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Abstract

We study a particle moving within a one dimensional potential �eld composed of a set of

equally spaced oscillating potential barriers. The velocity and the height of the barriers

change periodically with time. We follow the motion of a particle which goes through a

set of collisions with the barriers, thus changing its velocity. This motion is asymmetric

and a net directed motion is detected in the system. The amplitude of the barrier's height

is chosen to be the control parameter of the problem.

A 2-dimensional map describes the dynamics. We prove that the map is a one-to-one

area-preserving transformation of the phase space into itself. Iterations of the map are

performed and the corresponding \return-maps" are constructed to give pictures of the

related phase spaces, which, in turn, are used to study the features of the particle's motion.

Two types of motion in phase space are revealed, depending on the initial conditions: A

stochastic motion which covers ergodicaly a \stochastic sea", and a regular motion over

closed curves, located inside chains of islands which are embedded in the stochastic sea.

A combination of analytical and numerical studies shows that the asymmetry of the

dynamics is expressed in two ways: A di�erence between the maximal speeds which the

particle can gain in both directions and the existence of asymmetrical chains of islands in

the phase space which correspond to a highly e�cient regular motion.

The appearance of these chains of islands is also related to the phenomenon of pseudo

KAM boundaries, which we discuss.
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1 General Introduction

1.1 Chaotic Systems

The evolution of many physical systems is given in terms of di�erential or di�erence

equations, and is thus completely determined by initial conditions. This kind of behavior is

called deterministic. For many years, it was believed that \simple" equations, for example,

�rst or second order di�erential equations consisting of smooth well de�ned functions, lead

to \simple", regular outcomes. However, in 1892, the French mathematician, H. Poincar�e

[1], showed that some systems, whose time evolution is governed by Hamilton's equations,

may exhibit a rather complicated, nowadays called chaotic, behavior. Following Poincar�e,

many scientists investigated this kind of dynamics. Yet, it took 70 to realize that chaos

can be found in real physical systems. It was the meteorologist E.N. Lorenz [2] who

found that even a simple set of three coupled, �rst order, nonlinear equations, can lead

to irregular dynamics. Lorenz found that the solutions resulting from very close initial

conditions, diverge rapidly with time, and soon lose any similarity. This feature is called

\sensitive dependence on initial conditions".

The same features that characterize Lorenz' system (irregular behavior and fast di-

vergence of nearby trajectories) were detected since then in many other systems. Deter-

ministic nonlinear physical systems whose dependence on initial conditions is sensitive,

and which behave in an irregular complicated way are called chaotic. The origin of chaos

is the nonlinearity of the system. The sensitive dependence on initial conditions can be

quanti�ed by means of characteristic exponents which measure the rate of divergence of

nearby trajectories. It makes the prediction of long time behavior impossible in chaotic

systems, since both the determination of initial conditions and numerical calculations of

their evolution in time, have a �nite precision, and errors increase exponentially fast.

The second characteristic of chaotic behavior, namely the irregularity of the dynamics,

is however more di�cult to de�ne. There are several ways, both theoretical and experi-

mental, to distinguish between regular and irregular behavior in physical systems and, in

particular, to detect the transition between them (see [3], chapter 1).

In the last two decades, chaos has been found in a wide variety of systems in many

�elds of science like physics, chemistry, biology, economy, etc. The fast progress in the

research of chaotic systems in recent years can be mainly attributed to the availability of

more powerful computers and the development of better experimental techniques. Parallel
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to that, new theoretical results have been established to provide some universal concepts

in this interdisciplinary subject called chaos.

1.2 Motion Recti�cation

According to the second law of thermodynamics, heat cannot be converted into work in

an isothermal system [4]. A particle placed in a thermal bath will di�use randomly in the

system without displaying any net drift velocity. Even if an asymmetric, but homogeneous

on the macroscopic scale, potential is applied in the system, a directed motion will not

be induced. Consider a particle di�using in an asymmetric potential depicted in Fig. 1,

the particle will spend most of the time near one of the minima. Occasionally, it will

hop from one well to its neighbor. However, in the absence of large scale gradients, an

equilibrium situation will be achieved, with no net currents of particles. Similar behavior

can be expected in a random potential.

V(x)

x

Figure 1: An asymmetric, but homogeneous on the large scale, potential.

Recently it has been shown, both theoretically and experimentally, that the application

of an external time dependent force can induce a net directed motion in the system,

even if the applied force is an oscillatory force of zero time average [5]{[12]. The basic

idea is that since the potential well is asymmetric, the same force, applied for the same

interval of time, may \pull" the particle out of the well in one direction, but not in the

other. Directed motion can also be induced without the application of any external force,

provided the thermal noise is colored, i.e., time correlated (it can still however have zero

time average), or if the asymmetric potential is switched on and o�. Such recti�cation
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processes are interesting because they can lead to the generation of microscopic pumping

and separation techniques in which particle currents are induced with some characteristic

velocity. They also may provide some insight into the mechanism of protein motors.

1

1.3 Deterministic Dynamics vs. Statistical Kinetics

Most of the papers mentioned above, deal with systems out of equilibrium. The kinetics of

these systems are handled using statistical-mechanical \tools" like the Langevin equations

or their related Fokker-Planck equations, which do not describe the actual motion of the

particle, but refer to the distribution density in real or phase space. On the other hand,

there are some cases when one is able to write the particle's equations of motion. In these

cases the dynamics are deterministic. They might however be chaotic and therefore we

are usually not interested in the description of some speci�c trajectory of the particle, but

in the general properties common to a large group of trajectories.

This is the subject of this work: We will investigate the motion of a particle in an

asymmetric potential which is periodic both in time and space. Unlike other papers, we

will deal with the deterministic case. The stochastic deterministic dynamical system will

be introduced in the next chapter.

2

We will try to detect the existence of a drift velocity

(which we hope to �nd independent of initial conditions), and show its dependence on the

parameters which characterize the periodic potential. The framework of our discussion is

therefore the �eld of chaotic deterministic dynamics.

It should be stressed that the choice between deterministic and statistical approaches,

is not a matter of a choice, but should be derived from the problem in question. If, for

example, the particle is di�using due to interaction with thermal noise, then a statistical

approach is applied. On the other hand, if thermal noise is negligible in comparison to

external forces, then a deterministic approach can be used.

1

Protein motors are molecules, such as kinesins and dynesins, which participate in transport processes

inside eukariotic cells (the cells in all multicellular organisms). These motors \walk" on �laments made of

polymerized proteins, such as tubulin and actin, which serve as the asymmetric potential in this problem.

Time correlations might arise from the statistics of the \attachments" of ATP (Adenosine Triposphate),

the source of chemical energy, to the motors.

2

The terms stochastic and chaotic are used interchangeably to describe the same kind of dynamics.

The term \chaotic" is commonly used to describe the motion in dissipative systems, while the term

\stochastic" usually refers to non-dissipative (Hamiltonian) systems.
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2 Introduction of the Dynamical System

2.1 What is a Map?

The dynamical system under investigation in this work will be introduced in the next

section. The dynamics of deterministic systems can be described in terms of a set of

N discrete equations of motion: ~z

n+1

= T (~z

n

), where ~z

n

is the N -dimensional vector

~z =

0

B

B

@

�

1

.

.

.

�

N

1

C

C

A

at time t = n� and T is the time-evolution operator. Such a system

of equations of motion, which gives ~z

n+1

in terms of ~z

n

is called a map (or a mapping

or an iterative map). Describing the evolution of a dynamical system using a map has

few advantages over the description through a set of di�erential equations:

_

~z = f(~z).

Maps are usually easier to compute than di�erential equations which require the use of

numerical schemes for their solution. The use of numerical schemes (which are mappings

themselves), might give rise to problems of instability. The instability is frequently related

to the use of certain schemes and does not represent features of the motion itself. Such

\technical problems" do not appear while using iterative maps.

1

Another great advantage

of the use of maps comes from the relative simplicity of the description of the motion they

yield. One usually �nds it easier to visualize the trajectory fT

n

(~z

0

) ; n integerg, composed

of a set of discrete points, than following the trajectory ~z(t), which is a continuous curve

in the phase space.

The continuous description ~z(t) can be converted into a discrete one by using the

method of Poincar�e sections. Following ~z(t) in the N -dimensional phase space, one can

look at the intersections of the trajectory with the surface �

N

= const (�

N

is the N -th

component of the vector ~z). These intersections construct a return (Poincar�e) map which

gives an alternative discrete description of the motion. Moreover, we have thus reduced

the dimensionality of the problem from N to N �1. For example, consider a Hamiltonian

system, i.e., such that the equations of motion are the Hamilton's equations. As the phase

space set of coordinates one usually chooses the N coordinates of the position q

1

: : : q

N

and

the N conjugate coordinates of momenta p

1

: : : p

N

. Another frequently used set consists

1

A trajectory computed using an iterative map can also deviate from the \real" trajectory because of

the �nite precision of numerical computations. This deviation can be (exponentially) ampli�ed in time.

However, this then simply re
ects the chaotic unstable nature of the motion. By \technical problems" we

refer to the instability of the numerical scheme itself, which is an additional problem in solving numerically

di�erential equations.
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of the N coordinates of action I

1

: : : I

N

and the N conjugate angles �

1

: : :�

N

.

2

Energy

conservation and the use of Poincar�e section bring us into a discrete problem of motion

in a 2N � 2 dimensional phase space. It is convenient to visualize the obtained trajectory

by projecting this 2(N � 1)-dimensional phase space on the (N � 1) 2-dimensional planes

((q

i

; p

i

) ; 1 � i � N � 1).

It should be noted that the time itself can be one of the coordinates of the phase space.

The set of equations of motion

_

~z = f(~z; t) (~z

n+1

= T (~z

n

; t

n

) in the discrete case) can be

written in the form

_

~w = f(~w), where ~w =

0

B

B

B

B

@

�

1

.

.

.

�

N

t

1

C

C

C

C

A

and the \new" time is �(t) = t. Thus,

by extending the phase space by an additional degree of freedom, one replaces a set of

equations including time dependent functions, by a set of equations in which the functions

are time independent. (Dealing with Hamiltonian systems, one extends the phase space

by adding a pair of (conjugate) coordinates: q

N+1

= t ; p

N+1

= �H, where H is the

Hamiltonian.) We should not therefore be surprised to �nd systems in which the time is

one of the coordinates of the phase space, as is the one discussed in this work.

2.2 The Potential Field and the Dynamics

We now introduce the problem under investigation in this work and explain why are

the dynamics described in this problem asymmetric. We consider a particle moving in a

potential �eld. This potential �eld is periodic both in time and space: U(x+mL; t+ l� ) =

U(x; t), where m and l are integers. It is composed of an in�nite set of equally spaced

potential barriers of an in�nitesimal width each, described by:

U(x; t) = H(t)

+1

X

m=�1

�

x�~x(t);mL

;

where � is the Kronecker delta. The barriers oscillate and the quantity ~x(t) describes the

motion of the m-th (m = 0;�1; : : :) barrier around the point x = mL (L is the spacing

between the barriers). This motion is periodic in time with period � , i.e., ~x(t) = x

b

f(t),

2

~q and ~p, or any other set of 2N coordinates of Hamiltonian system, are said to be conjugate if they

satisfy: _p

i

= �

@H

@q

i

and _q

i

=

@H

@p

i

, where H is the Hamiltonian.
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where f(t+ � ) = f(t); f is normalized so that maxjf(t)j = 1 and x

b

is the amplitude of

the motion which is much smaller than L. The velocity of the barrier is:

v(t) =

_

~x(t) = v

b

g(t); (2:1)

where, again, g(t+ � ) = g(t), maxjg(t)j = 1 and v

b

is the maximal velocity of the barrier.

