
 
 
Period of a pendulum depends only on its length only for very small oscillations. For 
large oscillations the period depends on the amplitude. Such amplitude-dependence can 
be eliminated by making the string of the pendulum (shown in red) to rap around a 
limiting curve (shown in blue). What is the shape of this curve? 
 
Solution: 
 
Let us suppose that a particle with mass m is moving without friction on the vertical concave 
curve in the figure below, in a uniform gravitational field with the intensity g, with the initial 
conditions: at t = 0, x = 0, y = 0 and vy = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The equation of motion for the particle is: 
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In order to obtain the same equation as in the case of a mathematic pendulum 
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it follows that 
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where l is the length of the pendulum. From (1) we get 
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where we used the initial conditions. 
But     θcosdsdx =       (3) 
From (1) and (3) it follows that θθdldx 2cos= , 
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With the notations: φ=2θ and l=4R, eqs. (2) and (4) will give the parametric equations of the 
trajectory: 
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Eqs. (5) are the parametric eqs. of a cycloid (red curve). Under these conditions, the period of 

this cycloidal pendulum is  
g
R

g
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(green curve) is that of a cycloid’s evolute. 


