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Abstract

Calculation of maximal time of observed “equilibrium” of a pencil, taking Quan-
tum and Thermal effects into account.

1 Quantum Effects

We first consider the case of a particle, described by a Hamiltonian

H =
p2

θ

2m
+ mgl cos θ, (1.1)

where pθ = ml2θ̇ is the particle’s angular momentum. The pencil’s mass m is assumed to
be concentrated at the end of a rod with length l. The initial conditions are θ(0) ≡ θ0 and
θ̇(0) ≡ θ̇0. We assume the initial conditions to be restricted by Heisenberg’s Uncertainty
Principle:

(∆pθ)0(∆θ)0 ≥ ~/2, (1.2)

which in our case, yields:
θ0θ̇0 ≥ ~/(2ml2). (1.3)

We assume those initial conditions allowed by the Uncertainty Principle, which are closest
to the desired classical equilibrium conditions θ0 = θ̇0 = 0, and we will move on to
calculate how much time it will take until the pencil assumes an angle which -being
observed by the naked eye- will be considered as the end of the equilibrium. We expect
this final angle to be very small, of the order θ1 ∼ 0.1 radians.
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Therefore, for small angles, the equation of motion becomes:

ṗθ = −∂H

∂θ
= mgl sin θ ≈ mglθ = ml2θ̈. (1.4)

Rearranging terms, gives:
θ̈ − ω2θ = 0, (1.5)

where ω2 = g/l. Solving for the angle is trivial, and yields:

θ(t) = c1e
ωt + c2e

−ωt, (1.6)

where:
c1 = 1

2
(θ0 + θ̇0/ω)

c1 = 1
2
(θ0 + θ̇0/ω)

}
(1.7)

Solving eq. 1.6) for the elapsed time τ until θ takes the final value θ1 gives:

eωτ =
1

2c1

[
θ1 +

√
θ2
1 − (θ2

0 − θ̇2
0/ω

2)

]
. (1.8)

We notice that the maximal time τ corresponds to the minimum values of θ0 and θ̇0

allowed by the Uncertainty Principle. We thus expect them to be of the order given by
the (=) in the Uncertainty Relation eq. (1.3) and they can, thus, be neglected compared
to θ1. Therefore, eq. (1.8) becomes

eωτ ≈ 1

2c1

[
θ1 +

√
θ2
1)

]
=

θ1

c1

. (1.9)

Evidently, for τ to take its maximum value, c1 should be assume its minimum value. By
assuming that the equality in the Uncertainty Relation holds θ̇0 = ~/2ml2θ0, it is easy
to minimize c1 as a function of θ0:

2c1(θ0) = θ0 +
~

2ml2ωθ0

, (1.10)

and obtain:

θ0 =

√
~

2ml2ω
. (1.11)

Using this value for θ0 in order to calculate c1 and inserting the latter to eq. (1.9), we
get:

τ =

√
l

g
ln

{
θ1

√
2mgl2ω

~

}
. (1.12)

Typical values for the pencil are ∼ 10 cm length and ∼ 10 gr mass. If we consider θ1 to
be ∼ 0.1 radians, we have τquantum ≈ 3.47 sec.
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2 Thermal Effects

Again, we initiate from the Hamiltonian of the problem, eq. (1.1). From the Classical
Theorem for the Equipartition of Energy to the degrees of freedom, we get

〈
p2

θ

〉
= mkT, (2.1)

which gives: 〈
θ̇2

〉
=

kT

ml2
. (2.2)

Thus, the initial conditions can be assumed to be:

θ0 = 0 (2.3)

θ̇0 =

√
kT

ml2
, (2.4)

in which case, the constants of integration become:

c1 = −c2 =
θ̇0

2ω
. (2.5)

Solving for the elapsed time, gives:

eωτ =
θ1

2c1


1 +

√
1 + 4

(
c1

θ1

)2

 . (2.6)

Since c1/θ1 ¿ 1, we have:

τ ≈ 1

ω
ln

(
θ1

c1

)
. (2.7)

Using the value obtained for θ̇1, we have:

τ =

√
l

g
ln

{
2θ1

√
mgl

kT

}
. (2.8)

Using the same typical values as before and kT ∼ 4 · 10−21 Joules, we find τthermal ≈ 1.95
sec.

The results can be generalized to the form:

τ ≈
√

l

g
ln

{
θ1

√
2mgl

E0

}
, (2.9)

where E0 is the mean energy corresponding to 1 degree of freedom (in the Classical case)
or to 1 quantum of energy (in the Quantum case).
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From this point of view, for the Quantum Restrictions treated in Section (1), 1 quan-
tum of energy corresponds to E0 = ~ω, because the “frequency” ω of the “oscillations”
is the same in Quantum physics, from Bohr’s Correspondence Principle (i.e. unaffected
by large quantum numbers), thus:

τquantum ≈
√

l

g
ln

{
θ1

√
2mgl

~ω

}
, (2.10)

which is identical to eq. (1.12). Through this generalization, the case of thermal ra-
diation could also be examined. In this case, E0 = hc/λ, where λ is the wavelength
corresponding to a maximum in Planck’s distribution of radiation. Through Wien’s
Law, this wavelength can be substituted for the temperature of the radiating source.
Other approximations are also possible, mainly in the form of perturbations, but they
will not be discussed here.
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