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1 Problem

If one pitches a penny into a large magnet, eddy currents are induced in the penny, and
their interaction with the magnetic field results in a repulsive force, according to Lenz’ law.
Estimate the minimum velocity needed for a penny to enter a long, 1-T solenoid magnet
whose diameter is 0.1 m.

You may suppose that the penny moves so that its axis always coincides with that of
the magnet, and that gravity may be ignored. The speed of the penny is low enough that
the magnetic field caused by the eddy currents may be neglected compared to that of the
solenoid. Equivalently, you may assume that the magnetic diffusion time is small.

2 Solution

The penny has radius a and thickness ∆z. For the motion as stated in the problem, the
eddy current will flow in concentric rings about the center of the disk. Therefore, we first
examine a ring of radius r and radial extent ∆r.

The magnetic flux through the ring at position z is

Φ ≈ πr2Bz(0, z), (1)

whose time rate of change is
Φ̇ = πr2Ḃz = πr2B′

zv, (2)

where ˙ indicates differentiation with respect to time, ′ is differentiation with respect to z,
Bz stands for Bz(0, z), and v is the velocity of the center of mass of the ring.

The penny has electrical conductivity σ. Its resistance to currents around the ring is

R =
2πr

σ∆r∆z
, (3)

so the (absolute value of the) induced current is

I =
E
R

=
Φ̇

R
=

σrB′
zv∆r∆z

2
, (4)

(in MKSA units).
The azimuthal eddy current interacts with the radial component of the magnetic field to

produce the axial retarding force. Close to the magnetic axis, we estimate the radial field in
term of the axial field according to

Br(r, z) ≈ r
∂Br(0, z)

∂r
= −r

2

∂Bz(0, z)

∂z
≡ −rB′

z

2
, (5)
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as can be deduced from the Maxwell equation ∇ ·B = 0, noting that on the magnetic axis
∂Br/∂r = ∂Bx/∂x = ∂By/∂y. Then, the retarding force on the ring is

∆Fz = 2πrBrI = −πσr2BrB
′
zv∆r∆z ≈ −πσr3(B′

z)
2v∆r∆z

2
. (6)

Alternatively, we note that the kinetic energy lost by the penny appears as Joule heating.
Hence, for the ring analyzed above,

v∆Fz =
dU

dt
= −I2R = −πσr3(B′

z)
2v2∆r∆z

2
, (7)

using eqs. (3) and (4), which agains leads to eq. (6).
The equation of motion of the ring is

dFz = −πσr3(B′
z)

2v∆r∆z

2
= mv̇ = 2πρr∆r∆z v′v, (8)

where ρ is the mass density of the metal. We integrate this equation with respect to radius
to find

−πσa4(B′
z)

2v∆z

8
= πρa2∆z v′v, (9)

After dividing out the common factor πa2∆z v, we find

v′ = −σa2(B′
z)

2

8ρ
. (10)

For an estimate, we note that the peak gradient of the axial field of a solenoid of diameter
D is about B0/D, and the gradient is significant over a region ∆z ≈ D. Hence, on entering
a solenoid the jet velocity is reduced by

∆v ≈ σa2B2
0

8ρD
. (11)

The penny must have initial velocity v0 > ∆v to enter the magnet.
A copper penny has a ≈ 1 cm = 10−2 m, density ≈ 10 g/cm3 = 104 kg/m4, electrical

resistivity ≈ 10−6 Ω-cm, and therefore conductivity ≈ 108 MKSA units. The minimum
velocity to enter a 1-T magnet with diameter D = 0.1 m is then,

vmin ≈ 108 · (10−2)2 · 12

8 · 104 · 0.1 ≈ 1 m/s. (12)
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