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The question was: 

 
A hollow cylinder, with its both ends closed, is filled with a fluid and is at rest in the 
space. Inside the cylinder there is a small hard ball with a density equal to the 
density of the fluid. The ball is initially at rest and is close to the center of one of the 
lids (let's call it a "front lid"). The cylinder suddenly gains an acceleration a and 
then moves with that constant acceleration (the motion is non-relativistic although 
the magnitude of the acceleration can be large). The direction of the acceleration is 
along the axis of the cylinder pointing from the "rear lid" to the "front lid". If 
viewed from the reference frame of the cylinder at the very first moment after the 
acceleration appears the ball will, of course, start gaining speed in the direction 
toward the "rear lid". The question is: will the ball hit the rear lid?  
 

Solution: 
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Figure 1. Problem definition 

 
Let’s consider a cylinder with length L, sectional area A and a ball with radius R 

(Figure 1). The density of the ball and of the fluid (at atmosphere pressure) is 0ρ  and the 
acceleration of the system is given by a. 

Due to the small compressibility, the fluid density will slightly change when it is 
subjected to a pressure p (related to the atmosphere pressure), following a linear 
dependence: 

 
pk.0 += ρρ          (1) 
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where k is a constant that depends on fluid properties. The dynamical equation of an 
infinitesimal cylinder (Figure 2) is: 

 
axdxAAdpxpAxp ).(..).)(().( ρ=+−       (2) 

 
 
 
 

p(x).A (p(x)+dp).A  
Figure 2. Forces acting on a infinitesimal cylinder 

 
Equations (1) and (2) furnishes the following differential equation: 
 

)(... 0 xpkaa
dx
dp

−−= ρ         (3) 

 
with the following solution: 

 
kxakCxp 0)..exp(.)( ρ−−=        (4) 

 
being C a constant that depends on boundary conditions. In the present problem, the 
resulting force action on the whole fluid body given by aAL ...0ρ , and the boundary 
condition can be written as: 
 

[ ] aALALpLp ...)2/()2/( 0ρ=−−       (5) 
 
Equations (4) and (5) give: 
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Fluid density inside the cylinder is then given by: 
 

0)...exp(
)2/..exp()2/..exp(

..
)( ρρ xak

LakLak
Lak

x −
−−

=     (7) 

 
Considering that the variation of density should be small, due to the small 

compressibility of the fluid, the inequality 1.. <<xak  must be satisfied for 
2/2/ LxL ≤≤− . So, the exponential functions in equations (4), (6) and (7) will be 

approximated by its second order Taylor expansions: 
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2)..(..1)..exp( xakxakxak +−≅−   

4/)(2/1)2/exp(2/ 2kaLkaLkaLLx ++≅⇒−=     (8) 
4/)(2/1)2/exp(2/ 2kaLkaLkaLLx +−≅−⇒+=  

 
That results 
 

( )2
0 )..(..1.)( xakxakx +−≅ ρρ        (9) 

 
with the assumption that 1.. <<xak , Equation (9) can be simplified by a linear density 
profile along cylinder axis: 
 

( )xakx ..1.)( 0 −≅ ρρ         (10) 
 
and the pressure p(x) can be approximated to (using Equations (4) and (6)): 
 

)...(.)( 2
0 xakxaxp +−≅ ρ         (11) 

 
The fluid force acting on the ball can be evaluated by: 
 

∫∫−=
S

dSnxpxF
r

).()(         (12) 

 
where n

r
 is the normal vector across the surface element dS. Using Gauss Theorem, 

Equation (12) can be rewritten: 
 

∫∫∫∇−=
V

dVxpxF ).()(         (13) 

 
with ixakaxp

r
)...21.(.)( 0 +−=∇ ρ , being i

r
 the versor along x axis.  The volume element 

in the ball is represented in Figure 3, and can be written as: 
 

drrRdV ).( 22 −= π  , with RrR +≤≤−      (14) 
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Figure 3. Volume element in the ball 
 

Since x is the position of the center of the ball, the position of the volume element is 
given by x+r. So, the force F(x) can be evaluated by: 
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that gives:  
 

ixakaRxF
r

)....21.(..
3
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)( 0
3 −= ρπ        (16) 

 
Furthermore, there is another pressure-induced force that must be considered, known 

as added-mass forces. Such forces are proportional to the acceleration of the body related 
to the fluid, and may be mathematically considered as an “extra” mass “attached” to the 
body. Indeed, this effect is caused by the energy transfer to the fluid, which is perturbed 
by the moving body. The mathematical calculation of the added mass can be found in 
several hydrodynamics textbooks, and will not be detailed here. For a sphere, the added 
mass force is given by: 

 

ixRF massadded
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The acceleration of the ball related to a fixed reference system is given by: 
 

ixaaBall

r
&&r
).( +=          (17) 

 
So, applying the 2nd Newton’s Law to the ball (in the direction of x axis) results: 
 

xRxcxakaRxmam BallBall &&&&& ..
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where xc&  represents viscous forces acting on the ball. Since the density of the ball is 0ρ , 
Equation (18) can be rewritten: 
 

xcxakx &&& '.
3
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3
4 2 −−= , with Ballmcc ='       (19) 

 



Eduardo Aoun Tannuri, Univ. of São Paulo, Brazil 5  

Equation (19) represents a damped oscillator, with natural frequency 2..
3
4

ak=ω . 

So, the ball will leave the front lid toward the rear lead, but it will not reach the rear lead 
due to damping forces (see Figure 4). The higher the acceleration or compressibility, the 
higher will be the frequency of the oscillatory motion. 
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Figure 4. Motion of the ball 
 
Of course, disregarding viscous forces the ball could reach the rear lid, but such 

assumption is not realistic.  
 
 
 