The height of the barrier, H(t), which is also periodic in time with period � , will be given

by:

H(t) = H

0

[1 + g(t)]: (2:2)

As a periodic time dependent function we choose

g(t) = sin(2�t); (2:3)

which implies: f(t) = � cos(2�t), v

b

= 2�x

b

and � = 1. We shall use dimensionless units

throughout this work. The period of the barriers' motion, � = 1, will serve as the basic

time unit. As an arbitrary selection of the length unit we set x

b

=

1

4�

. Fig. 2 depicts

schematically the potential �eld.

tH(t)=H 0 π[1+sin(2

L

)]

~
 bx(t)=-x )tcos(2π

t=3/4
. . .. . .

t=1/2

t=1/4

t=0

Figure 2: The potential �eld discussed in this work. It consists of a set of equally spaced potential

barriers of zero width. The distance between neighboring barriers is L. The periodic function ~x(t) =

�x

b

cos(2�t) describes the position of the m-th barrier (m = 0;�1; : : :) around its mean position x = mL

and H(t) = H

0

[1 + sin(2�t)] describes the barriers' height. The ellipses depict the height of the barriers

as a function of their spatial position.

A particle moves freely in this potential �eld between the barriers, occasionally collid-

ing with one of them. It can either cross or be re
ected from the barrier. This depends

on (1) the height of the barrier, H(t), at the moment of impact, (2) the velocity of the

barrier, v(t), at the moment of impact and (3) the velocity of the particle, V . In the refer-

ence frame of the moving barrier, the particle hits the non-moving barrier with a velocity

6



V � v(t). The condition for crossing the barrier is that the kinetic energy of the particle

in the reference frame of the barrier exceeds the height of the potential barrier. Taking

the mass of the particle m = 1 (the basic mass unit), this condition can be expressed

as follows: jV � v(t)j >

q

2H(t) for crossing the barrier, while jV � v(t)j �

q

2H(t) for

being re
ected from it. Since the velocity of the barriers is a periodic function with period

� = 1, it is convenient to talk about the time t, taken modulus 1 and called the phase.

It should be noted that the velocities of both the particle and the barrier are positive

(negative) when the motion is from left to right (right to left). At the moment of impact

V > v(t) (V < v(t)); using Eqs. (2.1){(2.3), the condition for crossing the barrier is given

by

jV j >

8

<

:

q

2H

0

[1 + sin(2�t)]� v

b

sin(2�t) for 0 < t �

1

2

;

q

2H

0

[1� sin(2�(t�

1

2

))]� v

b

sin(2�(t�

1

2

)) for

1

2

< t � 1;

(2:4)

where the upper (lower) sign corresponds to situations of collision at a barrier from the

left (right).

From Eq. (2.4), one can easily see the source of asymmetry between the two directions.

For 0 < t <

1

2

, when the barrier is moving from left to right (v(t) > 0) the height of the

barrier satis�es H

0

< H(t) < 2H

0

. For

1

2

< t < 1, when the barrier is moving from right

to left (v(t) < 0), with the speed as at t�

1

2

, the height of the barrier is 0 < H(t) < H

0

.

The motion of the barriers in a certain direction at each of the two halves of a period

breaks the symmetry, since the condition for crossing a barrier depends on the relative

velocity between the particle and the barrier. However, since v(t) = �v(t�

1

2

), there is

an \inverse" symmetry between the two halves. It is the di�erence between the heights

of the barriers in the two halves, that is, the fact that H(t) 6= H(t�

1

2

), which breaks this

symmetry and causes the asymmetry of the dynamics (see Fig. 3).

Let V

n

be the velocity of the particle before the n-th impact which occurs at t = t

n

. If

the particle crosses the barrier, then its velocity is not changed. Otherwise, it is re
ected

as if it had collided elastically with a rigid wall. In the reference frame of the moving

barrier the particle's velocity before the impact is V

n

� v(t

n

) and after the impact it

becomes �V

n

+ v(t

n

). Therefore, in the rest reference frame the particle's new velocity is

given by

V

n+1

= �V

n

+ 2v(t

n

): (2:5)
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-V

H(t+0.5)

(b)

v(t+0.5) = -v(t) H(t)

(a)

v(t)

V

Figure 3: The symmetry breaking in the system. A particle having velocity V hits a barrier at t (a),

and a particle having velocity �V hits a barrier at t +

1

2

(b). The relative speeds in both cases are the

same, while the barriers' heights di�er.

2.3 The Associated Mapping

The process described here is a deterministic one since V

n+1

and t

n+1

can, in principle,

be calculated from V

n

and t

n

. In fact, we already explained how to calculate V

n+1

in

the previous section. Calculating t

n+1

, the moment of the next collision is a much more

di�cult task. The di�culties originate from the fact that both the particle and the

barriers move, and one has to �nd when they meet each other. An additional problem is

the fact that a particle may collide a few times with the same barrier before moving to

one of its neighbors. One has to decide whether the particle will re-collide with the same

barrier or not. The equation for t

n

is, thus, a rather complicated one, and in fact cannot

be solved analytically for the sinusoidal wall velocity (Eq. (2.3)).

A simpli�cation can be achieved in the following case. Let us assume that L, the

distance between neighboring barriers is much larger than x

b

, the amplitude of the barriers'

motion. Suppose also that the velocity V of the particle is much larger than v

b

, the

maximal barriers' velocity. Since V � v

b

, the particle performs only a single collision

with the same barrier each time. We can assume that the distance which a particle

8



travels between two consecutive collisions is exactly L. Since L� x

b

, the calculated t

n+1

would not be considerably modi�ed by this approximation. Making this approximation,

the \simpli�ed" map can be easily written:

V

n+1

=

8

<

:

V

n

for jV

n

� v

b

sin(2�t

n

)j >

q

2H

0

[1 + sin(2�t

n

)]

�sign(V

n

)jV

n

� 2v

b

sin(2�t

n

)j for jV

n

� v

b

sin(2�t

n

)j �

q

2H

0

[1 + sin(2�t

n

)];

(2:6:a)

t

n+1

= t

n

+

L

jV

n+1

j

(mod 1): (2:6:b)

Eq. (2.6.a) describes the two possible scenarios of crossing (the velocity is not changed)

and re
ection (the velocity is changed according to Eq. (2.5)). Note that for the case of

re
ection, Eq. (2.6.a) might di�er from Eq. (2.5) in the narrow region of low velocities

jV j < 2v

b

. We use this slightly modi�ed form, in which the velocity changes its sign after

each re
ection, in order to prohibit situations in which the particle collides with a barrier,

changes its velocity but continues to propagate slowly in the same direction and re-collides

with the same barrier. The assumption that the particle collides only once with a barrier

is valid, however, only when jV j � v

b

and therefore, when jV j is of the order of v

b

, the

simpli�ed map becomes a bad approximation for the real dynamics. (The di�culties

caused by this approximation are discussed later in this work.) Eq. (2.6.b) de�nes t

n+1

under the assumption that the particle travels a distance L between two barriers.

3

Throughout this work we set L = 100 (L � x

b

=

1

4�

) in our numerical simulations.

The amplitude of the barriers' velocity is v

b

= 2�x

b

=

1

2

, which means that the maximum

change of velocity at an impact is 2v

b

= 1. The mean barrier's height, H

0

, (which is

also the amplitude of the change of the height) will serve as the control parameter in the

problem. We shall examine how the nature of the dynamics changes with H

0

.

3

The \exact" problem, in which the actual motion of the barriers is considered, was treated in Refs.

[13]{[15] for a piecewise linear wall velocity, and in Ref. [15] for a parabolic wall velocity. These references

deal with the special case of the problem, called the Fermi accelerator, which is discussed in the next

chapter.
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3 The Fermi Accelerator

3.1 The Fermi Map

In 1949 Fermi [16] suggested an explanation for the mechanism of cosmic ray acceleration

via collisions against moving irregularities of the interstellar magnetic �eld. He modeled

this mechanism by considering the dynamics of a particle colliding with moving re
ecting

obstacles of very large mass. Ulam [17] introduced some simple problems involving the

Fermi acceleration mechanism. The simplest problem is of a ball bouncing between two,

in�nitely heavy, oscillating walls. This problem is essentially the special case H

0

= 1

of our problem, since the particle is trapped between two, in�nitely high, barriers, being

re
ected from the one to the other. The map (2.6) for this special case reduces to:

V

n+1

= �sign(V

n

) � jV

n

� 2v

b

sin(2�t

n

)j; (3:1:a)

t

n+1

= t

n

+

L

jV

n+1

j

(mod 1): (3:1:b)

We shall describe now the features of the Fermi accelerator map by following the

description of Lieberman and Lichtenberg ([13],[18]).

1

The Fermi map (3.1) is a special

symmetric case of the problem to which we shall compare our results. While describing

its features in the following sections, we introduce the \language" in use, dealing with

dynamical maps. The terms introduced below, frequently appear in the discussion in any

dynamical system.

3.2 Features of the Fermi Map

Fig. 4 shows a picture of the phase space V � t of the map (3.1) which is a one-to-one

transformation of this phase space into itself. We follow the trajectory f(V

n

; t

n

)g of a

particle, initially given low velocity V

0

and random phase t

0

. While moving, the particle

stochastically explores the available phase space and the picture of the phase space is

1

References [13]{[15],[18] deal with a slightly di�erent problem of a ball bouncing between a �xed and

oscillating wall, i.e., only one of the walls imparts momentum to the particle. However, as appears from

numerical simulations, this di�erence does not change signi�cantly the features of the problem. Anyhow,

comparing the results introduced here and in these references, one should consider this di�erence in the

de�nitions of the problems.
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constructed by plotting the trajectory's points. The motion within the available phase

space is ergodic (see chapter 2 in Ref. [19] for de�nitions and basic properties of ergodic

systems). This means that the same picture would arise if we had started at (almost)

any other point in the available phase space 
. The equilibrium invariant distribution is

de�ned as the space probability, P (~x) = P (V; t), which is:

1. Invariant with respect to the map T (~x), i.e.,

P (~x)kd~xk = P (T (~x))kT (d~x)k: (3:2)

2. Having the space average over 
 equals to the time average of the motion:

Z

~x2


f(~x)P (~x)d(~x) = lim

N!1

1

N

N

X

i=1

f(T

i

(~x

0

)) (3:3)

(f is some observable function in 
), for almost any ~x

0

2 
.

Numerically, P (~x) can be computed by allowing the trajectory to \wander through" 


for many iterations and counting the number of times it passes through a small volume

element surrounding ~x. Denoting by �

~x

the in�nitesimal volume element containing ~x,

P (~x) is given by

P (~x) = lim

�

~x

!0

lim

N!1

1

N�

~x

N

X

i=1

Z

�

~x

�(T

i

(~x

0

)� ~z)d~z: (3:4)

Eqs. (3.1) form an area preserving map which means that the area of a phase space

element bounded by a closed curve is conserved under repeated iterations.

2

The general

2-dimensional map T

 

I

n

�

n

!

=

 

I

n+1

�

n+1

!

is area preserving if J, the Jacobian matrix of

the map satis�es:

jdet(J)j =

�

�

�

�

�

det

 

@I

n+1

@I

n

@I

n+1

@�

n

@�

n+1

@I

n

@�

n+1

@�

n

!

�

�

�

�

�

= 1: (3:5)

2

In general, conservative systems are those in which the volume of an element of the phase space is

conserved in time, i.e., the 
ow in the phase space is incompressible. Hamiltonian systems are a class of

conservative systems. The phase space coordinates are the canonical momenta p

i

and coordinates q

i

and

the volume conservation property follows immediately from the Liouvile theorem:

div

~

j =

X

i

(

@ _p

i

@p

i

+

@ _q

i

@q

i

) =

X

i

(

@

2

H

@p

i

@q

i

�

@

2

H

@q

i

@p

i

) = 0:

If the coordinates of the phase space are non-canonical then the measure is the conserved quantity.
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The variables I and � are then said to be canonical variables.

3

The map (3.1) satis�es this

condition and is therefore an area preserving one. Hence, we can set kd(~x)k = kd(T (~x))k

in Eq. (3.2), which means that P (~x) = P (T (~x)) = const. We thus conclude that the

equilibrium invariant distribution is constant over the available phase space 
.

0.0 0.2 0.4 0.6 0.8 1.0
t (mod 1)

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

V

bU

sU

Figure 4: The available phase space 
 of the Fermi map (3.1) with L = 100 and v

b

= 0:5. The picture

was obtained by iterating the map 1:5 � 10

7

times and plotting the points f(V

n

; t

n

)g of the trajectory.

