tells me that in the perhaps one dozen colloquia on the device that he has
presented in recent years, he has been presented with several different
attempts at alternative coding schemes after the lectures. “It’s great
fun,” he adds, “convincing their inventors that they can’t work. At
times I’ve had large groups of people, all shouting at each other, making
tables, diagrams, etc.” The only special merit of the examples mentioned
in Ref. 28 is that they were thought of by students.

*Suppose now, the student argued, that we change the coding/detection
scheme by reducing the critical angle to something less than 45°. Would
this improve the performance of the model by raising the proportion of
times that unequal colors are obtained on different switch settings? Cur-
iously, the answer is no. [See Fig. 2(b)]. The proportion of 33%
GG + RR, 67% GR + RG, is unchanged by changing this angle. In
addition, while the switch settings are treated symmetrically, green and
red are now on an unequal footing. This coding scheme is inferior even
to the triplet model. Another student came up with a quadruplet color
coding model, in which each photon carries four colors, some con-
strained to be unequal. An elaborate set of logic gates was devised to
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choose three for the final determination. Another suggestion again was
the encoding of each photon with three numbers, say, 0, 1, 2 in any
order, the order defining the choice of code; this triplet of numbers was
flung up against a similar triplet of different numbers in the detector
{say, 1, 2, 3), whose order was controlled by the switch setting. The
choice of color was then determined from these numbers by an algo-
rithm whose details are arbitrary, except that the manifest symmetries
should be satisfied. For example, the products in pairs could be added,
and divided by a prime; the remainder then determining the color on
some appropriate convention.

*The original Bell inequality held only within the triplet coding scheme.
Clauser and others (see Refs. 14, 15, and 18) produced a more general
inequality, relating only to observables, and clearly violated by quantum
theory (and experiment). Its proof is also easy (Ref. 14), but still involves
a level of generality which obscures the simplicity of the present case. It
shows that a device with fwo position switches would be adequate, al-
though less symmetrical.

301t is at this point that the comment of Ref. 3 has its maximal impact.
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Some easily observed, but surprising properties, of a homogeneous, circular ring or disk sliding on
a smooth horizontal surface under the action of friction are pointed out and discussed.

I. INTRODUCTION

Textbook problems dealing with friction are usually not
very exciting and seldom lead to unexpected results. We
therefore think that it may be of interest to point out some
properties of the motion of a circular ring or disk sliding on
a smooth, horizontal surface under the action of friction,
which are often found to be surprising and even paradox-
ical and therefore motivating for a theoretical investiga-
tion.

The following properties may be observed in the motion
of an ice hockey puck sliding on a horizontal ice surface
and may easily be demonstrated on a table top with any
circular, homogeneous ring or disk at hand:

(a) When started with a pure translation, the disk will
continue in a pure rectilinear translation without being set
into rotation, until it comes to rest.

(b) Likewise, when started as a pure rotation around its
center, the disk will continue to rotate while the center
remains at rest, until it stops.

(c) The time it takes for the disk to come to rest will in
both cases increase with increasing value of the initial ve-
locity.

{d) When started with a combination of translation and
rotation, the center will continue in a rectilinear motion,
until:

(e) The translation and the rotation come to a simulta-
neous stop, regardless of the initial velocities.
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The first four properties, (a)-{(d), will usually not seem
very surprising at first glance. The last property, (e}, will,
however, often be found surprising because one, on the ba-
sis of the first four properties, will be inclined to expect the
stopping times for translation and rotation generally to be
different. This false expectation clearly stems from, and
would be justified under, the assumption that the transla-
tional and rotational motions are independent. One is easi-
ly induced, more or less consciously, to this assumption
because it would account for the observed properties (a),
(b), and (d). In Sec. I, however, it is seen from the equations
of motion that the assumption of independence does not
hold, but that the translational and rotational motions are
strongly coupled. It is also shown, by a simple argument,
that the effect of the coupling is to increase the stopping
times for both translation and rotation. But why these in-
creases in stopping times should be such that they always
become equal remains an open question until it is treated in
Sec. VI.

