A Conducting Checkerboard

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(October 4, 2001)

1 Problem

Some biological systems consist of two “phases” of nearly square fiber bundles of differing
thermal and electrical conductivities. Consider a circular region of radius a near a corner of
such a system as shown below.

Phase 1, with electrical conductivity oy, occupies the “bowtie” region of angle +«, while
phase 2, with conductivity o, < 071, occupies the remaining region.

Deduce the approximate form of lines of current density j when a background electric
field is applied along the symmetry axis of phase 1. What is the effective conductivity o of
the system, defined by the relation I = 0 A¢ between the total current I and the potential
difference A¢ across the system?

It suffices to consider the case that the boundary arc (r = a, |0] < «) is held at electric
potential ¢ = 1, while the arc (r = a,m — a < || < 7) is held at electric potential ¢ = —1,
and no current flows across the remainder of the boundary.

Hint: When oy < 01, the electric potential is well described by the leading term of a
series expansion.

Remarks: The series expansion approach is unsuccessful in treating the full problem of
a “checkerboard” array of two phases if those phases meet in sharp corners as shown above.
However, an analytic form for the electric potential of a two-phase (and also a four-phase)
checkerboard can be obtained using conformal mapping of certain elliptic functions [1]. If
the regions of one phase are completely surrounded by the other phase, rather lengthy series
expansions for the potential can be given [2]. The present problem is based on work by
Grimvall [3] and Keller [4].



2 Solution

In the steady state, the electric field obeys V x E = 0, so that E can be deduced from a
scalar potential ¢ via E = —V¢. The steady current density obeys V - j = 0, and is related
to the electric field by Ohm’s law, j = ocE. Hence, within regions of uniform conductivity,
V-E = 0 and V?¢ = 0. Thus, we seek solutions to Laplace’s equations in the four regions of
uniform conductivity, subject to the stated boundary conditions at the outer radius, as well
as the matching conditions that ¢, E, and j, are continuous at the boundaries between the
regions.

We analyze this two-dimensional problem in a cylindrical coordinate system (r, ) with
origin at the corner between the phases and ¢ = 0 along the radius vector that bisects the
region whose potential is unity at » = a. The four regions of uniform conductivity are labeled
I, II, Il and IV as shown below.

Since j, = j, = oFE, = —00¢/0r at the outer boundary, the boundary conditions at
r = a can be written
¢i(r=a) = 1, (1)
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Likewise, the condition that j, = jy = 0 Ey = —(0/1r)0¢/00 is continuous at the boundaries
between the regions can be written
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etc.

From the symmetry of the problem we see that



¢(m —0) = —¢(0), (7)

and in particular ¢(r = 0) =0 = ¢(0 = £7/2).

We recall that two-dimensional solutions to Laplace’s equations in cylindrical coordinates
involve sums of products of r** and e**?_ where k is the separation constant that in general
can take on a sequence of values. Since the potential is zero at the origin, the radial function
is only 7%. The symmetry condition (6) suggests that the angular functions for region I be
written as cos kf, while the symmetry condition (7) suggests that we use sink(7/2 — 0) in
regions ] and IV and cos k(m — @) in region I11. That is, we consider the series expansions

or = Z Apr® cos k6, (8)
¢rr=dry = > Bprfsink (72r - 0) , (9)
orr = — Y AprFeosk(m — 0). (10)

The potential must be continuous at the boundaries between the regions, which requires
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The normal component of the current density is also continuous across these boundaries, so
eq. (4) tells us that

o1 A sin ka = 09Bj, cos k (;T — a) . (12)
On dividing eq. (12) by eq. (11) we find that
tan ka = 22 cot k (W — a> : (13)
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There is an infinite set of solutions to this transcendental equation. When oy/07 < 1 we
expect that only the first term in the expansions (8)-(9) will be important, and in this case
we expect that both ka and k(7w/2 — «) are small. Then eq. (13) can be approximated as

oa/01
ka ~ > (14>
and hence
k2 % <1 (15)
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Equation (11) also tells us that for small kq,
Ay ~ Bk (g - a) . (16)

Since we now approximate ¢; by the single term A,r¥coskf ~ Ayr¥, the boundary
condition (1) at r = a implies that
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and eq. (16) then gives
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The boundary condition (2) now becomes
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which is approximately satisfied for small k.
So we accept the first terms of egs. (8)-(10) as our solution, with k, A and By, given by
egs. (15), (17) and ( 18).

In region [ the electric field is given by
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Ey, = —T%’ZI ~ k%sin K ~ w%. (21)

Thus, in region I, Ey/FE, ~ kf < 1, so the electric field, and the current density, is nearly
radial. In region II the electric field is given by

011 rk=1 . T k=12 ¢
E, = — ~—k————sink (= —0) ~ —k——2 22
or kak (5 — a) S (2 > ak T —a’ (22)
10¢;1 rk=1 T rk=1
Ey = —— ~ k kl=—0) ——. 23
’ r 06 kak (5 — «) cos (2 > ak(§ —a) (23)

Thus, in region 11, E,/Ey ~ k(7/2 — 6) < 1, so the electric field, and the current density,
is almost purely azimuthal.
The current density j follows the lines of the electric field E, and therefore behaves as

sketched below:

The total current can be evaluated by integrating the current density at » = a in region
I:

I =2a /a jrdf = 2a04 /a E.(r =a)dd = —2ko, /a df = —2koa = —2
0 0 0

4



In the present problem the total potential difference A¢ is -2, so the effective conductivity
is
I 01090
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For a square checkerboard, o = 7/4, and the effective conductivity is ¢ = (/o109. It
turns out that this result is independent of the ratio o/, and holds not only for the corner
region studied here but for the entire checkerboard array.
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