Meteorites - Problem 06/03

John G. Florakis *

University of Athens, Physics Department Section of Astrophysics, Astronomy, and Mechanics Panepistimiopolis, Ilisia GR-15783, Athens, Greece

Abstract

What is the cumulative effect of all the meteorites that fell on the Earth during the last billion years on the length of a day? Did it become longer or shorter? By how much?

1 Meteorites

We denote the average mass of a meteorite by m and we assume that the number of meteorites that fall -on average- every year is $1/\tau$ (where is the elapsed time between 2 successive hits). Thus, the mass of the Earth increases at an -almost- constant rate $\lambda = dM/dt = m/\tau$. From that assumption, it is evident that the Earth's mass as a function of time is $M(t) = M_0 + \lambda t$, where M_0 is the mass at t = 0.

The moment of inertia of the Earth is $I = (2/5)MR^2$, since the Earth can be approximated by a sphere. Then, the Earth's angular momentum changes at time t before it is hit by a meteor of mass dM, is:

$$\mathbf{L}(t) = \frac{2}{5}MR^2\omega + (dM)vR\sin\phi, \qquad (1.1)$$

where v is the velocity of the meteorite and ϕ is the latitude of the impact point. The angular momentum at time t + dt after the impact is:

$$\mathbf{L}(t+dt) = \frac{2}{5}(M+dM)(\omega+d\omega) = \frac{2}{5}MR^2\omega + \frac{2}{5}(dM)R^2\omega + \frac{2}{5}MR^2d\omega.$$
(1.2)

Thus, the rate of change of the angular momentum, which equals the torque, is:

$$\dot{\mathbf{L}} = \mathbf{N} = \frac{2}{5}\dot{M}R^2\omega + \frac{2}{5}MR^2\dot{\omega} - \dot{M}vR\sin\phi.$$
(1.3)

 $[*]e\text{-mail:sniper_700@hotmail.com}$

Taking the average over all the impact points, and assuming the absence of external torque, we have:

$$\dot{M}R^2\omega = -MR^2\dot{\omega},\tag{1.4}$$

which can be integrated to yield:

$$\omega = \omega_0 \left(1 - \lambda t / M_0 \right). \tag{1.5}$$

Solving for the relative increase in the period, we find:

$$\frac{\Delta T}{T_0} = \frac{1}{\frac{M_0}{\lambda t} - 1},$$
(1.6)

where M_0 is the mass of the Earth at t = 0, which is equal to $M_0 = M_{\oplus} - \lambda t$ (M_{\oplus} is the mass of Earth now). Thus, we have,

$$\frac{\Delta T}{T_0} = \frac{1}{\frac{M_{\oplus}}{\lambda t} - 2} \approx \frac{m}{M_{\oplus}} \frac{t}{\tau}.$$
(1.7)

Substituting typical values for large meteorites $m \approx 9 \cdot 10^1$ kgr, $M_{\oplus} \approx 6 \cdot 10^{24}$ kgr, $t \approx 10^9$ years and $\tau \approx 10^{-2}$ years, we find $\Delta T/T_0 \approx 10^{-12}$. This corresponds to an increase in the period of rotation of order 10^{-5} sec.