Having realized the coupling between the translational
and rotational motions, the properties (a), (b), and (d) will
no longer seem obvious, but will call for an explanation. We
shall, therefore, first, in Secs. III-V, establish the condi-
tions under which these properties should hold.

In Sec. VI we shall show the equality of stopping times
for translation and rotation in a composite motion. In this
connection we shall show the existence of a particular, rol-
linglike motion which also is approached in the final stages
of all composite motions, regardless of initial velocities.
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II. BASIC EQUATIONS

We shall generally consider a thin slate of arbitrary
shape and distribution of mass that slides on a smooth,
horizontal surface. We assume that on each infinitesimal
element of the slate there acts a force of friction

dF = — ugdmii, (1)

where u is the coefficient of friction, g is the acceleration of
gravity, dm is the mass of the element, and ii is the unit
vector in the direction of its velocity u. The velocity u may
be expressed as

u=v+ oXr, (2)

where vis the velocity of the center of mass, o is the angular
velocity of the slate, and r is the position vector of the ele-
ment from the center of mass. Newton’s 2nd law then gives

F=de= — pg | idm = mv, (3)

where m is the mass of the slate. The law of angular mo-
mentum likewise gives

-r=fr)<dF= —-,ugjrxﬁdm = lo, (4)

where 7 is the torque of the forces of friction around the
center of mass and [/ is the moment of inertia around the
axis through this point.

When we substitute Eq. (2) into Egs. (3) and (4) we see
easily that the translational and rotational motions are
strongly coupled. We realize also that F is maximal in a
pure translation and that 7 is maximal in a pure rotation.
Since the stopping times for translation and rotation must
decrease with increasing values of F and 7, respectively, it
follows that in a composite motion the stopping times must
be larger than in the corresponding cases of pure transla-
tion and pure rotation. But, it is not clear why the increases
in stopping times should be such that they always become
equal to each other. We shall return to this question in Sec.
VL

Another consequence of the coupling is that the proper-
ties (a), (b), and in particular (d), no longer seem obvious.
Why does, for instance, the center of the disk move in a
straight line, even when the disk is rotating? We shall there-
fore establish the conditions under which these properties
should hold before we return to the question of the equality
of stopping times.

IT1. PURE TRANSLATION
If we put @ = 0 in the expression F and = in Egs. (3) and
(4) and use the equation fr dm =0, we find @ = 0 and
V= —pugl, (5)

where ¥ is the unit vector in the direction of v. We see that a
slate that starts with a pure translation will continue with a
pure, rectilinear translation without being put into rotation
[property (a)]. From Eq. (5) we find for the stopping time

T = vo/(ug), (6)
where v, is the initial velocity.

It should be noted that no assumptions on the shape or
distribution of mass of the slate have been made.
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IV. PURE ROTATION
If we put v = 0 in the expression for F in Eq. (3), we find
F= —pugd fo dm = my, (7

where @ and T are unit vectors in the directions of ® and r,
respectively. The force is seen to vanish if

f tdm = 0. 8)

A motion that is started as a pure rotation around the cen-
ter of mass will in this case remain a pure rotation until it
stops. The property (b) will therefore hold for the restricted
class of slates defined by Eq. (8). This class includes homo-
geneous, circular rings and disks and all slates with rota-
tional symmetry. It also includes thin, straight rods, and
quite generally it consists of slates where the distribution of
mass is such that a displacement of its elements in the direc-
tion of the center of mass to the same distance from it will
leave the center of mass unmoved.

One might ask whether a pure rotation around a fixed
point other than the center of mass is possible. In this case,
the center of mass would have to move in a circle, which
would require a centripetal force equal to me?p, where p is
the radius of the circle. We see that as the angular velocity
would decrease due to friction, so would the centripetal
force have to decrease. But, it is clear from Eq. (1) that the
force of friction is independent of @ and this force will
therefore not be able to sustain the motion. A pure rotation
will therefore be possible only around the center of mass or
not at all.

If we put v = 0 in the expression for = in Eq. (4), we find

Q= — (}‘Tg)frdm. 9

For a homogeneous, circular ring with radius R, when we
introduce w = wR, this gives

w=oR = —pug. (10)
This gives the stopping time for a pure rotation
T = wy/(ug), (11)

where w,, is the inital value of w. Comparison with Eq. (6)
shows that the stopping times for translation and rotation
are equal when the initial values v, and w, are equal.