(Only every 199th iteration was plotted.)

In Fig. 4 we observe that the phase space 
 consists of three velocities regions:

1. The region of low velocities (jV j < U

s

) in which the motion is stochastic over

(almost) the entire region.

2. The region of intermediate velocities (U

s

< jV j < U

b

) in which the motion is stochas-

tic only over part of the region. There exist some islands, embedded within the

stochastic sea, which are inaccessible from outside. The motion in these islands

(possible only if the trajectory was initially placed there) is regular (non stochastic)

over elliptic-like curves (see next section).

3

We use I and � as the canonical variables of the map to resemble action-angle variables, which

are frequently chosen as a set of conjugate coordinates in the phase space of Hamiltonian systems. For

Hamiltonian systems conjugate variables are also canonical (Liouvile Theorem). Here, I and � serve as

a notation for canonical coordinates of the general 2-dimensional map and do not necessarily represent

action-angle variables.
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3. The region of high velocities (jV j > U

b

). This region is inaccessible from below.

The motion in this region (again, possible only if the trajectory was initially placed

there) is mainly regular with only small isolated \bands" of stochastic motion.

We denote these regions by region (1), region (2) and region (3) respectively.

Fig. 5 shows the equilibrium invariant distribution integrated over time:

~

P (V ) =

R

1

0

P (V; t) dt. This quantity is the probability density of �nding the particle with velocity

V between two collisions. It was numerically computed by dividing the phase space into

intervals of �V = 0:1, iterating the map (3.1) N = 2�10

8

times and counting the number of

times the trajectory was found in each of the intervals. One can observe how

~

P (V ) re
ects

the structure of the phase space. The uniform probability density at low jV j represents

region (1). The dips appearing at higher jV j indicate the existence of inaccessible islands

in region (2) (which clearly reduce the value of

~

P (V ) =

R

1

0

P (V; t) dt). In region (3), the

probability density vanishes since the trajectory does not enter there. Notice that the

picture shows

~

P (V ) only for V > 0, however, from symmetry considerations (see section

3.4) the same picture is obtained for V < 0. Integrating

~

P (V ), shown in Fig. 5, gives:

R

1

0

P (V ) dV =

1

2

.

0.0 10.0 20.0 30.0 40.0
V

0.000

0.010

0.020

0.030

Region (1) Region (2) Region (3)

P(V)
~

Figure 5: The probability density

~

P (V ) =

R

1

0

P (V; t) dt of �nding the particle with velocity V > 0, for

the dynamics described by the the Fermi map (3.1) (with L = 100 and v

b

= 0:5) . The phase space was

divided into intervals of �V . Following a trajectory of N = 2 � 10

8

iterations, the probability density was

computed by counting the number of time the trajectory was found in each of the intervals. For V < 0,

~

P (V ) =

~

P (�V ).
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3.3 Regular Motion

What happens if we set the initial conditions of the particle's motion to lie in one of the

inaccessible areas of Fig. 4 (the white areas inside the stochastic sea and the areas above

or below it)? It appears that in this case, the character of the motion is very di�erent from

the stochastic \area-�lling" motion in 
. The motion takes place over some curves and

is called \regular". Fig. 6 shows some regular curves and one stochastic trajectory of the

Fermi map (3.1). (Since the velocity of the particle changes its sign every iteration, each

trajectory is composed of two branches. The left and the right pictures show, respectively,

the positive and the negative velocity branches of the curves.) Each of the curves, as well

as the stochastic trajectory, originate from a di�erent initial condition. The regular curves

are of two types:

0.0 0.2 0.4 0.6 0.8 1.0
t (mod 1)

10.0

20.0

30.0

40.0

V bU

sU

KAM Curves

Islands
Separatrix Band

0.0 0.2 0.4 0.6 0.8 1.0
t (mod 1)

-10.0

-20.0

-30.0

-40.0

V bU

sU

Figure 6: Some regular curves of the map (3.1) (L = 100 and v

b

= 0:5). Each curve originates from

a di�erent initial condition. The curves are of two types: Elliptic orbits and KAM curves (see text

below).The stochastic \band" is the separatrix band of the island. Since the velocity of the particle

changes its sign every iteration, each trajectory is composed of two branches. The left and the right

pictures show, respectively, the positive and the negative branches of the curves.

Elliptic orbits: An elliptic (stable) periodic point is located in the middle of each island.

A periodic point of period n of the map T is a point which repeats itself, for the �rst time,

after n applications of the map T , i.e., T

n

(~x

0

) = ~x

0

and T

i

(~x

0

) 6= ~x

0

for i = 1; 2; : : : ; n�1.

The set of n di�erent periodic points of period n fT

i

(~x

0

) ; i = 0; 1; : : : ; n� 1g is called a

cycle of length n of the map T . If the particle is given initial condition which lies in the

phase space close to one of the points of a (linearly) stable cycle, then the motion will

be over n ellipses encircling the n periodic points of the cycle. The trajectory follows the
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cycle, but instead of jumping from a periodic point to another it moves from one ellipse

to another. As the distance from the periodic point is increased, the motion remains

regular over n closed curves, however, the shapes of the curves less and less resemble

ellipses. Finally, at the edge of the island, a sudden change happens, and the motion

becomes stochastic. In region (2) the last regular curve separates the island form the

stochastic sea, thus de�ning its boundary. In region (3) the stochastic motion is over

some narrow \bands", called separatrix bands, which are isolated by regular orbits. If

the cycle is (linearly) unstable, then a trajectory, initially placed at the vicinity of one

of the hyperbolic (unstable) periodic points of the cycle, would follow the cycle, but will

gradually diverge from its points. In fact, at each separatrix band, surrounding a chain

of n islands related to a stable n-cycle, there exists an unstable n-cycle. Each hyperbolic

periodic point of this unstable cycle is located between two neighboring elliptic points of

the stable cycle. If we start the motion in a separatrix band close to a hyperbolic point,

~x

0

, and follow the trajectory, we observe that after n iterations the trajectory returns to

the vicinity of ~x

0

, but, it is found further from ~x

0

. It diverges from the hyperbolic point

over a hyperbola and travels, in an irregular stochastic fashion, towards the neighboring

hyperbolic point of the unstable cycle.

For the 2-dimensional area preserving map, it can be shown ([18], section 3.3b) that

the cycle fT

i

(~x

0

) ; i = 0; 1; : : : ; (n� 1)g is linearly stable if and only if

jTr[

n�1

Y

i=0

J(T

i

(~x

0

))]j < 2; (3:6)

where J(~y) is the Jacobian matrix (see Eq. (3.5)) of the map T evaluated at ~y. Looking at

Fig. 4, one can see that the islands which occupy the largest areas in region (2) are those

related to 2-cycles of the form ~x

0

= (V = +

2L

2n+1

; t =

1

2

) ; ~x

1

= (V = �

2L

2n+1

; t = 0), where

n is an integer. Using the condition of linear stability (3.6), one can �nd that the cycles

f~x

0

; ~x

1

g are stable for jV j >

q

�L

2

. The \inverse" cycles ~x

0

= (V = �

2L

2n+1

; t =

1

2

) ; ~x

1

=

(V = +

2L

2n+1

; t = 0) are unstable for all values of V . Therefore, no islands appear around

the points of these cycles which are hidden in the stochastic sea. Other islands, at region

(2), seen to the naked eye, are those related to the stable cycles of the form ~x

0

= (V =

+

L

n

; t = 0) ; ~x

1

= (V = �

L

n

; t = 0) and ~x

0

= (V = +

L

n

; t =

1

2

) ; ~x

1

= (V = �

L

n

; t =

1

2

).

These islands are stable for jV j >

p

�L.

For larger cycles of length 2k (cycles of the map (3.1) must be of even length), questions
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of existence and stability are more complicated. However, Lieberman and Lichtenberg [13]

noted that the larger the value of k, the larger the value of the associated jV j below which

2k-cycles become unstable. Cycles of length 2 are the last to lose their stability when jV j is

decreased. One can expect that the value jV j = U

s

=

q

�L

2

, related to the loss of stability

of the 2-cycles mentioned above, is the lower bound for the existence of any stable cycle

and surrounding islands. This, however, turns to be inaccurate. A careful look at Fig. 5

reveals the existence of two small dips, indicating the existence of inaccessible islands,

at the velocity range 11{12, i.e., lower than U

s

=

q

100�

2

� 12:5. The islands, related to

these dips, are not seen while looking at Fig. 4 and we are not able to point out which

are their corresponding cycles. Anyhow, one can always derive U

s

from

~

P (V ), in a more

precise way than looking at the phase space plot.

KAM curves: The KAM curves (named after Kolmogorov, Arnold and Moser [20]{

[24]) are the wiggly horizontal lines which appear in Fig. 6, stretched from one end of the

picture to the other. The phase space is divided by these curves into a set of bounded

areas which are mutually inaccessible. In order to understand the appearance of these

curves we should brie
y review the KAM theorem . (For a detailed summary of the KAM

theorem see [18], section 3.2.)

A system is called integrable if one can �nd a set of variables

~

I;

~

� such that in this

coordinate system the motion is regular over the curves (tori)

~

I =

~

I

0

. If the equations

of motion are similar to those of an integrable system with some additional small pertur-

bation terms, then the system is said to be nearly integrable. The KAM theorem states

that for a su�ciently small perturbation and su�ciently a smooth one (i.e., the function

describing the perturbation has a su�cient number of continuous derivatives), some of

the regular tori still exist, although su�er a small modi�cation. As the perturbation is

increased, the distortion of the regular tori is increased and less of them survive, until

at some perturbation strength they all disappear. For 2-dimensional (area) mappings,

KAM curves create isolated regions of the phase space and prevent the trajectories from

leaving these regions. At higher dimensions, there is the so called Arnold Di�usion which

allows the access of a trajectory to the entire phase space. For the Fermi map (3.1) the

�rst KAM curve, at jV j � U

b

, bounds the stochastic sea from above, thus preventing a

particle, initially placed below, from being accelerated to higher velocities. Moreover, at

region (3), stochastic motion exists only over some narrow bands since these bands are

bounded form above and below by KAM curves.
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The existence of KAM curves for jV j > U

b

is in agreement with the KAM theorem.

In order to understand this we should notice that for v

b

= 0 the map (3.1) describes an

integrable motion on the set of tori jV j = V

0

. For v

b

6= 0 we locally approximate the map

(3.1) in a region close to some jV j = V

0

. Taking V

0

to satisfy L=V

0

= m (m integer), the

local (linearized) map is:

I

n+1

= I

n

+K sin�

n

; (3:7:a)

�

n+1

= �

n

+ I

n+1

; (3:7:b)

where K = 4�v

b

L=V

2

0

, I

n

= �2�L�V

n

=V

2

0

and �V

n

= jV

n

j � V

0

. The map (3.7) is

the standard mapping (also known as the Chirikov-Taylor mapping). The stochasticity

parameter, K, measures the deviation of the map from integrability. For K smaller than

some value, i.e., V

0

larger than some value, we expect the existence of KAM curves, which

will be the perturbed tori jV j = const. Numerical and analytical studies (see [18], chapter

4, for details) of the standard mapping demonstrated that for K

<

� 0:97, KAM curves

exist. For the linearized Fermi accelerator map, K = 4�v

b

L=V

2

0

. This means the largest

V

0

in the set fV

0

=

L

m

;m-integerg that lies in the stochastic sea is (for L = 100 and

v

b

= 0:5) V

0

= 25, which corresponds to K � 1. It is indeed in agreement with Fig. 4.

3.4 Symmetry

From Figs. 4 and 6, one can see that the picture of the upper half of the phase space

(V > 0) is di�erent from the picture of the lower half (V < 0). However, cutting the

picture of the lower half of the phase space along the t =

1

2

axis and joining the two pieces

along the t = 0 axis instead, yields the same picture as that of the upper half (see Fig. 7).

