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Ideal polymers near scale-free surfaces

Yosi Hammer* and Yacov Kantor
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

(Received 11 November 2013; published 4 February 2014)

The number of allowed configurations of a polymer is reduced by the presence of a repulsive surface resulting
in an entropic force between them. We develop a method to calculate the entropic force, and detailed pressure
distribution, for long ideal polymers near a scale-free repulsive surface. For infinite polymers the monomer
density is related to the electrostatic potential near a conducting surface of a charge placed at the point where
the polymer end is held. Pressure of the polymer on the surface is then related to the charge density distribution
in the electrostatic problem. We derive explicit expressions for pressure distributions and monomer densities for
ideal polymers near a two- or three-dimensional wedge, and for a circular cone in three dimensions. Pressure of
the polymer diverges near sharp corners in a manner resembling (but not identical to) the electric field divergence
near conducting surfaces. We provide formalism for calculation of all components of the total force in situations
without axial symmetry.
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I. INTRODUCTION

Statistical mechanics of long polymers near surfaces has
been the subject of numerous studies since the beginning
of polymer physics and has many important applications
[1]. Problems of polymers near surfaces possess interesting
relations to critical phenomena [2,3]. Current experimental
methods allow manipulation and detailed study of individual
molecules revealing their conformations and properties [4,5].
The atomic force microscope (AFM) [6–8] is an important
tool whose positional accuracy enables the study of the
mechanical response of single molecules to applied forces in
natural conditions and in various geometries. The spatial and
force resolution of such experiments enables measurement of
relatively small deformations of the molecules, and in that
regime the interaction between the molecule and the probes
may become significant. Influence of the shape of the probe on
the elastic response of flexible polymers has been discussed
in several works [9–11], and it was shown that several
important physical properties of such systems are independent
of microscopic details of the molecule. Polymers grafted
to flexible membranes influence their shapes and physical
properties [12–17]. Therefore, it is important to understand
the detailed nature of the interaction between polymers and
surfaces.

The size of a polymer can be characterized by its root-mean-
square end-to-end distance Re. Frequently, this quantity has a
simple power-law dependence on the number of monomers
N , as Re = aNν where a is a microscopic length, such as
monomer size, while the Flory exponent ν = 1/2 for ideal
polymers (IPs) that are allowed to self-intersect in any space
dimension d, and has d-dependent values for real polymers
in good solvent [1]. For a long flexible polymer containing
N monomers (N � 1), the number of possible configurations
is N ∼ bNNγ−1, where b is the effective model-dependent
coordination number and γ is a universal exponent. For IPs
in free space γ = γf = 1 and the power-law factor in N
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disappears. (For polymers in good solvents γf exceeds unity
[1].)

For large N there is a range of distances between a and
Re where, in free space, the polymer exhibits self-similar
scale-invariant behavior. The presence of boundaries can
introduce new length scales. However, there is a group of
surfaces, called scale-free (SF), or scale-invariant, such that
geometry has no characteristic length scale, i.e., they remain
invariant under coordinate transformation r → λr, when the
origin of coordinates is placed at a special point. Such surfaces
as (infinite) circular cones (their apices serve as the special
points), or wedges in two and three dimensions, will be
discussed in detail in this work. Figure 1 depicts a variety
of such shapes. Complex geometries can be made by joining
special points of SF surfaces, as demonstrated in Figs. 1(f) and
1(g). When an endpoint of a polymer is attached to a special
point of repulsive SF surface, its exponent ν is not affected but
the prefactor in the relation between Re and N may change.
However, SF surface can modify exponent γ (see Ref. [11]),
e.g., γ = 1/2 [18] for IP attached to a repulsive plane. For the
purposes of this work it is particularly convenient to use the
universal exponent η which is related to the decay of density
correlations. Fisher’s identity [19] γ = (2 − η)ν relates this
exponent to the ones mentioned earlier. For IPs in free space
η = ηf = 0, and in the presence of SF surfaces η � 0. The total
number of configurations of IPs becomes N ∼ bNN−η/2.