For a homogeneous disk we find likewise that

w= —($ug, (12)
which gives the stopping time
T = (wo/ (ug)- (13)

V. RECTILINEARITY OF TRANSLATION IN
COMPOSITE MOTION

We consider first a homogeneous, circular ring which at
a given time has an angular velocity @ in the clockwise
direction and a translational velocity v in the x direction of
Fig. 1. From Eq. (3) we find the component of F in the y
direction to be zero:
27
F, =§g—f wsin @ (> + w? + 2vwcos @)~ 2 dp =0,
m Jo
(14)

i.e., that the center will continue to move in the x direction.
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dF

Fig. 1. The force of friction dF on an infinitesimal element of a circular
ring.

The same result will clearly hold for all slates with a rota-
tionally symmetric distribution of mass, including homo-
geneous disks. The rotational symmetry is essential for this
result. Consider, for instance, a thin, homogeneous rod
with a length 2R that at a given instant makes an angle ¢
with the y axis while the center has a velocity v in the x
direction. We find in this case

’

R
F, =2 ugsin f dr
y 2R'ug P R wr
X (v? + @’ + 2vwr cos ¢ )~ 12, (15)

which is seen to vanish only when ¢ = 0, 7/2, , or 37/2.
The center of a rotating rod will therefore not move along a
straight line. The class of slates for which property (d) holds
is therefore even more restricted than the class for which
property (b) holds.

VI. EQUALITY OF STOPPING TIMES AND FINAL
STAGES OF COMPOSITE MOTIONS

We shall now return to the question of the equality of
stopping times in composite motions and will first consider
the homogeneous, circular ring. Equations (3) and (4) give
for this case

2
F_ —&J‘ (v + w cos @ J(v* + w*
m 27 Jo

+2owecosp) V2dp =1v (16)
and
27

L=——ﬂf w + v cos @ )(¥? + w?
mR 27 Jo ( 2

+2vwcos @)~ 2 dp = . (17)
We shall consider the ratio w/v and have generally

£0)-(-2): "

By means of Eqgs. (16) and (17) we get

2)(2)- (o=t (2) ) [

X [1 + (%)2 + 2(%) cos ¢]-”2 dgp. (19)

We see from Eq. (19) that w/v will be stationary if w/v = 1.
Kinematically this motion may be described as a pure roll-
ing of the ring along a tangent line. From Egs. (16) and (17)
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Fig. 2. The rotation velocity w = wr as a function of the translation veloc-
ity v for various initial conditions.

we find in this case that
bV=w= —(2/mug, (20)
which gives the stopping time

(21)

where v, = w, are the initial velocities of v and w. The stop-
ping time is seen to be larger than the corresponding stop-
ping times for the cases of pure translation and pure rota-
tion given by Egs. (6) and (11), respectively, in accordance
with the general result in Sec. IL

We find generally the integral in Eq. (19) to be negative
when we assume v and w to be positive. Thus we get that
d (w/v)/dt20according to whether w/v< 1. It follows that if
we/vg < 1, w/v will increase but not exceed unity. Since w
and v both decrease with time, it follows that they must
vanish simultaneously, as illustrated in Fig. 2. A corrre-
sponding argument holds when w,/v,> 1. It follows that
for all composite motions the translational and rotational
motions will stop simultaneously, regardless of initial ve-
locities.

It is interesting to consider the final stages of composite
motions. Since v and w approach zero simultaneously, we
have

lim (w/v) = lim (w/?). (22)
Thus by taking the limit of Eq. (19) when v,w—0, we get the
result

lim (w/v) =1, (23)
which shows that in the final stage all composite motions
will approach the pure rollinglike motion described earlier.

In Fig. 2 w is shown as a function of v for various initial

velocities, based upon numerical integration of the follow-
ing, which is obtained from Egs. (16) and (17):

([ +eme]lr+(2)
#2%)eosg | ][ [(2) +eme]
X[l+(i—)2+2(i—)cos¢ —lndw]_l. (24)

K. Voyenli and E. Eriksen 1151



Fig. 3. The rollinglike motion of an ice hockey puck. Ry~0.65 R.