This property is due to the fact that the velocity of the walls at any given time, t, is the

negative of its value for t�

1

2

. As stated above (Section 2.2), this \inverse" symmetry is

broken in the problem represented by the map (2.6) , due to the di�erence in the height

of the barriers at t and t�

1

2

.
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Figure 7: The \inverse" symmetry between the upper and the lower halves of 
, the phase space of the

Fermi map. Cutting the upper half along the t =

1

2

axis and joining the two pieces along the t = 0 axis

(in a way that the two points A are joined together), yield the picture of the lower half.
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4 General Properties of the System

4.1 Asymmetry Parameters

We now turn to investigate the map (2.6) for �nite potential heights H

0

. As in the

Fermi accelerator problem, we let a particle, initially given low velocity and random

phase, explore the available phase space 


H

0

.

1

Numerical simulations show that the

resulting phase space plot is independent of initial conditions (provided the initial velocity

is su�ciently low), which implies that the motion in 


H

0

is ergodic.

2

We follow the stochastic motion of a particle in a potential �eld composed of a set of

equally spaced potential barriers, where the m-th barrier is oscillating around the point

x = mL (L is the spacing between neighboring barriers). The motion of the particle,

described by the map (2.6), is asymmetric and can be characterized by the mean dis-

placement of the particle and the related drift velocity. Suppose that at time t

0

a particle

with velocity V

0

hits the barrier located near x = 0. Then, it goes through a set of n colli-

sions with the barriers and at a time t

n

it hits the m-th barrier, where m = m(V

0

; t

0

; n) is

a function of initial conditions and the number of iterations. Let fV

1

; : : : ; V

n

g be the set

of velocity values that the particle had from t = t

0

+ until t = t

n

. We denote by n

1

and

n

2

the numbers of positive and negative values among them respectively, where positive

(negative) velocity indicates a motion to the right (left). One can easily verify that the

position of the particle at t = t

n

satis�es x(V

0

; t

0

; n) = x

n

= mL = (n

1

�n

2

)L. The mean

displacement per collision of the particle, hdi, is de�ned as:

hd(V

0

; t

0

)i = lim

n!1

d

n

= lim

n!1

1

n

x

n

= lim

n!1

1

n

(n

1

� n

2

)L: (4:1)

This, however, is the time average of the function

h(V; t) =

(

+1 V > 0

�1 V < 0

:

1

The available phase space of the map (2.6) will be denoted by 


H

0

, while for the special case of the

Fermi accelerator problem we use the notation 
.

2

A dynamical system is ergodic if, and only if, it is indecomposable, i.e., if there does not exist any

invariant set of non vanishing measure in the phase space, except for the whole phase space itself. The

fact that the same picture of phase space is obtained by plotting trajectories initially starting at di�erent

points, suggests that the system is indecomposable and that the obtained plot shows the whole available

phase space. However, using numerical simulations to determine whether a system is ergodic or not,

raises questions concerning the numerical process and its limitations. We refer the reader to Appendix

A where we discuss these questions.
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From the fact that the system is ergodic, we deduce that:

a. hd(V

0

; t

0

)i exists and is independent of initial conditions for all (V

0

; t

0

) in 


H

0

.

b. The time average in the de�nition of hdi can be replaced by a space average of the

function h(V; t) over 


H

0

. We can thus write

hd(V

0

; t

0

)i

L

=

Z Z

(V;t)2


H

0

h(V; t)P (V; t) dV dt =

Z

V>0

~

P (V ) dV �

Z

V<0

~

P (V ) dV =

hdi

L

;

(4:2)

where P (V; t) is the equilibrium invariant distribution (see Eqs. (3.2){(3.4)), and

~

P (V )

is the probability density of �nding the particle with velocity V between two collisions:

~

P (V ) =

R

1

0

P (V; t) dt. The average time interval between two consecutive collisions is

given by:

h�ti =

Z

L

jV j

~

P (V )dV; (4:3)

and the average drift velocity of the particle is:

V

drift

=

hdi

h�ti

: (4:4)

From Eqs. (4.2){(4.4) we see that the knowledge of

~

P (V ) allows us to calculate the

quantities we are interested at. For the Fermi accelerator problem

~

P (V ) =

~

P (�V ), which

immediately yields: hdi = V

drift

= 0. It will be shown that for �nite H

0

this symmetry is

broken.

4.2 Features of the Map

The Fermi map (3.1), which is the special case H

0

=1 of the map (2.6), is a one-to-one

area preserving transformation of 
, the available phase space, onto itself. We now show

that these properties hold for any �nite H

0

.

Theorem 1 The map (2.6) is a one-to-one transformation of 


H

0

onto itself.

Proof:

Let T

H

0

denote the map (2.6) for some �niteH

0

, T

H

0

: 


H

0

�! 


H

0

. By de�nition, any

point in 


H

0

has at least one source there. To show that it has exactly one source, we divide
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H

0

into two subsets: A

cross

, the set of points (V; t) in 


H

0

that satisfy jV �v(t)j >

q

2H(t),

and A

ref

, the set of points (V; t) in 


H

0

satisfying jV � v(t)j �

q

2H(t). (If a particle

with velocity V hits a barrier at time t and crosses it then (V; t) 2 A

cross

, while if it

is re
ected from the barrier then (V; t) 2 A

ref

.) The points in each subset are mapped

in di�erent ways (by di�erent \sub-maps", see Eq. (2.6.a)). Assuming that V > 2v

b

,

one can easily see that two points of the same subset cannot be mapped into the same

point. Therefore, we just have to show that a point cannot have two sources, one in

A

cross

and one in A

ref

. This can be easily shown: Let (V

�

; t

�

) be a point in 


H

0

. If

the source of this point lies in A

cross

, then it is the point (V

�

; t

�

�

L

jV

�

j

), and it satis�es

jV

�

� v(t

�

�

L

jV

�

j

)j >

q

2H(t

�

�

L

jV

�

j

). On the other hand, if the source of the point

(V

�

; t

�

) lies in A

ref

, then it is the point (�V

�

+ 2v(t

�

�

L

jV

�

j

); t

�

�

L

jV

�

j

) and it satis�es

j � V

�

+ 2v(t

�

�

L

jV

�

j

) � v(t

�

�

L

jV

�

j

)j = jV

�

� v(t

�

�

L

jV

�

j

)j �

q

2H(t

�

�

L

jV

�

j

). These two

cannot, of course, be satis�ed simultaneously, and we have thus completed the proof.

Theorem 2 The map (2.6) is area preserving.

Proof:

We want to show that kd~xk = kT

H

0

(d~x)k for every ~x in 


H

0

. The points in the

area element d~x can be divided between the two subsets A

cross

and A

ref

. Hence, we can

write d~x = d~x

1

[ d~x

2

, where d~x

1

and d~x

2

are included in A

cross

and A

ref

respectively,

which means d~x

1

\ d~x

2

= f;g. It can be easily shown, using the condition (3.5), that

each sub-map of the map (2.6) is area preserving, i.e., kd~x

1

k = kT

H

0

(d~x

1

)k and kd~x

2

k =

kT

H

0

(d~x

2

)k. Using this, and the fact that T

H

0

is a one to one map (Theorem 1), which

implies T

H

0

(d~x

1

) \ T

H

0

(d~x

2

) = f;g, we can write the set of equalities:

kd~xk = kd~x

1

k+ kd~x

2

k = kT

H

0

(d~x

1

)k+ kT

H

0

(d~x

2

)k

= kT

H

0

(d~x

1

[ d~x

2

)k = kT

H

0

(d~x)k: (Q.E.D.) (4.5)

Corollary The equilibrium invariant distribution P (V; t) is constant over 


H

0

.

Proof: This immediately follows form Eq. (3.2) and Theorem 2 (Eq. (4.5)).

So far we have seen the similarities between Fermi map (3.1) and the map (2.6), for

a �nite H

0

. Both maps, applied on initial conditions of low velocity and random phase,

describe a stochastic motion over the available phase space 


H

0

(or 
, in the Fermi ac-

celerator problem). This motion, in both cases, is ergodic with a constant equilibrium

invariant distribution. Since the equilibrium invariant distribution is constant over 


H

0

,
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~

P (V ) =

R

1

0

P (V; t) dt, the probability density of �nding the particle with velocity V be-

tween two collisions, can be derived from the knowledge of the structure of 


H

0

. The

remainder of the work will be devoted to the investigation of 


H

0

.

One of the major di�erences between 


H

0

and 
, is the KAM boundary which bounds


 from above and does not appear in 


H

0

for �nite H

0

. This di�erence can be understood

if we remember that one of the requirements of the KAM theorem for the existence of

KAM curves, is su�cient smoothness of the perturbation (See section 3.3).

3

This is not

the case when H

0

is �nite. Fig. 8 shows how the (V � t) space is divided between the

sets A

cross

and A

ref

, which are mapped by the two sub-maps of crossing and re
ection,

respectively. The two (for positive and negative V ) curves jV � v(t)j =

q

2H(t), separate

between the di�erent regions and the map (2.6) is discontinuous over these curves. The

requirements of the KAM theorem are thus not ful�lled, and therefore no KAM curve

bounds 


H

0

.

0.0 0.2 0.4 0.6 0.8 1.0
t (mod 1)

−60

−40

−20

0

20

40

60

V reflectionreflection

crossing

crossing

Figure 8: Regions in the (V � t) space of points mapped by the sub-maps of crossing and re
ection

respectively, for the case of H

0

= 500. The map T

H

0

is discontinuous over the curves separating between

the di�erent regions.

The KAM boundary in 
 de�nes a speed bound since the trajectory in the phase

space cannot cross it and move to a region of higher speeds. In 


H

0

, this type of speed

3

For 2-dimensional (area) map, two continuous derivatives would be su�cient for the existence of

KAM curves (depending of course also on the the strength of the perturbation) and one continuous

derivative is a necessary condition.

22



barrier does not exist, however, other reasons lead to the appearance of di�erent velocity

bounds. In Fig. 8 we see that for V > V

max

and V < V

min

, all points in (V � t) space lie

in A

cross

. For these velocity values, the map (2.6) is reduced to

V

n+1

= V

n

; (4:6:a)

t

n+1

= t

n

+

L

jV

n+1

j

: (4:6:b)

This map however describes an integrable system (see section 3.3 for de�nition) in which

the motion is over the tori V = const. If the velocity of the particle is larger than V

max

or

smaller than V

min

, then it will always cross the barriers, regardless the moment of impact.

Its velocity, clearly, will never change.

The (V � t) space is thus composed of the region V

min

< V < V

max

, where the motion

is stochastic (which might however include some inaccessible islands of regular motion),

and the regions V < V

min

and V > V

max

in which the motion is regular over the tori

V = const. For �nite H

0

, it is therefore the tori V = V

min

and V = V

max

which serve as

the velocity barriers of the phase space. These bounds can be computed by considering

the collision of a particle with a barrier at t =

1

4

, when the hight of the barrier is the

largest (see Fig. 8). In order for a particle to collide with a barrier at t =

1

4

and still be

re
ected it should satisfy jV � v

b

j � 2

p

H

0

, which means that:

V

max

= 2

q

H

0

+ v

b

; (4:7:a)

and

V

min

= �(2

q

H

0

� v

b

): (4:7:b)

The fact that the values V

min

and V

max

are the extremal velocities which a particle may

gain, can be shown explicitly:

Theorem 3 If V

min

< V

n

< V

max

, then also, V

min

< V

n+1

< V

max

Proof:

If the moment of impact, t

n

, was such that the particle crossed the barrier, then

V

n+1

= V

n

and, of course, V

min

< V

n+1

< V

max

. If the particle is re
ected from the

barrier, then V

n+1

= �V

n

+ 2v(t

n

). Since the particle was re
ected from the barrier, it

is obvious that jV

n

� v(t

n

)j �

q

2H(t

n

). This can be also written in the following way:

j � V

n

+ 2v(t

n

)� v(t

n

)j = jV

n+1

� v(t

n

)j �

q

2H(t

n

), which implies that (V

n+1

; t

n

) 2 A

ref

.
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This, however, means that the particle did not move into the region of regular motion,

V > V

max

or V < V

min

, in which (V; t) 2 A

cross

for all values of t. We have thus proved

that even if the particle was re
ected from a barrier at the n-th collision, still, V

min

<

V

n+1

< V

max

.

