefore
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is `counted' by f

m

(

m�1

m

) ), and that all the loops that are between the �rst and the last

segments are longer than

m�2

m

of the chain. We therefore get for all m:

P

l

0

=

m�1

m

< f

m

(

m� 1

m

) < P

l

0

=

m�2

m

: (4:30)

In the m!1 ; l

0

! 1 limit we get by substituting the de�nitions of P

l

0

and f

m

(

m�1

m

) to

Eq. (4.30):

2

p

�

A

1

p

m

<

1

p

2�

1

p

m

I <

2

p

�

A

s

2

m

: (4:31)

Eq. (4.31) allows us to �nd analytical upper and lower limits to A:

0:80 < A < 1:13 ; (4:32)

which are satis�ed by the known numeric value of A = 1:011 obtained in [26].

The probability f

m

(

m�2

m

) can be calculated similarly to the calculation of f

m

(

m�1

m

). It

is the probability of having a loop between the �rst and the one-before-last segments or

second to last segments, while not having a loop between the �rst and last segments. The

calculation of f

m

(

m�2

m

) is very cumbersome, since these probabilities are dependent, but

is still possible, because the dependencies are known (they e�ect the possible values of

the minimum or maximum of the segments). In the same way, f

m

(

m�k

m

) can be calculated

(for every �nite k) without the numeric process of mutually generating minimum and

maximumto each segment. We attempted to �nd boundaries for A through the inequality:

f

m

(

m� k

m

) < p

 

m� (k + 1)

m

< l <

m� (k � 1)

m

!

=

2A

p

m�

(

p

k + 1�

p

k � 1) : (4:33)

We substituted the numerical values of f

m

(

m�k

m

), but the obtained boundaries for A were

not tighter than Eq. (4.32).

From the analytical value of f

m

(

m�1

m

) in the m ! 1 limit (Eqs. 4.25 and 4.26) we

can see that f

m

(l) does not converge to p(l) in the l! 1 limit:

f

m

(

m� 1

m

) ' 2:26

r

m

�

; for m!1 : (4:34)

We compare this value to the average of p(l) over values of l from

m�1�0:5

m

to

m�1+0:5

m

:

�

p(

m� 1

m

)

�

� m

Z
m�0:5

m

l=

m�1:5

m

p(l)dl =

s

2m

�

A(

p

3� 1) ' 1:04

r

m

�

: (4:35)
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The �rst equality is derived by substituting p(l) in the l ! 1 limit from Eq. (4.28) and

performing the integral, while the second is derived by substituting the numeric value of

A. We see that for the last step in the rescaled RW, f

m

(l) does not converge to p(l), but

rather to a value greater than twice the value of p(l). This non-convergence for the last

step, although clear from Fig. 32 for small values of m, is negligible for m!1, since it

concerns only 1=m of the chain.
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5 Conclusions and Discussion

We have investigated the size distribution of neutral segments in randomly charged poly-

mers with positive and negative charges (polyampholytes). According to the necklace

model [20, 21], in the ground state of polyampholytes, such segments compact into glob-

ules. Following Kantor and Erta�s [25, 26], we have mapped the problem of longest neutral

segments in polyampholytes to the problem of longest loops in one-dimensional random

walks, and applied numericmethods along with analytic estimates to study the probability

density of longest loops.

Since we believe that a polyampholyte's structure based on the necklace model has

a very low energy, we suggested a speci�c detailed necklace-type structure for polyam-

pholytes in the ground state, and numerically obtained its conformational and physical

properties (the number and sizes of `beads' and `strings' in the necklace, the spatial ex-

tent, the surface area and energy). This structure is compact when the chain is neutral

or weakly charged, and stretches as the chain becomes charged. We �nd that the ground

state structure has a very low energy, which depends on the number of monomers as the

energy of a single compact neutral globule. We �nd that the unrestricted average of the

linear size of the polymer in the ground state depends on the number of monomers as the

linear size of an ideal chain, with a critical exponent of � = 0:50 � 0:01. This �nding is

not in accordance with previous studies [21, 22], concluding that the average linear size

increases with N at least as fast as a self-avoiding walk (i.e. � > 0:6). We believe that it

is worthwhile to slightly alter the way in which compact globules are formed within our

model (by allowing weakly charged segments to compact into globules or by not forcing all

the neutral segments to completely compact), in order to try to reproduce this `swelling'

of the average chain.