The projective character and the (v,w) symmetry of Eq. (24)
and the integral curves should be noted. The curves v = 0,
w = 0, and w = v correspond to the cases of pure rotation,
pure translation, and pure rolling, respectively.

A similar treatment of the homogeneous disk is given in
the Appendix and leads to similar results. In particular, it is
shown that the stopping times for the translational and
rotational motions also in this case will be equal and that
the ratio w/v approaches a stationary value a~1.53. This
motion may be described as a pure rolling of a circle with a
radius R, = R /a~0.65 R along a tangent line (Fig. 3).

The equality of stopping times may also be shown by an
alternative argument of a more general character. The ar-
gument is based upon the familiar uniqueness property of
the dynamical equations: that initial conditions that spe-
cify the position and velocities of a mechanical system will
normally be sufficient for a unique determination of the
future, as well as past, motion of the system. Let us consider
a composite motion of a slate and assume that its rotation
were to stop at a given time #;, before the translation stops.
The slate would then at the time #, be in a state of pure
translation with velocities o, = 0 and v,50. We may con-
sider this state as an initial state, but we know from our
previous treatment in Sec. I11I that a pure translation before
and after r, will satisfy the dynamical equations as well as
the “initial” conditions. According to the uniqueness prop-
erty the former, assumed motion will be impossible and the
rotation can therefore not stop before the translation stops.
By a similar argument it may be shown that neither can the
translation stop before the rotation stops. The stopping
times must therefore be equal.

An objection to this argument is that it clearly does not
hold for the “initial” condition v, = w, = O since this is, in
fact, the final state of all motions. Ought we not to expect
the argument to fail also for initial states where v, or @,
vanish? The answer is that the force of friction and its
torque have a discontinuity at the point v = @ = 0, which
violates the conditions for the uniqueness property to hold.
At all other points, including the axes v = 0 and @ = 0, the
force and the torque are continuous and satisfy the unique-
ness conditions. If one, on the other hand, again makes the
false assumption that the translational and rotational mo-
tions are independent, there will be discontinuities also on
the axes and our argument would fail. The coupling there-
fore plays an essential role also in this argument for the
equality of stopping times.

VII. CONCLUSION

The seemingly paradoxical character of the properties
(a)~(d) is seen to be caused by the easily induced, but false
assumption that the translational and rotational motions of
the disk are independent. The properties have been found
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to be in full agreement with the dynamical equations, and
their range of validity has been established. In addition, we
have shown the existence of a pure rollinglike motion and
that this motion is approached in the final stages of all
composite motions.

APPENDIX

For the case of the homogeneous disk, Eq. (3), when we
introduce polar coordinates (r,p ) gives

21 R
b= _ﬂ%f d:pJ drrlv 4+ wrcos @)~V
7R * Jo 0
X (1% 4+ 0’P + 2vor cos @ ) "2 (A1)
Likewise, Eq. (4) gives
. 2ﬂg 27 R r2
a)=——7;1? X dp X drrilwr+vcosg)
X (v + 0*r* + 2ver cos @)~ /2. (A2)

Introducing w = wR and s = wr/v, Eq. (A1) may be writ-
ten as

()3 o)

where
w 2T w/v
G(—):J- d:pf dss(l +scosg)
v 0 0
X(14+ 52+ 2s5cosg)!/? (Ad)
Likewise, we may write Eq. (A2) as

- (20)Spu(2)

where

2 w/v
H(—Lﬂ) = f dy f ds s*(s + cos @)
v 0 0

X (145> +2scos@)™ /2 (A6)
From Egs. (A3) and (A5) we find

)E)-E-2-(E)1)
o))