4.3 Random Phase Approximation

In the previous section we have shown that a particle with initial velocity between V

min

and V

max

, will stay within these bounds forever. The simplest assumption is that the

whole space between these two bounds is included in the phase space. Given that the

velocity of the particle satis�es V

min

< V

n

< V

max

, we assume that it can collide with a

barrier at any time (phase). This assumption prohibits the existence of any inaccessible

islands. Further assuming that the distribution is constant over this phase space, we

conclude that

~

P

RPA

(V ) =

(

1

jV

max

�V

min

j

=

1

4

p

H

0

V

min

< V < V

max

0 otherwise

; (4:8)

where V

min

and V

max

are given by Eqs. (4.6) . Using this in Eq. (4.2) and Eq. (4.3), we

�nd that

hdi

RPA

=

v

b

L

2

p

H

0

; (4:9)

and

h�ti

RPA

=

L

4

p

H

0

Z

V

max

V

min

dV

jV j

: (4:10)

Two remarks should be made:

1. This approximation is called the random phase approximation (RPA), since the

same results are obtained if we replace the process which determines the phase [Eq.

(2.6.b)], by the assumption that the phase is a random variable (with a uniform probability

density). Making this assumption immediately yields that P

RPA

(V; t) is independent of t.

One can write then a Fokker-Planck equation describing the evolution of

~

P

RPA

(V ) in

time.

4

The boundary conditions require that the probability currents at V = V

min

and

V = V

max

vanish. The steady state solution of the equation is the probability density

4

Actually, it is more convenient to de�ne P

1

(V ) for V > 0 and P

2

(V ) for V < 0 and write a set of two

coupled Fokker-Planck equations.
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~

P

RPA

(V ). It can be numerically computed using a Monte-Carlo technique, by iterating

Eq. (2.6.a) and using some random-numbers generator to produce the set of ft

n

g. Using

a large number of iterations, the probability density,

~

P

RPA

(V ), is computed by dividing

the phase space into small velocity intervals �V , and counting the number of times the

velocity is found in each of these intervals. We performed this procedure for various values

of H

0

, and obtained a constant equilibrium probability density for all of them (see Fig. 9).

2. The integral in Eq. (4.10) diverges since the point V = 0 is included in the range of

integration and

~

P (0) 6= 0. Consequently, the drift velocity vanishes, V

drift

= 0 (Eq. (4.4)).

This, however, does not mean that the system is symmetric since hdi

RPA

6= 0. The origin

of this behavior is the fact that the map is simpli�ed and does not describe the dynamics

properly when the velocity of the particle V is of the order of v

b

(the characteristic velocity

of the barriers) or less (see section 2.3).

5

In Appendix B we explain why dealing with an

\exact" problem, one should �nd that

~

P (0) = 0, and show how hdi and V

drift

depend on

H

0

and v

b

.
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V>0
V<0

PRPA(V)
~

Figure 9:

~

P

RPA

(V ) computed for (a) H

0

= 100 and (b) H

0

= 500 (v

b

= 0:5). Collisions times ft

n

g were

chosen randomly with a uniform probability density over the interval [0; 1), while Eq. (2.6.a) was iterated

for N = 5 � 10

8

times. The solutions were computed by dividing the phase space into small velocity

intervals �V = 0:1 and counting the number of times the velocity was found in each of these intervals.

To summarize, making the random phase approximation, the resulting dynamics are

characterized by two main features:

1. The net motion is directed from left to right (hdi

RPA

> 0) for all values of H

0

.

2. The mean displacement per collision, hdi

RPA

, is a continuous function of H

0

(decreasing

5

The same behavior is found when dealing with the simpli�ed Fermi map (see Fig. 5)
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as 1=

p

H

0

). It is also reasonable to assume that V

drift

, obtained after a proper correction

of

~

P (V ) at the low velocities, is a continuous function of H

0

. In Appendix B we show

that for the exact problem we �nd that V

drift

decreases approximately as (lnH

0

)

�1

.

The RPA assumption holds in a system where the spacings between neighboring bar-

riers are random. In our system there is a constant distance between the barriers and

therefore phase correlations appear and modify the RPA results. This subject is discussed

in the next chapter.
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5 Numerical Results

5.1 Low Barrier Heights

We now introduce some of the results obtained by iterating the map (2.6) for various

values of H

0

. We start with low values of the control parameter (\low" will be de�ned

in the next section). Fig. 10 shows plots of the phase space, 


H

0

, together with the

corresponding probability densities,

~

P (V ). One can clearly see that the obtained results

are similar to those derived using random phase approximation (RPA) in section 4.3.

The available phase space includes the entire velocity region V

min

< V < V

max

where

no embedded islands appear at all. Since we already know that P (V; t) is constant, this

immediately implies that

~

P (V ) =

~

P

RPA

(V ) = const. (Eq. (4.8)), which in turn implies

that hdi = hdi

RPA

(Eq. (4.9)).
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Figure 10: The available phase space, 


H

0

, (left) and the probability density,

~

P (V ), (right) for (a)

H

0

= 16 and (b) H

0

= 36 (L = 100 and v

b

= 0:5). The small deviations from the constant value at low

velocities are probably due to the fact that the map (2.6) is not a one-to-one transformation for jV j < 2v

b

.
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The fact that RPA correctly describes the dynamics when H

0

is small, is actually not

surprising. The velocity of the particle is bounded between V

min

and V

max

, which increase

proportionally to

p

H

0

(see Eqs. (4.6)). For low speeds the time interval between two

consecutive collisions, L=jV j, is at least a few times larger than the period of the barriers'

motion, � , thus leading to weak correlations between consecutive phases. This seems to

explain why embedded islands, which indicate strong phase correlations, do not appear

at low speeds. It will be shown in the next section that for larger H

0

, islands begin to

appear since higher speeds are included in the phase space, 


H

0

. Yet, as in the case of

the Fermi map (chapter 3), there is a threshold speed U

s

(H

0

), below which islands do not

appear.

1

Anyhow, the set of phases ft

n

g looks as if it is a random sequence of numbers

uniformly distributed over [0; 1). Since, the results obtained by iterating the map are the

same as those obtained by assuming the phase is a random variable, then, at least for

this purpose, we can regard the deterministic process which generates the set ft

n

g as a

\random numbers generator".

2

5.2 Phase Correlations

5.2.1 Embedded Islands

Increase of H

0

leads to the inclusion of higher speeds in 


H

0

and the appearance of

embedded islands above the threshold speed U

s

(H

0

). The phenomenon emerges when H

0

exceeds the value of 40{50 (assuming, as usual in this work, that L = 100 and v

b

= 0:5).

Figs. 11.a{c show plots of 


H

0

for some values of H

0

, together with the corresponding

probability densities,

~

P (V ).

1

The quantity U

s

is used in this work (chapter 3) and in other references (Refs. [13],[18]) to denote

U

s

(H

0

) for the special case of the Fermi map (3.1). However, when H

0

is su�ciently large, many of the

islands that appear in 
, the available phase space of the Fermi map, also appear in 


H

0

. In particular,

this is true for the large 2-cycle islands of 
 (see section 3.3). This happens since for large H

0

these

islands are completely located in A

ref

, the part of 


H

0

which is iterated by the sub-map of re
ection,

and the sub-map of re
ection is actually the Fermi map.

2

Random numbers generators are deterministic algorithms used to produce sequences of numbers

which appear to be random. The numbers are not really random of course since each number in the

sequence depends on the preceding one. The concept of randomness can be mathematically formulated

in several ways and there are many possible tests for its detection (or more correctly, for the detection of

non-randomness). The reader can �nd extended discussions (using di�erent approaches) of this issue in

Ref. [25], chapter 3 and in Ref. [26], chapter 10.
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Figure 11.a: The available phase space 


H

0

(top) and the corresponding probability density

~

P (V )

(bottom) for H

0

= 175.
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Figure 11.b: The available phase space 


H

0

(top) and the corresponding probability density

~

P (V )

(bottom) for H

0

= 250.
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Figure 11.c: The available phase space 


H

0

(top) and the corresponding probability density

~

P (V )

(bottom) for H

0

= 500.
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The main feature of the islands, demonstrated in these �gures, is that they appear

asymmetrically. In 
, the available phase space of the Fermi map (3.1), the symmetry

of the islands is established in one of two ways: The islands in some chain can appear in

\pairs", i.e., in the same chain of islands there exist an island located around the point

(V; t) and a \twin" island located around (�V; t+

1

2

) having the same shape. The other

possibility is that there are two chains, each composed of the twins of the other. We call

islands in the upper (lower) half of the phase space, V > 0 (V < 0), positive (negative)

islands. If we initially place a trajectory inside an island, it will alternately move between

islands in the upper and the lower half of the phase space. Hence, any chain in 
, has

the same number of positive and negative islands.

This symmetry is broken in 


H

0

: A chain may include di�erent numbers of positive

and negative islands. Each island has a di�erent shape, yet due to the area preserving

property of the map (2.6), they all have the same area. (The boundary curves of the

islands in some chain are mapped one into the other.) To demonstrate this symmetry

breaking we introduce an example of some typical asymmetric chain. Taking H

0

= 500,

Fig. 12 shows a chain of 3 islands encircling the (stable) 3-cycle

~x

0

crossing

�! ~x

1

re
ection

�! ~x

2

re
ection

�! ~x

0

�! � � � ;

where

~x

0

= (V = 21:691496772 : : : ; t = 0:749999999 : : :)

~x

1

= (V = 21:691496772 : : : ; t = 0:360101416 : : :)

~x

2

= (V = �20:921389865 : : : ; t = 0:139898583 : : :):

(What is actually shown in Fig. 12 and in other �gures in this chapter are three curves,

each located in one of the islands, over which the trajectory moves if initial conditions

are set inside one of the islands. We tried to set initial conditions close to the edge of

the islands, so the resulting curves approximately draw the boundaries of the islands.)

The arrows indicate whether the iteration between the points of the cycle is made by the

sub-map of re
ection or crossing. The Jacobian matrices of re
ection and crossing are

respectively

J

ref

=

 

�1 �2v

b

cos(2�t

n

)

sign(V

n+1

)

2�L

V

2

n+1

1 + 2v

b

cos(2�t

n

) � sign(V

n+1

)

2�L

V

2

n+1

!

(5:1:a)

and

J

cross

=

 

1 0

sign(V

n+1

)

2�L

V

2

n+1

1

!

: (5:1:b)
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Substituting properly ~x

0

, ~x

1

and ~x

2

in these matrices and using the condition of linear

stability (3.6), one can easily verify, in accordance to numerical observation, that the cycle

is indeed stable.
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V

Figure 12: An example of an asymmetric chain of islands embedded in 


H

0

for H

0

= 500. The chain is

composed of two positive islands (in the upper half of the phase space, V > 0) and a single negative (in

the lower half of the phase space, V < 0) island each having a di�erent shape. What is shown here, are

three curves, each located in a di�erent island. Once the initial conditions are set over one of the curves,

the trajectory jumps from a curve to another. The area each curve encloses is the same since the map

(2.6) is area-preserving.

The random phase approximation (RPA) results (section 4.3) are not valid when

islands appear since the entire area between V

min

and V

max

is not available anymore.

The areas excluded from the upper half (V > 0) and the lower half (V < 0) of 


H

0

,

due to the existence of an asymmetric chain are di�erent. For instance, for the chain

introduced above (Fig. 12), the total area occupied by the two positive islands is twice as

large than that occupied by the single negative one. This can be seen in Fig. 13 which

shows the dips in

~

P (V ), indicating the existence of this chain. The dip for V > 0 is two

times bigger than that for V < 0.

The asymmetry of 


H

0

is thus a combination of two \e�ects": The di�erence between

jV

max

j and jV

min

j (Eqs. (4.6)) and the appearance of asymmetrical chains of islands. There

is a major di�erence between these two e�ects. While V

min

and V

max

change continuously

with H

0

, the sudden appearance and disappearance of a chain of islands occurs at bifur-

cation points.