Consider a setup, where one end of a long IP is held at
position h relative to the special point of SF geometry, such
as the tip of the cone in Fig. 2. (The vector h does not have
to be along some special symmetry axis.) A significant part
of the force exerted by the polymer is coming from distances
comparable with h ≡ |h|, while as N grows the tail of the
polymer wanders away from the surface. For h � Re the total
force that the polymer exerts on the surface, or alternatively
the force F exerted by the surface on the polymer, becomes
independent of Re. In that limit, the only dimensionally
possible form for F is kBT /h, and therefore the component of
the total force in the direction of ĥ = h/h is

Fĥ ≡ F · ĥ = AkBT

h
, (1)
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FIG. 1. (Color online) Scale-free surfaces and their special points
(full circles). All surfaces extend to infinity from their special points
as indicated by the dashed lines. Grey areas indicate truncation
surfaces for graphical representation, while dashed lines represent
similarly truncated surfaces. Dots indicate directions in which the
infinite objects are extended. (a) Infinite and (b) semi-infinite lines in
d = 2 or 3. Semi-infinite (c) half-plane and (d) quarter-plane in d = 3.
(e) Cone with convoluted cross section. Complex shapes created by
(f) attaching apex of a cone to a plane, or (g) by joining apices of
several cones.

where kB is the Boltzmann constant and T is the temperature.
It was demonstrated [10] that the dimensionless amplitude
A in this relation for the radial component of the force
is independent of the direction ĥ and only depends on
universal exponents, i.e., exponents which do not depend on
the microscopic details of the monomers, but depend only on a
small number of parameters such as geometry, dimensionality,

F
h

F
s

h

θ

FIG. 2. (Color online) Polymer with one end held at position h
from a scale-free surface. The entropic force between the polymer
and the surface, which is also the force that acts on the point that
holds the end of the polymer has component Fĥ parallel to the vector
h, and components Fŝ perpendicular to that direction.

and the presence of self-avoiding interaction; for a IP,

A = η. (2)

When ηf �= 0, as in polymers in good solvent, this expression
becomes A = η − ηf . In Ref. [10], η was found for IPs in the
cases of a cone and a wedge. In this work, we rederive this law
and obtain the value of A from different considerations, and
relate it to the pressure distribution along the boundaries.

In a non-symmetric situation, as depicted in Fig. 2 the force
may have additional components in non-radial direction ŝ ⊥ ĥ
which is given by

Fŝ ≡ F · ŝ = A(ĥ,ŝ)
kBT

h
, (3)

where the value of this dimensionless amplitude depends both
on the direction of the point where the polymer is held and on
the direction of the particular force component. We provide a
procedure for calculating A(ĥ,ŝ), and relate it to the pressure
distribution.

In Sec. II we derive a general formalism for calculation of
Green and partition functions for SF surfaces, and use it to
calculate the force between the polymer and the surface. In
Sec. IV we expand the formalism which has been previously
used for flat surfaces (Sec. III) to derive general expressions
for monomer density and pressure on a SF surface. We also
demonstrate a relation between the polymer problem and
an electrostatic problem of a point charge located near a
conducting surface, and demonstrate various symmetries of
the solutions. Specific surface shapes (circular cone in d = 3,
wedge in d = 2 and d = 3) are solved in Sec. V. Finally, in
Sec. VI we extend our formalism to polymers held at both ends
and to ring polymers.

II. GENERAL FORMALISM FOR CONFINED
IDEAL POLYMERS

A. Ideal polymers confined by arbitrary shapes

IP statistics are closely related to the statistics of random
walks (RWs) and diffusion problems [20]. An IP with N + 1
monomers can be modeled as an N -step RW. Consider a RW
starting from the point h on a d-dimensional hypercubic lattice.
The total number of such walks is Nf (N ) = (2d)N . In the
presence of confining boundaries, we denote the total number
of walks starting from h which do not cross the boundaries as
Nnc(h,N ), and the number of walks which start at h and end at
r without crossing the boundaries as Nnc(h,r,N ). In order to
investigate the properties of long polymers in confined spaces
we focus on the following two functions: the (normalized)
partition function (or random walker survival probability),