We have de�ned the problem of the longest loop for continuous Gaussian random

walks, investigated the resulting probability densities, and showed numerically that they

converge with increasing number of steps in the random walk to the probability density

of the longest loop in random walks with steps of �xed length. These results motivated a

scaling process, which enabled us to obtain a probability density of the longest loop, which

is independent of the number of steps and of the nature of the single step of the random

walk. This probability density is identical for random walks with steps of �xed length and

for Gaussian random walks. We have presented numerical and analytical evidence that
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this probability density of the longest loop is universal for large classes of random walks.

Investigating this universal probability density, we have obtained some of its analytical

properties, in the limit of long loops. It may be possible to establish additional analytical

properties of the problem, through further investigation of this universal function. How-

ever, a full renormalization-group treatment of the problem within the derived scaling

process, in order to �nd a complete analytical solution to the problem, is expected to be

quite complicated. As opposed to a standard renormalization-group treatment [2, 49],

where a limiting point or exponent is searched, we are interested in the entire probability

density, which is actually a `limiting function'.

It may be possible to generalize the continuous de�nitions and the scaling process

leading to a universal probability density of the longest loop, in order to �nd the proba-

bility density of the second longest loop, or other related probabilities, that are relevant

to the understanding of the suggested ground state structure of polyampholytes. Finding

the probability density of the longest segment of a given charge (largest \Q-segment")

in the continuum limit, and proving its universality, is another possible generalization of

this study.
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A Probability of a Loop Between Random Walks

We present the derivation of the probability of an `intersection' between two RW's, that

are sub-walks of one RW with steps of �xed length. Such an intersection indicates that

a loop is formed between the two sub-walks (see Fig. 27 in section 4). The probability of

a loop is derived for an in�nitely long RW, where each sub-walk can be treated within

the Gaussian statistics. We use the notations of section 4 { the number of steps in each

sub-walk is � , the size of each step is a, there are �� steps of the RW between the two

sub-walks, the end position of the �rst sub-walk is x, and the second sub-walk begins at

a position � relative to the origin of the �rst sub-walk. Without loss of generality we can

suppose that � � 0. The two sub-walks form a loop when the maximal coordinate of the

�rst walk is greater or equal to the minimal coordinate of the second walk (labeled z).

As stated in section 4, in order to have a loop, three independent events, with proba-

bilities denoted by P

1

; P

2

and P

3

, must occur:

(1) The maximal coordinate of the �rst sub-walk must be greater or equal to the minimal

coordinate of the second sub-walk. The probability of a RW to reach a position x

and to have a maximum greater than z after � steps is given by [34]:

P

1

(x; z) =

(

p(2z � x; � ) ; for z � max(0; x)

p(x; � ) ; otherwise

; (A:1)

where p(x; � ) is the probability of a RW to be at position x after � steps (given by

Eq. 1.13).

(2) There is a RW between the end position of the �rst sub-walk and the origin of the

second sub-walk, i.e. a RW of �� steps and a total displacement of ��x. However,

the position � is �xed, and therefore this RW is restricted by the existence of a RW

of �� + � steps from the origin to �. This probability is given by

P

2

(�; x) =

p(� � x; �� )

p(�; (� + 1)� )

: (A:2)

(3) The minimum of the second sub-walk is equal to z, i.e � � z relative to its origin.

This probability is given by Eq. (4.1):

P

3

(�; z) = m(z � �; � ) =

(

2p(� � z; � ) ; for z � �

0 ; for z > �

: (A:3)
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In order to get the probability of a loop, denoted by P

RW

(�;�) (for given �; a; � and �,

when � � �=a

p

� ), we integrate P

1

� P

2

� P

3

over all values of z and x:

P

RW

(�;�) =

Z

1

z=�1

Z

1

x=�1

P

1

P

2

P

3

dzdx : (A:4)

From the de�nitions of P

1

and P

3

we see that if z < 0 then P

1

= p(x; � ), if 0 � z � �

then P

1

= p(x; � ) when x > z, and if z > � then P

3

vanishes. We therefore get:

P

RW

(�;�) =

Z

0

z=�1

P

3

(�; z)dz

Z

1

x=�1

p(x; � )P

2

(�; x)dx

+

Z

�

z=0

P

3

(�; z)

Z

z

x=�1

P

1

(x; z)P

2

(�; x)dxdz (A.5)

+

Z

�

z=0

P

3

(�; z)

Z

1

x=z

p(x; � )P

2

(�; x)dxdz :

We denote the �rst term in Eq. (A.5) by A(�;�), the second one B(�;�) and the third

C(�;�), and calculate each of them, substituting the de�nitions of P

1

; P

2

; P

3

and using

the de�nitions of the normal density function �(x) and the normal distribution function

�(x) of Eqs. (4.4) and (4.5):

A(�;�) =

Z

0

z=�1

P

3

(�; z)dz

Z

1

x=�1

p(x; � )

p(� � x; �� )

p(�; (� + 1)� )

dx

=

Z

0

z=�1

P

3

(�; z)dz = 2�

 

��

a

p

�

!

= 2�(��) : (A.6)

B(�;�)=

Z

�

z=0

P

3

(�; z)

s

�

� + 1

e

�

2

2a

2

(�+1)�

e

�

(2z��)

2

2a

2

(�+1)�

1

a

p

2��

Z

z

x=�1

e

�

1

2a

2

��

�

p

�+1x�

2�z+�

p

�+1

�

2

dxdz

=

Z

�

z=0

P

3

(�; z)e

4z(��z)

2a

2

(�+1)�

�

0

@

�

(� � 1)z + �

a

q

�(�+ 1)�

1

A

dz (A.7)

=

v

u

u

t

2(� + 1)

�(�+ 5)

1

�

�

2�

p

(�+1)(�+5

�

Z 2�

p

(�+1)(�+5)

�(�+3)�

p

(�+1)(�+5)

�(y)�

0

@

(1� �)y

q

�(�+ 5)

�

�+ 2

�+ 5

�

s

�+ 1

�

1

A

dy

C(�;�) =

Z

�

z=0

P

3

(�; z)�

0

@

�

a

q

��(�+ 1)

�

s

� + 1

�

z

a

p

�

1

A

dz

= 2

Z

0

y=��

�(y)�

0

@

�

s

�

�+ 1

��

s

�+ 1

�

y

1

A

dy : (A.8)
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Adding these three terms we get the probability of a loop:

P

RW

(�;�) = 2�(��) + 2

Z

0

y=��

�(y)�

0

@

�

s

�+ 1

�

y �

s

�

�+ 1

�

1

A

dy + (A.9)

v

u

u

t

2(� + 1)

�(�+ 5)

1

�

�

2�

p

(�+1)(�+5

�

Z

y=

2�

p

(�+1)(�+5)

y=�

(�+3)�

p

(�+1)(�+5)

�(y)�

0

@

(1� �)y

q

�(�+ 5)

�

� + 2

� + 5

�

s

�+ 1

�

1

A

dy :

(A.10)

We are interested in exploring P

RW

(�;�) in the �!1 limit, showing that it converges

to the probability of a loop between independent sub-walks, and �nding how fast is the

convergence. We therefore expand P

RW

(�;�) in powers of 1=� � �, neglecting terms of

order �

2

. We use the following approximations, which are valid when neglecting terms of

order of 1=�

2

:

q

�+1

�+5

= 1 �

2

�

��1

p

�(�+5)

= 1�

7

2�

e

2�

2

(�+1)(�+5)

= 1

�+2

�+5

= 1�

3

�

1

p

(�+1)(�+5)

=

1

�

q

�+1

�

= 1 +

1

2�

�+3

p

(�+1)(�+5)

= 1

q

�

�+1

= 1 �

1

2�

:

(A.11)

We expand B(�;�) and C(�;�) in powers of � (the expression A(�;�) is independent

of �) according to these approximations:

B(�;�) = 2(1 � 2�)

Z

2��

y=��

dy�(y)�

"

�y(1�

7�

2

)��(1�

5�

2

)

#

: (A:12)

The B(� ! 1;�) limit is obtained by substituting � = 0 in Eq. (A.12), while for the

�rst correction we take the derivative in respect to �, for � = 0.

dB(�;�)

d�

�

�

�

�

�

�=0

= 2

Z

0

y=��

��

7y

2

+

5�

2

�

�(y)�(�y��)

�

dy + 4� ��(0)�(��)

�4

Z

0

y=��

�(y)�(�y ��)dy (A.13)

=

3�

2

p

2

�

 

�

p

2

!"