We find that w/v has a stationary value a defined by
G(a)—2a™*H (a)=0, (A8)

which gives numerically a~1.53. The motion may be
described as a pure rolling of a circle with a radius
R, =R /a~0.65 R and concentric with the disk, along a
tangent line. From Egs. (A3) and (A5) we find in this case

v=a'w= —(B/mug, (A9)
where
B=a"2G(a)=2a*H (a)=~193. (A10)
This gives the stopping time
T=""Y _ T Wo (A11)
B ug apfpg

where v, and w, are the initial velocities. The stopping time
is seen to be larger than the stopping times for pure transla-
tion and pure rotation given by Egs. (6) and (13), respective-
ly, in accordance with the result of Sec. II.
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It may further be shown that

of2) sy

according to whether w/vsa. If wand v are positive, it then
follows from Eq. (A7) that d(w/v)dt20 according to
whether (w/v)sa. By the same argument as we used in the
case of the ring in Sec. VI, it then follows that for all com-
posite motions of the disk, the stopping times for the trans-
lational and the rotational motions must be equal, regard-

(A13)

less of the initial velocities. It also follows by the same
argument that all composite motions in the final stage will
approach a motion which is a pure rolling of a circle of
radius ~0.65 R along a tangent line.
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We examine a well-known thought experiment often used to explain why we should expect a ray
of light to be bent by gravity; according to this the light bends downward in the gravitational field
because this is just what an observer would see if there were no field and he were accelerating
upward instead. We show that this description of the action of Newtonian gravity in a flat space-
time corresponds to an old two-index symmetric tensor field theory of gravitation.

L. INTRODUCTION

There is a well-known thought experiment which shows
why we should expect a ray of light to be bent by gravity.
This elegant argument, which might be called the acceler-
ating-elevator thought experiment, appears in the popular
book by Einstein and Infeld, The Evolution of Physics;' it
seems to be one of the most frequently reproduced in phys-
ics, both in the technical literature and in elementary expo-
sitions. According to the argument, light bends in the gra-
vitational field because this is just what an observer would
see if there were no gravitational field and if he were accel-
erating upward instead. The bending of the light appears as
an abberation effect. Since the background of this thought
experiment is flat space-time, it is not the complete expla-
nation as given by general relativity nor, presumably, was it
meant to be. Because of its ubiquity, however, it is interest-
ing to'inquire if the argument is equivalent to some field
theory of gravitation in flat space-time, and, if there is such
a theory, just what its predictions are, for example, for the
three main tests of general relativity.

In this paper we analyze the motion of a relativistic parti-
clein a Newtonian gravitational field by using the principle
of equivalence in this way; we obtain the equations of mo-
tion of a relativistic particle by examining what happens as
the particle moves across a differential-sized accelerating
elevator, and we show that the thought experiment is equi-
valent to the description of gravitation by means of a two-
index symmetric tensor field theory. The Lorentz covar-
iant equations of motion we obtain resemble the linearized
geodesic equations of motion of general relativity. Many
theories of gravitation have been proposed over the years as
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model theories or as rivals of general relativity. The parti-
cular theory which arises here is, in fact, one originally
proposed in 1942 by Birkhoff.?

In Sec. II we consider the Kepler problem for a relativis-
tic particle of rest mass m >0, carry out the equivalence-
principle argument quantitatively, and obtain the differen-
tial equations of motion of the particle. In Sec. III we
obtain the corresponding Lorentz covariant field theory of
gravitation. In Sec. IV we comment briefly on the theory.

For the so-called three main tests of general relativity,
namely the gravitational red shift, the deflection of light by
gravity, and the advance of the planetary perihelion, the
theory gives, respectively, the same result, one-half the re-
sult, and one-third the result of general relativity: (In con-
nection with these predictions, however, see Birkhoff’s
original paper and the remarks in Sec. IV.)

That such results for the main tests can be obtained using
special relativity seems to be part of the folklore of the
subject, but we do not think that the appearance of sym-
metric two-index tensor fields in the description of gravita-
tion is generally known to arise so naturally, short of gen-
eral relativity.

I1. THE EQUATIONS OF MOTION

We consider the motion of a particle of rest mass m > 0 in
the gravitational field of the sun. By symmetry, thé motion
is in a plane passing through the center of the sun, and we
take polar coordinates 7, 8 in this plane with this point as
origin. We are interested in the bending of the path of the
particle as it moves from a point @ = (»,6) to the point
Q' = (r+dr,0 + df). Letdo be thedistancefrom Q to Q.
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