Z(h,N ) = Nnc(h,N )

Nf (N )
, (4)

and the Green function (or propagator),

G(h,r,N ) = Nnc(h,r,N )

adNf (N )
. (5)

The division by the volume of lattice cell ad converts
the probability into probability density in the continuum
description. When the relevant distances of the problem are
much larger than the lattice constant a, both functions can
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be approximated as continuous functions which obey the
diffusion equations [20],

∂Z(h,N )

∂N
= D∇2

hZ(h,N ), Z(h,0) = 1, (6)

∂G(h,r,N )

∂N
= D∇2

r G(h,r,N ), G(h,r,0) = δd (h − r), (7)

where the diffusion constant D = a2/2d, while the subscripts
h,r of the Laplacians indicate variables with respect to which
the derivatives are taken. In order to exclude all the walks that
cross the boundaries, we require that both Z and G vanish on
the boundaries. In that respect, a long polymer near a repulsive
wall corresponds to diffusion near an absorbing surface. In
continuum, persistence length �p replaces the lattice constant a
in determination of D. The formalism applies only to polymers
significantly longer than �p and is not applicable to short (semi-
flexible) polymers.

Since either end of a RW can be considered its beginning or
end, the Green function satisfies the reciprocity relation [21]

G(r1,r2,N ) = G(r2,r1,N ). (8)

The partition and Green functions are related by

Z(h,N ) =
∫

G(h,r,N )ddr. (9)

From G and Z we can calculate the monomer density at a
point r in the allowed space,

ρN (h,r) =
∫ N

0
G(h,r,n)Z(r,N − n)dn/Z(h,N ). (10)

The expression in the numerator decays with increasing N due
to absorbing boundary condition. Since

∫
G(h,r,n)Z(r,N −

n)ddr = Z(h,N ) independently of the value of n, the total
number of monomers is

∫
ρN (h,r)ddr = N . In most of the

examples we will consider monomer density for infinite
polymers, and therefore the total number of monomers will
be infinite. Both G and Z in the integrand of Eq. (10) satisfy
diffusion equations with absorbing boundaries, i.e., they both
vanish at the boundaries, and approach them with finite slopes.
Therefore, the density itself vanishes quadratically close to the
boundary.

B. Ideal polymers confined by scale-free shapes

In the presence of a scale-free surface, neither Eq. (6)
nor the boundary surface introduce any length scale into the
problem. Therefore, the partition function depends only on
the dimensionless ratio w ≡ h/

√
DN , i.e., Z(h,N ) = H (w),

where H is a dimensionless function. In terms of the reduced
variable Eq. (6) becomes [11]

∇2
wH + 1

2 w · �∇wH = 0. (11)

When the size of the polymer is significantly larger than h, i.e.,
w � 1 the second term in the equation becomes negligible,
and the equation reduces to

∇2
wH = 0. (12)

In the presence of scale-free surfaces, it is useful to describe
the polymer in a coordinate system that separates the radial

part from all other coordinates, as is done in spherical or
polar coordinates. In many of these systems [22], the Laplace
operator can be written in the form

∇2
w = w1−d ∂

∂w

(
wd−1 ∂

∂w

)
+ w−2∇2

Sd−1
, (13)

where ∇2
Sd−1

is the Laplace-Beltrami operator acting on the d −
1 non-radial coordinates [23]. Since the boundary conditions
on H are independent of w, we expect that for w � 1 the
solution can be expressed as a product of a power of w and an
angular function 
(θ1, . . . ,θd−1) ≡ 
(ŵ), where ŵ ≡ w/w.
In the limit w � 1 the large-N expression becomes applicable,
and it follows that Z ∼ N−η/2. This means that for w � 1,

H (w) ≈ wη
(ŵ) or Z(h) ≈ (h/
√

DN)η
(ĥ). (14)

By substituting this expression into Eq. (12) and using Eq. (13)
we obtain an eigenvalue equation