2�

 

�

p

2

!

� 1

#

+

4�

p

2�

[1� �(�)]� 4�(�) + 2

+4

Z

0

y=��

�(y)�(y+�)dy :
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For C(�;�) we get, when neglecting terms of order of �

2

:

C(�;�) = 2

Z

0

y=��

�(y)�

 

�y ��+

�(�� y)

2

!

dy ; (A:14)

and

dC(�;�)

d�

�

�

�

�

�

�=0

= 2

Z

0

y=��

(�� y)�(y)�(�y��)dy =

3�

2

p

2

�

 

�

p

2

!"

2�

 

�

p

2

!

� 1

#

:

(A:15)

From substituting � = 0 in Eqs. (A.12) and (A.14) we get:

P

RW

(�!1;�) = A(�;�)+B(� = 0;�) + C(� = 0;�) (A.16)

= 2�(��) + 4

Z

0

y=��

�(y)�(�y��)dy

= 2�(�)� 4

Z

0

y=��

�(y)�(y +�)dy ;

which is exactly the expression for P

ind

(�), the probability of a loop between independent

sub-walks (see Eq. 4.6). For the �rst correction to P

ind

(�) we get:

f(�)�

dP

RW

(��)

d�

�

�

�

�

�

�=0

=

dB(�;�)

d�

�

�

�

�

�

�=0

+

dC(�;�)

d�

�

�

�

�

�

�=0

(A.17)

= 2 + 4

Z

0

��

�(y)�(y+�)dy +

4��(��)

p

2�

� 4�(�) +

3�

p

2

�

 

�

p

2

! "

2�

 

�

p

2

!

� 1

#

;

where to �rst order in 1=�:

P

RW

(�;�) = P

ind

(�) +

1

�

� f(�) : (A:18)

The �rst order correction function f(�) is depicted in Fig. 34, and is compared with its

numeric value for � = 50 (i.e.: [P

RW

(� = 50;�)� P

ind

(�)] � 50). We see that for typical

values of �, the di�erence between P

RW

(�;�) and P

ind

(�) falls o� only as 1=�, and we

therefore cannot assume that for most values of �, the function P

RW

(�;�) is approximated

by P

ind

(�).

78



0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

∆

F
irs

t o
rd

er
 c

or
re

ct
io

n

Figure 34: First order correction function to P
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B RandomGeneration of Extrema of RandomWalks

We present a numerical process of randomly generating a minimum(�w) and a maximum

(W ) of a RW, ending at a position x.

11

The 2-dimensional (2-d) joint probability density

of a given RW, ending at a position x, to have a minimum �w and a maximum W , is

given by g(w;W ;x), de�ned in Eq. (4.19). The problem of randomly generating w and W

from their 2-d joint probability density has two parts: First of all we must deal with the

general theoretical problem of generating random numbers according to a prede�ned 2-d

distribution, using only uniform distributions of random numbers (generated by standard

random number generators). Secondly, we must �nd methods to facilitate the numer-

ical process of generating the speci�c probability density g(w;W ;x), since the general

theoretical methods usually involve cumbersome inversions of the probability density.

One of the standard methods to generate a prede�ned (positive and normalized) prob-

ability density f(y) from a uniform probability density, is the transformation method [50]:

We �rst calculate F , the inde�nite integral of f :

F (y) =

Z

y

y

0

=�1

f(y

0

)dy

0

: (B:1)

The inverse function y(F ) takes a uniform density into a one distributed as f(y). In order

to use this method for a 2-d probability density, we express g(w;W ;x) as a product of

two 1-dimensional probability densities: f

1

(W ), the probability density of the maximum

of the RW, and f

2

(wjW

0

), the conditional probability density of the minimum w, when

the maximum is W

0

. These functions are given by:

f

1

(W ) =

Z

1

w

0

=0

g(w

0

;W ;x)dw

0

; (B:2)

f

2

(wjW

0

) = g(w;W ;xjW = W

0

) =

g(w;W

0

;x)

