How many drops are there in a cubic centimeter of fog if the visibility is 100 m and the fog disappears within an hour?

P. L. Kapitza

Solution:

Note: The present solution follows, in general lines, the solution of Acad. Kapitza.

1. Visibility distance:

The visual contrast ε of an object placed at a distance x from an observer follows the Lambert law

$$
\begin{equation*}
\varepsilon=\varepsilon_{0} e^{-\alpha x} \tag{1}
\end{equation*}
$$

where α is the attenuation coefficient and ε_{0} - the visual contrast of an object placed in front of the eyes:

$$
\begin{equation*}
\varepsilon_{0}=\frac{B_{b}-B_{o}}{B_{b}} \tag{2}
\end{equation*}
$$

Eq. (2) is the Weber-Fechner law, ε_{0} being a physiological quantity and B a physical one. B_{o} is the brightness of the object and B_{b} is the brightness of the background (the sky at the horizon). The maximum visual contrast is obtained for objects placed on the ground, where $B_{o}=0$, for which $\varepsilon_{0}=1$.

From (1) follows that the visibility distance is

$$
\begin{equation*}
x=\frac{1}{\alpha} \ln \frac{\varepsilon_{0}}{\varepsilon} \tag{3}
\end{equation*}
$$

This distance attains its maximum value when ε_{0} is maximal $\left(\varepsilon_{0}=1\right)$ and ε takes its minimal value $\left(\varepsilon_{\min }=3 \%\right.$ for most of the people). Under these conditions the maximum visibility distance is

$$
\begin{equation*}
L=x_{\max }=\frac{3.5}{\alpha} \tag{4}
\end{equation*}
$$

2. Attenuation coefficient

In the case of fog, the water drops concentration is small! From this two major statements emerge: a) light attenuation occurs due to scattering and not to absorption; b) Water drops scatter the light independently. So, if n is the concentration of water drops in the fog and S the attenuation cross section of light on a single drop, then

$$
\begin{equation*}
\alpha=n S \tag{5}
\end{equation*}
$$

If the light wavelength is much smaller than the drop radius R, then $S=\pi R^{2}$. If they are of the same order of magnitude, due to diffraction, this effective surface of scattering doubles. Assuming the later case, from (4) and (5) it follows that

$$
\begin{equation*}
n=\frac{3,5}{2 \pi R^{2} L} \tag{6}
\end{equation*}
$$

3. water drop radius

Assuming that the fog lasts the time t needed by water drops to reach the ground and that they fall with constant speed (their weight is counterbalanced by Stokes viscosity force) $v=H / t$, then $m g=6 \pi \eta R v$, where all these quantities have their usual meaning, or

$$
\begin{equation*}
R=\sqrt{\frac{9 \eta H}{2 \rho g t}} \tag{7}
\end{equation*}
$$

Finally, from (6) and (7) we get

$$
\begin{equation*}
n=\frac{7}{18 \pi} \frac{\rho g t}{L \eta H} \tag{8}
\end{equation*}
$$

So, taking $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{t}=3600 \mathrm{~s}, \mathrm{~L}=100 \mathrm{~m}, \eta=1.05 \cdot 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$, and $\mathrm{H}=6 \mathrm{~m}$ (this is the usual ground fog layer height according to WECA - weather glossary: www.weca.org/nws-terms.html), it follows that $\mathrm{n}=7 \mathrm{drops} / \mathrm{cm}^{3}$ and $\mathrm{R}=28 \mu \mathrm{~m}$.