∇2
Sd−1


 = η(2 − d − η)
, (15)

that determines η and the corresponding eigenfunction 
(ŵ).
This equation has an infinite number of eigenvalues and
eigenfunctions, but, since Z (or H ) is a positive function, we
are interested only in the “ground state” solution that is always
positive, and corresponds to the lowest value of η. For example
[11], in the case of a polymer in a wedge of opening angle 2α

in d = 2, there is only one angular variable θ measured, say,
from the symmetry axis of the wedge; in this system η = π/2α,
while 
(θ ) = cos(πθ/2α). For a d = 3 circular cone, of apex
angle (between the symmetry axis and the surface of the cone)
α, the value of η is determined [11] by finding the smallest
degree η of Legendre function satisfying Pη(cos α) = 0. The
corresponding 
(θ,φ) = Pη(cos θ ), where θ is measured from
the symmetry axis, and the function is independent of φ due to
symmetry of the problem. For a d-dimensional cone, Eq. (15)
was solved by Ben-Naim and Krapivsky [24]. Their solution
was used in [10,11] to find the force amplitude for IPs near
cones. Another example for a geometry where Eq. (15) can be
solved is a cone with elliptical cross section (see Ref. [25]).

From Eq. (14) the free energy of the polymer is F =
−kBT (η ln h + ln 
(ĥ)) + const., from which the force is
compiled as

Fĥ = −∂F
∂r

= η
kBT

h
, (16)

i.e., the amplitude that was defined in Eq. (1), A = η is
independent of the direction of ĥ, as stated in Eq. (2). For
the amplitude in one of the perpendicular directions ŝ, we
need to take a similar derivative with respect to coordinate rŝ
perpendicular to ĥ:

Fŝ = −∂F
∂rŝ

= 
(ŝ)(ĥ)


(ĥ)

kBT

h
, (17)

where 
(ŝ) denotes a (angular) derivative of 
 on a unit
sphere in direction of ŝ, such as ∂/∂θ in the spherical
coordinate system. Thus the amplitude in Eq. (3) is A(ĥ,ŝ) =

(ŝ)(ĥ)/
(ĥ).

If the end of a polymer is tethered to the origin by a
string of length h, but is allowed to fluctuate in non-radial
direction, the function 
(ĥ), that must be normalized, is the
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probability density for the orientation ĥ. Since 
 is positive in
the allowed space (and vanishes only on the boundaries) it will
frequently have a single maximum, such as the position of the
symmetry axis in the case of a wedge or a cone, although
multiple maxima can be created by, say, properly shaping
the cross section of a cone. This probability is independent
of temperature, and therefore the fluctuations of the endpoint
will also be temperature independent. In simple geometries the
fluctuations will be “large”, i.e., occupy most of the available
directions.

The Green function has dimensions [length]−d and satisfies
Eq. (7). It can be written using the same dimensionless
variable, w as well as v ≡ r/

√
DN , as

G(h,r,N ) = (DN )−d/2Y (w,v), (18)

where Y is a dimensionless function. For DN � h2 (w �
1) the system loses its detailed dependence on the initial
condition, resulting in a function of r with h dependent
prefactor. Thus, we attempt a solution of the form

G̃(r,N ) = Cg(r,N )
(r̂), (19)

where unit vector r̂ ≡ r/r = {θ1, . . . ,θd−1} describes the
non-radial coordinates, and C is a (dimensional) prefactor
containing h,D. For g(r,N ) we use the expression

g(r,N ) = rxNy exp

(
− r2

4DN

)
. (20)

Note that the exponent exp(− r2

4DN
) is exactly the same as in

the description of an IP in free space. By using Eqs. (13), (19),
and (20) in Eq. (7) we get[

r2

DN

(
d

2
+ x + y

)
+ x(2 − d − x)

]

 = ∇2

Sd−1

. (21)

In order for Eq. (21) to hold for arbitrary values of r , the
coefficient of r must vanish, leading to

d

2
+ x + y = 0. (22)

The value of x is determined by the eigenvalue equation

∇2
Sd−1


 = x(2 − d − x)
. (23)

This (angular) equation coincides with Eq. (15), but, unlike
H in Eq. (12), the function G̃ that we are seeking is not
harmonic. Obviously, the value of x in this equation will
coincide with η that was found in the calculation of H , as
well as the function 
(r̂) will be the same as 
(ŵ) describing
H . (We seek the “ground state” value of x since the function
G̃ must be positive.) We shall henceforth substitute η for x. It
is shown below that such value of x indeed produces a correct
description of the partition function.