3

The value of hdi, which is in
uenced by these two e�ects, is therefore a

3

Bifurcation is the sudden change in the properties of a nonlinear system as a parameter is varied.

In this case, the existence or the stability of a cycle are changed, leading to the appearance or the

disappearance of the surrounding chain of islands.
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Figure 13: A magni�cation of the dips of

~

P (V ) indicating the existence of the asymmetric chain shown

in Fig. 12.

piecewise continuous function of H

0

, discontinuous at these bifurcation points.

Fig. 14 shows the value of the mean displacement per collision , hdi, computed for

several values of H

0

. One can see that the value of hdi coincides with the RPA result

only for small values of H

0

. However, for the few cases we have checked, the deviations

from the RPA results at larger values of H

0

are minor. It seems fair to conclude that

the overall e�ect of the islands embedded in 


H

0

is relatively small and the RPA is a

good approximation in the range of H

0

values shown in Fig. 14. In particular, hdi does

not change its sign due to the appearance of islands in 


H

0

, and the net motion is still

directed from the left to the right for these H

0

values.

The situation is completely di�erent if we start with initial conditions inside one of

islands. The trajectory, in that case, \jumps" from one island to the other, when in each

of the islands it is found over a closed curve (see section 3.3 about the regular character of

the motion inside islands). The set of collisions and re
ections, as depicted by the jumps

between the islands, is the same as that of the cycle, surrounded by these curves (see an

example earlier in this section). If the chain has n

1

positive (V > 0) and n

2

negative

(V < 0) islands then

hdi

IC

=

n

1

� n

2

n

1

+ n

2

L: (5:2)

(The subscript IC refers to the fact that this value of hdi corresponds to a motion over an
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Figure 14: The value of hdi numerically computed for various values of H

0

(using Eq. (4.1) with

N � O(10

9

� 10

11

)), in comparison to the RPA results (Eq. (4.9)).

Islands' Chain). Comparing this to the value of hdi related to the motion in 


H

0

we see a

few important di�erences: The value of hdi

IC

must be rational. It is usually, at least for

small n

1

and n

2

, much larger than hdi. For example, taking H

0

= 500, the chain shown

in Fig. 12 is embedded in 


H

0

. For the regular motion over this chain, hdi

IC

=

1

3

L ' 33:3,

while the corresponding value for the stochastic motion in 


H

0

is hdi ' 0:01L = 1, i.e,

smaller by more than an order of magnitude. Moreover, in 


H

0

, the velocity of the particle

varies between V

min

and V

max

. On the other hand, for the regular motion over a chain

of islands, the speed of the particle does not change signi�cantly during the motion and

can be approximated by its initial value, jV j � jV

0

j. The mean time interval between two

consecutive impacts is smaller for the regular motion over the islands than for stochastic

motion in 


H

0

, since the latter includes long time intervals in which the particle's speed

is low. Since both hdi

IC

is larger than hdi, and h�ti

IC

is smaller than h�ti, we conclude

that the drift velocity, hdi=h�ti, of a regular motion over a chain of islands embedded in




H

0

is usually much larger than that related to the stochastic motion in 


H

0

itself. In

other words, the e�ciency of the mechanism is much larger when the motion is over a

chain of islands than in 


H

0

. However, the most signi�cant di�erence between hdi and
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hdi

IC

is that the latter can also be negative. If the chain includes more negative than

positive islands then hdi

IC

< 0 and the direction of the net motion is from right to left,

opposite to the direction of the net stochastic motion. Fig. 15 depicts an example of such

a chain.
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-38.0

-38.5

-39.0

V

Figure 15: An example of an asymmetric chain of islands embedded in 


H

0

for H

0

= 500. The chain

is composed of two positive and there negative islands, which means hdi

IC

= �

1

5

L.

5.2.2 Pseudo KAM Boundaries

We already know that the allowed velocity values are between V

min

and V

max

(section 4.2).

Is it possible that within these bounds there are KAM curves that cannot be crossed?

These curves, if they exist, divide the phase space into mutually inaccessible area of

stochastic motion. In that case, the �rst KAM curve bounds the phase space which is

available to a particle with low initial velocity, thus de�ning a narrower range for the

allowed velocities. For the Fermi map (3.1) such a boundary KAM curve exists (chapter

3), whereas for the map (2.6) with �nite H

0

, KAM curves do not appear. The di�erence

is because of the fact that a map should be su�ciently smooth for KAM curves to appear

in its associated phase space (see section 3.3 about the KAM theorem). While the Fermi

map is an analytic one, the map with a �nite H

0

is discontinuous and therefore does not

satisfy the conditions for the existence of KAM curves. However, numerical observations

reveal an interesting phenomenon: for someH

0

values it looks as if curves which bound the

available phase space do exist.

4

A trajectory of a particle in these cases will stochastically

4

We observed this in all of the cases we have checked for H

0

between 1000 an 10000 and in few of the

cases for H

0

between 100 and 1000.
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explore only some part of 


H

0

.

A more careful study of this behavior reveals that nothing bounds the motion in the

phase space (except for the V = V

min

and V = V

max

boundaries, see section 4.2). It

appears that if we iterate the map a su�ciently large number of times, then suddenly,

usually after many iterations, the trajectory will cross the boundary of the sub-space it

was trapped in and move to some other part of 


H

0

. We therefore call these imaginary

boundaries: pseudo KAM boundaries (PKB). Fig. 16 shows the phase space explored

by the �rst 2 � 10

10

points of a trajectory of a particle given a low initial velocity. For

H

0

= 2500, we expect to �nd the boundaries at V

max

= 100:5 and V

min

= �99:5, however,

one can see that a PKB appears at jV j � 63, preventing the particle from being further

accelerated.

5

How do we explain this phenomenon? Let us investigate the PKB shown in Fig. 16

(H

0

= 2500, jV j � 63). Fig. 17 shows a chain of islands composed of n

1

= 420 positive (in

the upper half of the phase space, V > 0) and n

2

= 466 negative (in the lower half of the

phase space, V < 0) islands. (A chain composed of n

1

positive and n

2

negative islands

will be referred to as an n

1

{n

2

chain.) One can see that this chain looks very similar to

the boundary of the area shown in Fig. 16, and at �rst glance it seems that this chain

is the PKB. The chain indeed resembles a KAM curve: The islands, which are all very

narrow, almost touch each other, with only small spaces between them. They look as if

they are oriented along some imaginary KAM curve.

Consider a trajectory which moves very close to this chain from below. (We say the

trajectory moves below the chain, although it alternates between the positive and negative

branches of the chain, and with respect to the latter it actually moves from above.)

Clearly, we expect to �nd strong phase correlations in the motion. If the trajectory

passes very close below the chain, then for a certain number of the subsequent iterations,

it moves close to the chain, i.e. over a narrow velocity band. In Fig. 18 we can see the

420{466 chain shown in Fig. 17 and a narrow stochastic layer below this chain. The

trajectory moves over this stochastic layer for many iterations (Fig. 18 shows the �rst

25000 iterations of a trajectory initially placed close to the chain. They remained in the

narrow layer). Usually, after a certain number of iterations, it falls back into the stochastic

sea, but in some rare cases it escapes. In that sense, the structure of 


H

0

just below the

5

In comparison, the phase space plots shown in Figs. 11.a{c were completely explored after less than

10

8

iterations.
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Figure 16: The subspace of 


H

0

for H

0

= 2500 explored after 2 � 10

10

iterations of the map (2.6).
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Figure 17: The 420{466 chain which appears in 


H

0

for H

0

= 2500 at jV j � 63. Its shape resembles

the boundary of the area shown in Fig. 16. The two �gures in the bottom show in magni�cation the

positive (left) and negative (right) velocity branches of the chain.
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420{466 chain resembles the structure of 
 just below the �rst KAM curve. In both cases

although the motion is stochastic, it is strongly correlated and only gradually deviates

from the boundary. The di�erence is, of course, that while a KAM curve is a perfect

boundary, the chain will eventually be crossed. Numerical simulations show, in general,

that the closer a trajectory gets to the chain the larger is the escape probability. The

trajectory, stochastically moving in 


H

0

, occasionally gets very close to the chain until at

one of the times it �nds its way out.

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060
t (mod 1)

63.17
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63.20
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V

Figure 18: The 420-466 chain (the arrows point at the islands of the chain), which appear in 


H

0

for

H

0

= 2500. A narrow stochastic layer appears restricted below the islands . The motion over this narrow

layer can take place for thousands of iterations. Note that only a small part of the positive velocity

branch of the chain is shown here.

This is however not the whole picture. Fig. 19 depicts an extended picture of the

phase space in the vicinity of the 420{466 chain. We can see that over a small region

of the phase space there are several other chains which are all located very close to each

other.

6

Since the motion near a chain of islands is phase correlated, a trajectory that

moves close to a chain will propagate along it, while gradually moving away. If there

are many chains over a small area of 


H

0

, then while the trajectory moves away from

one chain it gets closer to another, along which it propagates for subsequent iterations.

This is an over-simpli�ed picture since it is not always possible to relate the motion to a

6

Fig. 19 shows only the largest and the most dominant chains in this region.
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particular chain at each instance, however, it roughly explains why a trajectory mainly

propagates along the chains and only slowly moves from one chain to another. The narrow

area around the chains is a band of stochastic motion, where the trajectory is trapped for

some iterations each time that it gets there. The 420-466 chain is only the �nal member

of a set of chains embedded in that band. If the trajectory crosses this chain it will escape

to another subspace of 


H

0

. However, the trajectory does not usually reach this \�nal

chain" at all. It wanders through the band between the chains, and usually falls back

into the stochastic sea before it succeeds to pass through all the chains. It is therefore

the whole set of (close to each other) chains which we should refer to as the PKB and not

just the �nal member of this set.
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Figure 19: A few chains of islands located in a small area of 


H

0

for H

0

= 2500 which form together

a PKB. The numbers inside the islands indicate to which of the following chains they belong: 1) 27{33

; 2) 37{47 ; 3) 49{59 ; 4) 60{72 ; 5) 420{466. The dots show a stochastic trajectory wandering between

these islands. (Only a small part of the positive velocity branches of the chains is shown here.)

Few additional remarks should be made. First, a PKB is a bi-directional boundary:

it bounds the lower part of 


H

0

from above, but also bounds the upper part from below.

Fig. 20 demonstrates how a trajectory which passes very close to the 420{466 chain from

above, does not cross it. Second, we usually do not �nd only one but a few PKBs in




H

0

. The motion in 


H

0

is thus bounded between two PKB until it crosses one of them

and moves to some other subspace. For example, for H

0

= 2500 we found di�erent PKBs
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appearing at the following speed values: jV j � 25; 34; 49; 56; 64; 71; 79; 88 : : :. Above the

PKB at jV j � 88 the motion is so strongly correlated that many PKBs appear close to

each other. Comparing the di�erent PKBs we �nd that some of them are easily crossed

while others can be a \tough nut to crack". Third, the appearance of PKBs does not

contradict the ergodicity assumption. One just has to iterate the map a large number of

iterations, a few orders of magnitude larger than the number needed to cross each of the

PKBs. An extended discussion of this issue is given in Appendix A.4.
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Figure 20: The 420{466 chain (1), a 157-164 chain above it (2) and a narrow band of stochastic motion

in which they are embedded. This is the upper side of the PKB shown in Fig. 19. (Only a small part of

the positive velocity branches of the chains is shown here.)

We have shown that long and narrow chains of islands, which surround parts of the

available phase space, serve as pseudo KAM boundaries (PKBs). At the vicinity of these

chains, which usually appear in groups, close to each other, the motion is strongly corre-

lated. A trajectory stochastically wanders between the islands. It propagates along the

chains and slowly moves from the one to the other. In order to move to another part

of the phase space, the trajectory has to cross all the chains which form the PKB. How-

ever, due to the phase correlations this happens infrequently, only after many attempts.

Figs. 21 and 22 give another example for a PKB, appearing at jV j � 33 when H

0

= 3000.