R

1

w

0

=0

g(w

0

;W

0

;x)dw

0

: (B:3)

We calculate I(W ), the integral of f

1

(W ), where W can take only positive values:

I(W ) =

Z

W

W

0

=0

f

1

(W

0

)dW

0

=

Z

W

W

0

=0

Z

1

w

0

=0

g(w

0

;W

0

;x)dw

0

dW

0

: (B:4)

Since g(w;W ;x) is the probability density of a given RW, ending at a position x, to have

a minimum position of �w and a maximum position of W , then I(W ) is the probability

11

Throughout this appendix we discuss RW's whose origins are at 0, and all the positions are measured

relative to the origin.
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that a given RW, ending at a position x, has a maximal coordinate lower than W . This

probability is equal to the probability density p(x; t;W ) of a RW after t steps never to

reach an absorbing wall at W (see Eq. 1.16), divided by p(x; t), the probability density of

a RW to be at a position x after t steps. When we measure all the positions in units of

a

p

t, where a is the step size of the RW and t is the number of steps of the walk (as was

done in section 4), we get:

I(W ) =

p(x; t;W )

p(x; t)

=

�

e

�

x

2

2

� e

�

(2W�x)

2

2

�

e

x

2

2

= 1 � e

�2W (W�x)

: (B:5)

Inverting I(W ) for W � 0 we get:

W (I) =

x

2

+

s

�

x

2

�

2

�

ln(1 � I)

2

: (B:6)

When I is a random number, generated from a uniform probability density between 0

and 1, then W of Eq. (B.6) is distributed according to f

1

(W ).

After W has been set to a given W

0

, we randomly generate w according to f

2

(wjW

0

).

We calculate J(w), the integral of f

2

for positive values of w:

J(w) =

Z

w

w

0

=0

f

2

(w

0

jW

0

)dw

0

=

R

w

w

0

=0

g(w

0

;W

0

;x)dw

0

R

1

w

0

=0

g(w

0

;W

0

;x)dw

0

=

g

2

(w;W

0

;x)

g

2

(w =1;W

0

;x)

; (B:7)

where

g

2

(w;W ;x) �

Z

w

w

0

=0

g(w

0

;W ;x)dw

0

=

@G(w;W ;x)

@W

; (B:8)

and G(w;W ;x) is the probability of a given RW ending at a position x to be always above

�w and below W (see Eq. 4.18). The expression g

2

(w;W ;x)�W is the probability of a

given RW, ending at a position x, to have a maximum between W and W + �W and a

minimum higher than �w. Fig. 35 depicts g

2

(w;W ;x) as a function of w and W , for a

speci�c value of x = 1. For W < x or w < 0 the function vanishes, since the probability

of a maximum lower than the end-position or a minimum higher than the origin is zero.

The function g

2

(w;W ;x) decreases to zero with increasing W , since a RW is not likely to

reach a maximumvalue which is much greater than its given origin and end-position. The

function g

2

(w;W ;x) becomes independent of w for large values of w, because in this limit

the requirement to have a minimum higher than �w does not a�ect the probability. This

limiting probability density g

2

(w =1;W ;x) can be calculated from I(W ) (see Eqs. B.4,

B.7 and B.8):

g

2

(w =1;W ;x) =

@I(W )

@W

= 2(2W � x)e

�2W (W�x)

: (B:9)
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Figure 35: g

2

(w;W ;x) vs. w and W . The function g

2

(w;W ;x) is the probability density of a given

RW ending at a position x to have a maximum value of W and a minimum higher than �w.

In order to randomly generate w according to f

2

(wjW

0

), we numerically invert g

2

(w;W

0

;x)

for any given W

0

and x: Given W

0

and x, we calculate g

2

(w;W

0

;x), divide it by g

2

(w =

1;W

0

;x) and �nd the value of w for which this division equals (or is closest to) J , a

random number, generated from a uniform probability density between 0 and 1. The w's

generated from this process are distributed according to f

2

(wjW

0

).

Through the procedure detailed above, we can generate, for any given value of x, the

minimum (�w) and the maximum (W ) of a RW ending at a position x, according to their

mutual probability density g(w;W ;x).
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