Thus we have a solution for the diffusion equation near
a scale-free surface. This solution does not satisfy the initial
condition in Eq. (7) and does not properly describe the statistics
of short polymers, where the size of the polymer approaches
h. However, G̃ approaches the exact solution for the Green
function of long (

√
DN � h) IPs near SF surface. Since the

form of the Green function must be described by Eq. (18), we
must choose the constant in Eq. (19) as C = chη/Dη+d/2,

where c is a dimensionless constant (that depends on ĥ),
leading to

G̃ = c

(
1√
DN

)d(
h√
DN

)η(
r√
DN

)η

e−r2/4DN
(r̂). (24)

Integration of this expression over the d-dimensional space
confined by the surfaces, leads (up to a dimensionless prefac-
tor) to the value of Z(h,N ) = H (w) ∼ (h/

√
DN )η = wη, i.e.,

the correct behavior of Z. Note that from the definition of G

[Eq. (5)] and the boundary conditions, 
 must be a positive
function that vanishes on the boundaries.

When the geometry is complicated, and analytical solution
of Eq. (23) cannot be obtained, the force amplitude can be
evaluated numerically. This process can be simplified by
considering the average position of the polymer endpoint,

R2
e,G̃

≡
∫

r2G̃(r,N )ddr∫
G̃(r,N )ddr

= 2DN (η + d). (25)

(Angular integrals in the numerator and denominator are
identical and cancel, while the radial integrals are simple
products of powers and Gaussians and lead to this result.)
Since G̃ approaches the exact solution in the limit N → ∞
we can write a formula for the force amplitude,

η = lim
N→∞

R2
e

2DN
− d. (26)

Note that in free space η = 0, and we recover the usual mean
squared end-to-end distance for an IP/random walk R2

e = a2N .
When we confine the polymer by holding it near the boundary
the mean squared end-to-end distance grows but it is still
linearly proportional to the number of monomers. Using
Eq. (26), the force amplitude can be evaluated from numerical
solution of the diffusion equation or from simulations of
random walks in confined spaces.

III. IDEAL POLYMER NEAR A PLANE

The problem of an IP near a repulsive plane was considered
in Refs. [26–28]. In this section we expand the approach used
in [26] to general d and set the stage for the treatment of more
complicated surfaces.

In d dimensions positions in half-space are described by
r = (r1, . . . ,rd ) ≡ (R,r⊥) with r⊥ > 0. For an IP with one end
fixed at h = (0, . . . ,0,h), the Green function can be found
using the method of images [18]:

G(h,r,N ) =
(

1

4πDN

)d/2

exp

(
− R2

4DN

)

×
{

exp

(
− (r⊥ − h)2

4DN

)
− exp

(
− (r⊥ + h)2

4DN

)}
.

(27)

The corresponding partition function can be found by integrat-
ing Eq. (27) over r,

Z(h,N ) = erf(h/
√

4πDN ). (28)
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Using Eqs. (10), (27), and (28), and taking the N → ∞
limit we get for d > 2,

ρ(h,r) = 1

4D

�
(

d
2 − 1

)
πd/2

r⊥
h

{[R2 + (r⊥ − h)2]1−d/2

− [R2 + (r⊥ + h)2]1−d/2}. (29)

(Henceforth, quantities without index N will denote infinite
polymer limit.) For d = 2,

ρ(h,r) = 1

4πD

r⊥
h

ln
R2 + (h + r⊥)2

R2 + (h − r⊥)2
. (30)

When a planar surface is distorted by infinitesimal amount
�(R) by shifting it from r⊥ = 0 to r⊥ = �(R), the resulting
change in the number of available conformations modifies the
free energy of the polymer by an amount