This PKB is weaker than one discussed above (the jV j � 64, H

0

= 2500 case), i.e., less

iterations are usually needed before it is crossed. This is probably because the chains of
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the latter are denser (the spaces between the islands are smaller) and therefore the chains

look and behave more like KAM curves. This is true in particular with respect to the

�nal chain in this PKB, the 420{466 chain (see Fig. 17).
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Figure 21: The motion in 


H

0

for H

0

= 3000, bounded by a PKB at jV j � 33.
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Figure 22: A few chains of islands located in a small area of 


H

0

for H

0

= 3000 which form together

the PKB appearing in Fig. 21. The numbers inside the islands indicate to which of the following chains

they belong: 1) 13{10 ; 2) 13{11 ; 3) 27{21 ; 4) 14{11. The dots show a stochastic trajectory wandering

between these islands. (Only a small part of the positive branches of the chains is shown here.)
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6 Conclusions

In this work we have studied the properties of a dynamical map, which is a generalization

of the celebrated Fermi accelerator map. While the Fermi map serves in the literature as

a model for the stochastic acceleration mechanism, the \generalized" map is used in this

work to model stochastic directed motion.

The map describes the motion of a particle in a one-dimensional asymmetric potential,

periodic in time and space. Such systems were studied by several authors, however,

most of them considered non-equilibrium kinetics and not deterministic motion. In other

works ([8], for example) deterministic motion was considered, but using linear di�erential

equations which do not yield stochastic motion. The system discussed in this work is

therefore specialized in being both deterministic and non-linear stochastic. The main

feature of all these systems, including the one discussed in this work, is, however, the

same: The motion of the particle is, on the average, directed and characterized by some

net drift velocity.

Numerical considerations led us to conclude that the motion is ergodic over some phase

space, 


H

0

. This is an important property since it indicates that the mean quantities of

the motion are independent of initial conditions in 


H

0

. It allows us to replace the

time averages of the motion by the space averages over the available phase space, whose

structure we have therefore aimed to explore. The equilibrium invariant distribution over

this phase space is constant since, as we have proven, the map is an area preserving one.

The average height of the potential barriers, H

0

, was chosen as the control parameter

of the problem. All other parameters, like v

b

, the maximal barriers speed, or L, the

distance between neighboring barriers were held constant. We then tried to see how hdi,

the mean displacement of the particle per collision, is changed as a function of H

0

. This

quantity characterizes the average directed motion, and is related to the drift velocity by

Eq. (4.4). The drift velocity itself cannot be calculated since the map is a simpli�ed one

and does not describe a real physical problem at low speed values. (In Appendix B we

try to resolve this problem and estimate the behavior of V

drift

as a function of H

0

.)

Roughly speaking, we have shown hdi (and also V

drift

) is a decreasing function of H

0

which is always positive, i.e, the motion is always directed in the same preferred direction.

When H

0

is su�ciently low, the results coincide with those obtained by neglecting the

deterministic process and randomly choosing the phase of the barrier's motion at the
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moment of impact. Phase correlations appear when H

0

is increased, since the particle can

reach higher speeds and the time interval between two consecutive collisions decreases to

the order of � , the period of barriers' motion. Phase correlations are important for two

reasons:

1. Modi�cations of the RPA (Random Phase Approximation) results, which are minor,

at least over the range of H

0

values investigated in this work.

2. The appearance of pseudo KAM boundaries, which for long time intervals, bound the

motion in some subspace of the available phase space.

The value of hdi was found to be of the order of a few percents of L, the distance

between two neighboring barriers. A much better e�ciency, i.e., a larger value of hdi=L,

is obtained if the particle's initial conditions are inside one of the islands embedded in the

phase space. The motion of the particle in that case is regular, non-stochastic, composed

of a repeating set of re
ections and crossings. Each chain is thus characterized by its hdi

value, and at a given H

0

(above some threshold value) one can �nd chains with either

positive or negative hdi. This means that a directed regular motion of high e�ciency can

be achieved in both directions, provided that initial conditions are properly set.

The dependence of the motion on other parameters of the system, may serve as a

subject for further research. One may study the behavior of hdi as a function of v

b

(for

various values of H

0

). The parameter v

b

characterizes the asymmetry of the system and

its stochasticity. The di�erence of the threshold speeds for crossing a barrier from the left

or the right increases linearly with v

b

(see Eq. (2.4)), and therefore, large v

b

corresponds

to highly asymmetric systems. The system is also highly stochastic when v

b

is large

since the speed of the particle changes rapidly and phase correlations become weaker.

Respectively, small values of v

b

correspond to \almost" symmetric systems with a more

ordered behavior.

The e�ect of a small thermal noise on the system may also be considered. In principle,

the addition of a random component to a deterministic system, should destroy the special

structure of the phase space. However, if the noise is very small compared to the kinetic

energy of the particle, then the characteristic time for completely losing the \footprints"

of the old phase space can be considerable and on smaller time scales, some interesting

phenomena might be observed. One may check the possibility of thermal noise to trigger

a trajectory into and out of an island, or the e�ect of thermal noise on the boundaries of

the phase space.
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Finally, the appearance of pseudo KAM boundaries (PKB) seems to be an interesting

phenomenon which requires a detailed study. Similar behavior is found if a KAM torus is

destroyed when nearby islands increase and break through it. It is then called a cantorus

(see [27], section 3.9). We have shown in this work that pseudo barriers may be observed

even if KAM tori do not exist. This is especially relevant for discontinuous maps in which

KAM tori are forbidden.

45



Appendix A Numerical Considerations

A.1 General

Investigating a dynamical system is a combination of analytical and numerical work. This

appendix deals with the problems related to the numerical process with an emphasis on

the system described in this particular work.

The evolution of the system, described in section 2.2, is given in terms of a mapping

(2.6). A computer was used to perform the iterations and plot the resulting trajectories.

These plots were then used to study the properties of the map. The numerical process,

thus, consists of three steps: iterating, plotting and observation. Each step has its own

level of precision:

1. The precision of numerical calculations: Throughout this work we used a precision

of 16 signi�cant digits (`double precision') in our numerical calculations.

2. The resolution of the plots: We used a standard plotting program which creates

plots at a resolution of 6 signi�cant digits.

3. The resolution of observations: One should consider the fact that while observing

plots of di�erent trajectories, the human eye can notice details only at a resolution

of 2{3 signi�cant digits.

A.2 Roundo� Errors

Chaotic systems are characterized by their \sensitive dependence on initial conditions",

i.e, by the fact that nearby trajectories diverge exponentially fast with time (section 1.1).

A quantity that measures the (mean) exponential rate of divergence of nearby trajectories

are the Lyapunov exponents (LE). (See [18] section 5.2b, for de�nitions of the LE and

further references.) Roughly speaking, an N -dimensional system is chaotic if at least one

of the N exponents is positive. For conservative systems the sum of LE is zero, which

means that an area preserving map is stochastic if, and only if, one of its two exponents is

positive. The sensitive dependence on initial conditions makes it impossible to compute a

trajectory in chaotic systems since roundo� errors, due to the �nite precision of numerical
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calculations, will be exponentially ampli�ed with time, and the computed trajectory will

soon lose any resemblance to the \real" one. This is indeed the situation concerning

the motion in the phase space of the map (2.6). In fact, the dynamics described by

the map (2.6) have an additional feature which brings about the divergence of nearby

trajectories. We refer to the fact that it is discontinuous in the phase space over the two

curves jV � v(t)j =

q

2H(t) which represent the critical conditions for crossing a barrier

(Fig. 8). One should consider a scenario that because of numerical errors, a trajectory

would fall at the \wrong" side of a discontinuity curve. If this happens, then on the

next iteration the computed trajectory will be mapped by the wrong sub-map (either of

crossing or of re
ection, see Eq. (2.6.a)) and lose any relation to the \real" one.

However, although we fail to calculate a single trajectory, still the main features of the

stochastic motion are not a�ected by the (exponentially magni�ed) roundo� errors. The

computed trajectory describes a motion which is `area-�lling' over the available phase

space at a constant equilibrium invariant distribution. One can simply regard the \nu-

merical motion" (the map together with the rounding process) as a mapping de�ned over

a dense grid with a spacing equal to numerical precision. The \new" map is an area

preserving one, where the area is measured in terms of the number of mesh points. The

image of each mesh point is hardly a�ected by the rounding process, and therefore the

structure of the available phase space is not deformed. Thus, although the trajectories are

completely changed due to roundo� errors, the structure of the available phase space and

the equilibrium invariant distribution stay the same. (The fact that the phase space is

composed of a set of discrete mesh points cannot be seen since numerical precision is much

higher than plotting or observation resolutions.) Fortunately, we are not interested in the

individual trajectory but in the statistical properties of the motion which are derived from

the picture of the phase space and the related probability density.

Concerning regular motion, the situation is even simpler. While plotting two neigh-

boring regular trajectories, we usually �nd that the obtained curves neither diverge from

nor converge into each other and this means that one of the LE vanishes. But, since

their sum is zero, it follows that the other one vanishes too. Therefore, not only that

numerical calculations produce a correct picture of regular curves, but they also describe

properly the motion over these curves. Deviations of trajectories over regular curves

increase only linearly with time. Using a precision of P signi�cant digits in numerical

calculations (P = 16 throughout this work), two neighboring regular trajectories become
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separated after n

max

� O(10

P

) iterations, while two neighboring stochastic trajectories

diverge within n

max

� O(P ) iterations.

The di�erence between the values of the LE, related to a regular or a stochastic motion,

is best seen in the vicinity of periodic points. Let ~x

0

be a periodic point of period n of

the map T . Let L be the map obtained by linearizing T

n

in the vicinity of ~x

0

(which is a

�xed point of T

n

).

1

There is a simple relation between, �

i

, the eigenvalues of L, and �

i

,

the LE characterizing the motion at the vicinity of ~x

0

, given by

�

i

= ln j�

i

j: (A:1)

This can be easily understood in the following way: One can choose ~w, the deviation

of initial conditions from the �xed point ~x

0

, to be an eigenvector ê

i

of L. For ~w = ê

i

,

L

m

ê

i

= �

m

i

ê

i

, and therefore: �

i

(ê

i

) � lim

m!1

1

m

ln kL

m

ê

i

k = ln j�

i

j. In the vicinity of an

elliptic �xed point of a 2-dimensional map, the motion is regular over ellipses encircling the

point. The eigenvalues of the linearized map are �

1;2

= e

�i�

, which means that �

1;2

= 0.

On the other hand, in the vicinity of a hyperbolic �xed point, the motion is stochastic on

one or both branches of a hyperbola. The eigenvalues of the linearized map are �

1

= �

and �

2

=

1

�

(where � is real), and therefore �

1;2

= � ln j�j, which means that one of the

exponents is positive unless � = �1. For � = �1, the �xed point is marginally (un)stable

and the motion diverges from the �xed point over straight lines, at a linear rate.

A.3 Determination of Ergodicity

In section 4.1 we have suggested that the map (2.6) describes an ergodic motion in the

available phase space 


H

0

. We based this argument on the fact that the same picture

of 


H

0

was obtained regardless of initial conditions (unless initial conditions lead to a

regular motion). We then claimed that this indicates that the system is indecomposable,

i.e., ergodic. However, one should consider a few problems in using numerical tools to

determine ergodicity

The plots of the available phase space 


H

0

have �nite resolution. One cannot neglect

the possibility that at a �ner resolution, the picture does depend on initial conditions.

1

In matrix form L~x

n

= ~x

n+1

, where the matrix L is the product of the n Jacobian matrices, evaluated

at the points of the n-cycle of T : L =

Q

n�1

i=0

J(T

i

(~x

0

)).

