# Dipole in Shell 

Kirk T. McDonald<br>Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(October 2, 2001)

## 1 Problem

What is the (vector) electric field strength at the center of a spherical cavity of radius $a$ in a grounded conductor if a point dipole $\mathbf{p}$ is placed at distance $b(0<b<a)$ from the center so as to make angle $\alpha$ to a radius vector?


## 2 Solution

This problem is from Yakov Kantor's Physics Quiz site, http://star.tau.ac.il/QUIZ/
We solve via the image method for spherical geometry. Recall that a charge $q$ at radius $b<a$ results in an image charge $q^{\prime}$ at $a^{2} / b$, such that the potential at $r=a$ vanishes:

$$
\begin{equation*}
\phi(r=a)=0=\frac{q}{a-b}+\frac{q^{\prime}}{a^{2} / b-a}=\frac{q}{a-b}+\frac{q^{\prime} b / a}{a-b} \tag{1}
\end{equation*}
$$

and hence $q^{\prime}=-q a / b$.
For the present case of a point dipole $\mathbf{p}$, we can think of this as due to charges $\pm q$ separated by distance $\delta=q / p$, with the charge $-q$ at radius $b$ and the charge $+q$ at radius $b+\delta \cos \alpha$ as shown below.

The image transformation $r \rightarrow a^{2} / r$ is conformal (angle preserving), so the triangle formed by the center of the sphere and charges $\pm q$ is similar to that formed by the center and the image charges $q^{\prime}$ and $q^{\prime \prime}$. Image charge $q^{\prime}=+q a / b$ is at distance $a^{2} / b$ from the center. Hence, the distance between the two image charges is

$$
\begin{equation*}
\delta^{\prime}=\delta \frac{a^{2}}{b^{2}} \tag{2}
\end{equation*}
$$



The image charge $q^{\prime \prime}$ has value

$$
\begin{equation*}
q^{\prime \prime}=-q \frac{a}{b+\delta \cos \alpha} \approx-q \frac{a}{b}+q \delta \cos \alpha \frac{a}{b^{2}} . \tag{3}
\end{equation*}
$$

Thus, taking the limit $\delta \rightarrow 0, q \rightarrow \infty$ such that $q \delta=p$, the two image charges can be thought of as a dipole of strength

$$
\begin{equation*}
p^{\prime}=-q \frac{a}{b} \delta \frac{a^{2}}{b^{2}}=-p \frac{a^{3}}{b^{3}} \tag{4}
\end{equation*}
$$

at angle $\alpha$ to the radius vector as shown above, plus an additional charge of magnitude

$$
\begin{equation*}
q^{\prime \prime \prime}=p \frac{a}{b^{2}} \cos \alpha \tag{5}
\end{equation*}
$$

located at distance $a^{2} / b$ from the center. If $\alpha= \pm \pi / 2$, the image of the dipole $\mathbf{p}$ is a pure dipole.

To calculate the electric field at the center, we recall that the field of a point dipole $\mathbf{p}$ is

$$
\begin{equation*}
\mathbf{E}=\frac{3(\mathbf{p} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}-\mathbf{p}}{r^{3}} \tag{6}
\end{equation*}
$$

where $\mathbf{r}$ points from the dipole to the observer. In the present problem, we define $\hat{\mathbf{z}}$ to point from the center to the dipoles, so $\hat{\mathbf{r}}=-\hat{\mathbf{z}}$. Dipole $\mathbf{p}$ is taken to lie in the $x-z$ plane, so that

$$
\begin{equation*}
\mathbf{p}=p \hat{\mathbf{z}} \cos \alpha+p \hat{\mathbf{x}} \sin \alpha \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{p}^{\prime}=p \frac{a^{3}}{b^{3}} \hat{\mathbf{z}} \cos \alpha-p \frac{a^{3}}{b^{3}} \hat{\mathbf{x}} \sin \alpha \tag{8}
\end{equation*}
$$

Then, the field at the center of the cavity due to the dipole, and its image dipole + extra charge $q^{\prime \prime \prime}$ is

$$
\begin{align*}
\mathbf{E}(0) & =\frac{3(\mathbf{p} \cdot \hat{\mathbf{z}}) \hat{\mathbf{z}}-\mathbf{p}}{b^{3}}+\frac{3\left(\mathbf{p}^{\prime} \cdot \hat{\mathbf{z}}\right) \hat{\mathbf{z}}-\mathbf{p}^{\prime}}{\left(a^{2} / b\right)^{3}}-\frac{q^{\prime \prime \prime} \hat{\mathbf{z}}}{\left(a^{2} / b\right)^{2}} \\
& =\frac{2 p \hat{\mathbf{z}} \cos \alpha-p \hat{\mathbf{x}} \sin \alpha}{b^{3}}+\frac{2 p \hat{\mathbf{z}} \cos \alpha+p \hat{\mathbf{x}} \sin \alpha}{a^{3}}-\frac{p \hat{\mathbf{z}} \cos \alpha}{a^{3}} \\
& =p \hat{\mathbf{z}} \cos \alpha\left(\frac{2}{b^{3}}+\frac{1}{a^{3}}\right)-p \hat{\mathbf{x}} \sin \alpha\left(\frac{1}{b^{3}}-\frac{1}{a^{3}}\right) . \tag{9}
\end{align*}
$$