�FN =
∫

r⊥=0
[PN (R)�(R)]dd−1R + O(�(R)2), (31)

where PN (R) is the entropic pressure of the polymer on
the surface at position R. Thus, the pressure represents a
variational derivative of the free energy, and for a polymer
with one end held at h it can be written in terms of the Green
function [26] as

PN (h,R) = kBT D

Z(h,N )

∫ N

0

∂G(r,h,n)

∂r⊥

∂Z(r,N − n)

∂r⊥
dn, (32)

where r = (R,r⊥), and the derivatives are evaluated at r⊥ = 0.
Equation (10) can be used to rewrite this expression via the
monomer density ρ(r),

PN (h,R) = DkBT

2

∂2

∂r2
⊥

ρN (h,r). (33)

From Eqs. (29) and (33) we find the polymer pressure on the
plane in the limit N → ∞,

P (R) = �(d/2)

πd/2

kBT

(R2 + h2)d/2
. (34)

It should be noted that the infinite-N expressions for
the density and the pressure apply to finite-N situations
when DN � r2,h2. For smaller N these quantities cannot
be expressed in such simple terms. If a polymer is confined to
a finite volume and both its ends are free to move, a different
approach needs to be used to calculate the pressure distribution
(see, e.g., Ref. [29]).

IV. IDEAL POLYMERS NEAR GENERAL
SCALE-FREE SURFACES

Equation (10) provides a general expression for calculation
of monomer density of IP for arbitrary confining surfaces.
Usually, such ρN will be a very complicated function. We will
demonstrate that for scale-free surfaces for sufficiently large
N the expressions for density (and also for pressure) approach
an N -independent form that is significantly simpler than the
small-N expressions.

A. Monomer density for infinite polymers

Calculation of monomer density ρN (h,r) in Eq. (10)
requires integration of the product G(h,r,n)Z(r,N − n) over

n varying from 0 to N . In free space the Green function
G(h,r,n) is very small for n such that

√
Dn � |h − r|,

because random walk from h is “too short” to reach r.
Similarly, for

√
Dn � |h − r| the walk is “too long” to be

at r with a significant probability. Thus, G in free space peaks
when

√
Dn is of order of |h − r|. In the presence of absorbing

boundaries, the large n decay is even stronger. In the presence
of scale-free surfaces, for long polymers (DN � h2,r2) it is
possible to divide the integral

∫ N

0 in Eq. (10) into
∫ n1

0 + ∫ N

n1
,

where r2,h2 � Dn1 � DN , and show that for fixed x1 =
n1/N , in the limit N → ∞ the second integral divided by
Z(h,N ) vanishes. This feature is quantitatively demonstrated
in Appendix B. Thus, only the first integral includes significant
contributions to the density. In its range (n < n1 � N ) we
can assume Z(r,N − n) ≈ Z(r,N ) and take it out of the
integration so that in the infinite-N limit the density is ρ(h,r) =
limN→∞[Z(r,N )/Z(h,N )]

∫ ∞
0 G(h,r,n)dn, or using Eq. (14),

ρ(h,r) = 
(r̂)


(ĥ)

(
r

h

)η ∫ ∞

0
G(h,r,n)dn. (35)

This simplification enables us to perform the integral and
derive analytical expressions for the monomer density.

Since the density ρ in Eq. (35) depends only on the integral
of G it is convenient to define

�(h,r) ≡
∫ ∞

0
G(h,r,n)dn. (36)

From Eq. (7),

∇2
r �(h,r) =

∫ ∞

0
∇2

r G(h,r,n)dn

= (1/D)(G(h,r,∞) − G(h,r,0))

= −(1/D)δd (h − r), (37)

i.e., the density at r is related to the potential of a point charge
at h

ρ(h,r) = 
(r̂)


(ĥ)

(
r

h

)η

�(h,r). (38)

B. Some properties of monomer density and pressure

The expression for calculation of monomer density of
an infinite IP in Eq. (35) requires knowledge of the exact
Green function or electrostatic potential. These are frequently
expressed as an infinite sum of functions. Since the density
ρ(h,r) is singular for h = r such expansions of density do not
always converge. Even the simple expression for pressure on
flat surfaces in Eq. (33) can be expanded in powers of r/h, but
will converge only for r < h. Alternatively, it can be expanded
in the powers of h/r , and will converge only for h < r . This
situation will recur for more complicated surfaces discussed
in the following section.