48



(The relevant resolution is the coarser of the two resolutions: that of the plotting program

and that of the human eye.) Therefore, the best conclusion concerning our system, is that

there are no sub-space elements which are invariant with respect to the mapping and have

a linear scale which is larger than the resolution, �. The concept of ergodicity refers to

the limit when � vanishes, however if � is su�ciently small, it is reasonable to assume

that the motion is indeed ergodic. Yet, the fact that only details above some resolution

level are observable, might be misleading in some cases. An example of such a case was

shown when we discussed the Fermi map. The probability density of �nding the particle

with a velocity V between two collisions,

~

P (V ) (Fig. 5), reveals the existence of two, and

possibly more, small islands at a velocity of about 11, which were not observed by looking

at the phase space plot (Fig. 4). Anyhow, since these islands are small, their in
uence (on

the value of the net drift velocity, for instance) is small. Generally speaking, one usually

tries to learn about the general qualitative properties of the system by looking at the

phase space plots, and for this purpose the (relatively) low resolution su�ces. In order to

derive quantitative results, like the drift velocity, one has to use numerical calculations of

higher precision.

Another problem, related to the determination of ergodicity, originates from the �nite

precision of the calculation (roundo� errors). These errors can be considered as a sort

of a \noise" which allows trajectories, originally moving over a certain invariant set in

the phase space, to move to another set. A decomposable system then might seem to be

ergodic. One should remember that the boundary of an invariant set is a KAM curve. If

this curve separates between two sets of stochastic motion, then numerical noise destroys

it and a transition between the sets is possible.

2

In this work the situation is di�erent

since the boundary curves of the stochastic sea separate it from regions of regular motion.

All the regular curves which lie at a distance smaller than the precision, �, from the

boundaries are destroyed by the numerical noise and become a part of the stochastic sea.

2

One would still be able to notice this transition and to conclude (or at least suspect) that there is a

numerical problem there. Because of numerical noise there is an overlap between the two sets in a narrow

band of a characteristic width � (representing the numerical precision). A trajectory has to enter this

overlap region in order to make the transition between the sets. The observed sets are of a characteristic

size � (the resolution) or more. Assuming that the motion (including the numerical noise) is at a uniform

probability density over each of the sets and that � � �, one can easily conclude that the trajectory

would have to go through many iterations (� O(

�

�

)) in one the sets before making the transition to the

other. This resembles a pseudo KAM curve in the sense that the trajectory stays for a long time in a

certain region of the phase space and then suddenly makes a transition to another region, where it again

remains for a long time. However this is a \numerical phenomenon", while a pseudo KAM curve is a real

feature of the dynamics.
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On the other hand, as discussed in section A.2, if a regular curve lies deeper within the

region of regular motion, then it is not severely a�ected by roundo� errors. Therefore,

roundo� errors add bands of width � to the boundaries of the stochastic sea. However,

these bands cannot be observed since the numerical precision is much better (by several

orders of magnitude) than the resolution of observations.

A.4 Time-Averaging

The ergodicity hypothesis assumes that in the course of time, any trajectory explores the

entire available phase space and eventually covers this region with some distribution given

by

~

P (~x), which is constant for conservative systems (see section 3.2). The averages of

observable functions can thus be computed by averaging either over time or over space

(Eqs. 4.1 and 4.2). Throughout this work, we use the �rst option of time averaging. When

using this approach, one has to decide how many iteration of the map are needed before

results are obtained with a satisfying accuracy. It appears that due to features of the

motion, this number can be much larger for some values of the control parameter than

for others.

The existence of a pseudo KAM boundary (PKB) is an example for a case in which

a relatively large number of iterations is needed before the trajectory explores the entire

available phase space, 


H

0

(see section 5.2.2 about this phenomenon). On smaller time

scales, the motion is trapped within some subspace of 


H

0

. However, one can still try to

characterize the motion inside a pseudo bounded subspace, which is, similar to the motion

in the whole phase space, ergodic with a constant equilibrium invariant distribution. The

motion can be time averaged using a long trajectory which does not escape from the

subspace. In fact, we computed these averages for di�erent subspaces and found, even for

the same values of the control parameter, H

0

, examples with both positive and negative

values of hdi, the mean displacement per collision of the particle. This means that if

PKBs which divide 


H

0

into several subspaces exist, then the motion is composed of long

intervals which are (on the average) directed either form the left to right or vice versa.

However, when performing time averages over the motion in some subspace of 


H

0

one

should consider the following \boundary" problem: The boundaries of a subspace are not

well de�ned. A PKB is composed of a few chains. One might expect the last of them to be
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the boundary of the subspace. However, when getting close to the boundary, a trajectory

does not usually pass all the chains and therefore the values of

~

P (V ), the probability

density of �nding the particle with velocity V between two collisions, may be under-

estimated right below the last chain. On the other hand, as also mentioned in section

5.2.2, the trajectory can be trapped for long interval in a narrow stochastic band near

the boundaries, moving between the chains. This, in turn, can lead to an over-estimate

of

~

P (V ) at the boundary. This is not a numerical problem, it has a physical meaning. It

means that the motion in a subspace bounded by PKB can be characterized only if most

initial conditions in the subspace lead approximately to the same time-averages. This

happens only if the pseudo boundaries are relatively strong, so that a typical trajectory

reaches the boundary band many times before it escapes. In that case one can expect the

motion near the boundary to be properly weighted.

A similar boundary problem occurs near the phase space V

min

and V

max

velocity bounds

(section 4.2). A particle which moves with a velocity close to these values, will be re
ected,

thus changing its velocity, only if it collides with a barrier at some small interval of phases

around t =

1

4

. The particle can undergo many collisions before this happens. In the

meantime, the motion of the particle in the phase space will be over the torus V = const.

When the particle will eventually be re
ected, its new velocity will still be relatively high,

so for a number of iterations, it will again move over a torus. The trajectory is thus

composed of intervals of motion in which the particle's velocity is constant. In order to

obtain a good estimate of

~

P (V ), the number of iterations should be much larger than any

of these intervals. The lengths of these intervals become larger and tend to in�nity when

the velocity approaches V

min

or V

max

, however, since we use some �nite resolution along

the V -axis, we do not have to reach these values but only get close to them. For example,

the probability densities,

~

P (V ), shown in Figs. 11.a{c and the numerical results shown in

Fig. 14 were computed using a resolution of �V = 0:1 along the V axis. We needed an

order of magnitude of 10

9

{10

10

iterations to obtain these results. Using a smaller number

of iterations usually led to either an over-estimate or an under-estimate of

~

P (V ) close to

these boundaries.
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Appendix B The Exact Problem

The map (2.6) does not give an exact description of the dynamics. It makes the non-

physical assumption that the barriers do not change their position but nevertheless, when

the particle hits one of them, they behave as if their velocity is given by some periodic

function. This assumption simpli�es the calculations since the particle goes through only

a single collision with the barrier and then travels exactly a distance L until it collides

with another neighboring barrier. How are the results modi�ed if we use the \exact"

map, in which the motion of the barriers is considered? In chapter 5 we see the invariant

probability densities

~

P (V ) obtained for several values of H

0

. A common feature to all

of them is their low speed behavior: for jV j smaller than some threshold value, U

s

(H

0

),

~

P (V ) = const 6= 0. This, in turn, leads to the vanishing of V

drift

(see Eqs. 4.3 and 4.4). We

claim that this is a result of the use of a \simpli�ed" map which is a bad approximation

when the speed of the particle, jV j, is of the order of v

b

, the barriers' maximum velocity,

or less.

A B

a

V

Figure 23: The exact problem: The barrier oscillates between the points A and B. The particle may

undergo several collision with the barrier before leaving the interval A{B.

We distinguish between the following three cases:

1. jV j � v

b

. The use of the simpli�ed map is well justi�ed in this case if we also assume

that L � a, where L is the spacing between the barriers and a is the amplitude of the

barriers motion. (This is indeed the case in this work since L = 100 and a =

1

4�

.) This

was shown explicitly for the Fermi map in Ref. [14], however, the same reasoning holds

here: Since jV j � v

b

, the particle goes through only a single collision each time it collides

into a barrier and since also L � a, the moment of impact is only slightly modi�ed if

we consider the motion of the barriers. The speed of the particle after a collisions also
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satis�es jV j � v

b

.

2. jV j � v

b

. This is probably the most di�cult case to handle using the exact map. The

barrier is moving between points A and B. Since jV j � v

b

, the particle may undergo several

collisions with the same barrier before being re
ected to another, i.e., before leaving the

interval between the points A and B (Fig. 23). Moreover, the motion of the barriers

becomes an important factor in determining the moment of impact. However, once the

particle was �nally re
ected to another barrier, the chances are that its new speed also

satis�es jV j � v

b

because jV j cannot become much larger than v

b

as a result of a few

collisions with the same barrier. On the other hand, if jV j becomes much smaller than

v

b

after a certain collision, then the particle will move so slowly that before leaving the

interval between A and B, a second collision with the same barrier will probably occur,

and it will regain a new speed jV j � v

b

. This is the major di�erence between the exact

problem and the simpli�ed one, in which the particle's speed may become very small

after a single collision. Generally speaking, the lower the speed that the particle acquires

after a collision with a barrier, the lower the probability that it will succeed in leaving

the interval A{B without being accelerated due to a second collision with the barrier.

Therefore, near jV j = 0,

~

P (jV j) =

~

P (V ) +

~

P (�V ) = 2

~

P (V ) is a decreasing function of

jV j.

1

In particular, while dealing with the exact map, the velocity of the particle cannot

vanish, and therefore

~

P (0) = 0 and since since we don't see any particular reason why

~

P (jV j) would not be a continuous function of jV j, we conclude that for the exact map

~

P (jV j)! 0 when jV j ! 0.

3. jV j � v

b

. To complete the last argument, let us see what happens if the speed of

the particle becomes somehow very small. The barrier is oscillating between the points

A and B while the particle slowly approaches point A (Fig. 23). The probability that

it will collide with the barrier while the last is just leaving point A is very small, and

it decreases to zero when jV j approaches zero. It is more likely that the particle will

propagate very little beyond the point A and then collide with the barrier incoming from

point B, thus being accelerated. We see that the probability of a very slow particle to be

even more decelerated, vanishes when jV j vanishes. This agrees with the above conclusion

that

~

P (jV j)! 0 when jV j ! 0.

1

When jV j ' 0, the probability that the particle crosses a barrier is very low and the map (2.6) can

be treated as the Fermi map. However, for the Fermi map

~

P (V ) =

~

P (�V ) (see section 3.2). In fact, the

arguments introduced in this appendix are valid for all H

0

values, including H

0

=1.
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The drift velocity does not vanish if

~

P (jV j) ! 0 when jV j ! 0. In order to obtain

a rough estimate of how V

drift

depends on H

0

we take the random phase approximation

(RPA) (section 4.3) results and see how they are modi�ed. The invariant probability

density

~

P

exact

(V ) (for the exact problem) di�ers from

~

P

simpli�ed

(V ) (for the simpli�ed

problem) only when V � O(v

b

). The upper limit in the integrals in Eqs. (4.2){(4.4)

changes proportionally to

p

H

0

(Eqs. (4.6)). If

p

H

0

� v

b

, then hdi

RPA

, the mean dis-

placement per collision of the particle, is slightly modi�ed:

hdi

exact

RPA

=

v

b

L

2

p

H

0

[1 +O(

v

b

p

H

0

)] (B:1)

(Compare this with Eq. (4.9).). The average time interval between two consecutive colli-

sions (with di�erent barriers) does not diverge in this case. Its value has the form

h�ti

exact

RPA

=

L ln(2

p

H

0

)

2

p

H

0

[1 +O(

v

b

p

H

0

)] +

L

2

p

H

0

[1 +O(

v

b

p

H

0

)] f(v

b

); (B:2)

where f(v

b

) is some function of v

b

, which for v

b

� 1, can be approximated by f(v

b

) '

ln(v

b

).

2

Dividing these two quantities, we �nd that the drift velocity is given by:

V

exact

drift

=

v

b

ln(2

p

H

0

) + f(v

b

)

+ g(H

0

; v

b

)O(

v

b

p

H

0

) = V

0

drift

+ V

1

drift

v

b

p

H

0

; (B:3)

where V

0

drift

=V

1

drift

� O(1) for all values of v

b

and H

0

.

2

The v

b

� 1 limit corresponds to the case when the barriers are nearly standing. The velocity of

the barrier becomes a negligible factor in determining whether the particle crosses or does not cross it,

therefore the problem is more symmetric (see Eq. (2.4)). The asymmetry parameters indeed vanish in

this limit.
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