If the expression for monomer density in an infinite polymer
(35) is combined with the reciprocity relation of the Green
function in Eq. (8) or (38) is combined with the reciprocity
property of electrostatic potential, we can relate the monomer
densities in the situation when the polymer starting point r1
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and the observation point r2 interchange their roles

ρ(r1,r2) =
[

(r̂2)


(r̂1)

]2(
r2

r1

)2η

ρ(r2,r1). (39)

From Eq. (18) it follows that in scale-free geometries
G(λr1,λr2,λ

2n) = λ−dG(r1,r2,n), which can be used with
Eq. (35) to obtain

ρ(λr1,λr2) = λ2−dρ(r1,r2). (40)

(This relation can also be obtained from the properties of �

under rescaling.) This means that the structure of the density
function can be slightly simplified: If instead of variables r1

and r2 we use the direction of the two vectors and their lengths
r1 and r2, when the ratio of the lengths is x = r2/r1, then
by choosing λ = 1/r1 in Eq. (40) we find that ρ(r1,r2) =
r2−d

1 f (x,r̂1,r̂2). We therefore expect that the calculation of
density function will involve an expansion of the solution in
the dimensionless ratio x.

Let us now consider a Kelvin transform of coordinates
where the new position is obtained by inverting the old
position with respect to a sphere of radius h: r2 = (h/r1)2r1

(Under this transformation h maps into itself.) If the poten-
tial �1(h,r1) of the original problem is known, then [30]
�2(h,r2) ≡ (r1/h)d−2�1(h,r1) also solves Eq. (37). Usually,
performing Kelvin transform requires similar transformation
of the boundary surfaces, but in this case the boundary
conditions are independent of the length r1 and therefore
are automatically satisfied for r2. This relation together with
Eq. (38) leads to the conclusion that

ρ(h,r2) = (r1/h)d−2−2ηρ(h,r1). (41)

This feature conveniently connects the values of the density
for, say, r1/h = y < 1 with the values of density at r2/h =
1/y > 1, i.e., the density for r > h can be reconstructed from
the density at r < h. For r1 � h the electrostatic potential
� ∼ 
(r̂1)rη

1 /Dhd−2, since in that region it satisfies the same
equation as Z. Therefore, from Eq. (38) we find in that limit
ρ(h,r1) ≈ A[
(r̂1)]2r

η

1 /Dhd−2+2η, where A is a dimension-
less constant. By using Eq. (41) we can now determine that for
r2 = h2/r1 � h the density is ρ(h,r2) ≈ A[
(r̂2)]2/Drd−2

2
with the same coefficient A. The latter relation does not depend
on h, as could be expected in that region. Since G is a solution
of diffusion equation, the expression must include the prefactor
1/D of dimension [length]−2. [The same conclusion follows
from Eqs. (37) and (38).] Therefore, aside from angular term,
the result is the only dimensionally possible expression for the
density.

The method presented in Sec. III to compute the entropic
pressure of the polymer in half-space can be generalized
to any regular surface (i.e., any surface that appears flat
when observed from an infinitesimal distance). For a general
surface, we define the distortion �(r̃) to be in the direction
perpendicular to the surface, where r̃ is a point on the surface.
The derivative with respect to r⊥ in Eqs. (34) now represents
derivative in the direction locally perpendicular to the surface.

Pressure on the boundary corresponds to the second
derivative with respect to coordinate perpendicular to the
boundary. If r2 and r1 are related by Kelvin transform, as
mentioned above, and are on the boundary of the surface, then

from Eq. (41) it follows that pressures at corresponding points
are related by

P (h,r2) = (r1/h)d+2−2ηP (h,r1). (42)

From these relations, by repeating the argument analogous
to the one in the previous paragraph, or directly from the
expressions of ρ at very large and very small distances, we
can establish that for r2 � h the expression for pressure
has the h-independent dimensionally correct form P (h,r2) ≈
B[
(ŝ)(r̂2)]2kBT /rd

2 , where 
(ŝ)(r̂2) is the derivative of 
 on
the unit sphere in direction ŝ perpendicular to the boundary,
evaluated on the boundary, and B is some dimensionless
constant. Using the arguments outlined above we conclude
that at short distances r1 � h, the pressure becomes

P (h,r1) ≈ B[
(ŝ)(r̂1)]2kBT r
2(η−1)
1

/
hd+2(η−1), (43)

with the same B.

C. Pressure and the total force

From Eqs. (33) and (38) the expression for the pressure at
a point on a surface can be written as

P (h,r) = DkBT

2

∂2

∂r2
⊥

[

(r̂)


(ĥ)

( r

h

)η

�(h,r)

]

= DkBT ∇r

[

(r̂)


(ĥ)

(
r

h

)η]
· ∇r�(h,r), (44)

where we used the fact that both functions vanish on the
boundary and their gradients are parallel to each other and
perpendicular to the boundaries. This expression can be used
to calculate the total force acting in the direction of ĥ by
integrating the projection of the force on the desired direction
on the entire surface,

Fĥ =
∫

S

dS · ĥP (h,r)

= DkBT

∫
∇r ·

{
ĥ∇r

[

(r̂)


(ĥ)

(
r

h

)η]
· ∇r�(h,r)

}
ddr.

(45)

By applying the divergence operator and using the fact that
the function in the first square brackets is harmonic while the
electrostatic potential satisfies Eq. (37) we find that

Fĥ = DkBT

∫
ĥ · ∇r

[

(r̂)


(ĥ)

(
r

h

)η]
(1/D)δd (h − r)ddr

= kBT

∫
∂

∂r

[

(r̂)


(ĥ)

(
r

h

)η]
δd (h − r)ddr

= ηkBT /h , (46)

which coincides with the general expression for the force in
Eq. (1) with A = η, as was seen directly in Eq. (16).

Similar calculations can be performed for the force compo-
nents in an arbitrary direction. If we choose some direction
ŝ ⊥ ĥ, we can repeat the above calculation with the new
projection direction ŝ. Now on the first line of Eq. (46) we
will have the product ĥ · ∇r replaced by ŝ · ∇r, which will
result in the derivative acting only on 
(r̂) in direction ŝ [such
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as (1/r)(∂/∂θ ) in three-dimensional spherical coordinates]
leading to exactly the same result as in Eq. (17).

V. SPECIFIC GEOMETRIES

We will now discuss the monomer density and the entropic
pressure of an IP on a wedge in d = 2 and 3, and a cone in
d = 3. The Green functions for the cone and wedge geometries
can be found in Appendix A. The calculation was performed
according to the procedure described in Sec. IV. For simplicity
throughout this section we consider cases where the end of the
polymer is held along the symmetry axis of the cone or wedge.

A. Wedge in d = 2

Consider a wedge defined in polar coordinates by −α <

θ < α [Fig. 3(a)]. One end of an IP is held at a distance
h from the corner, along the symmetry axis of the wedge.
The Green function for this geometry is given in Appendix A
[Eq. (A1)]. In the range where h2 � DN and r2 � DN , the
sum in Eq. (A1) becomes a power series and the lowest power
dominates. Thus the Green function converges to the general
form presented in Eq. (24). The force amplitude is the lowest
power in the series (A2), i.e.,

η = π/2α. (47)

In order to derive the monomer density in the wedge, we follow
the procedure outlined in Sec. IV. For N → ∞ we get

ρ(r) = 1

2πD
cos

(
πθ

2α

)(
r

h

)π/2α

× tanh−1 2 cos(πθ/2α)

(h/r)π/2α + (r/h)π/2α
. (48)

The monomer density in a wedge with α = π/3 is depicted
in Fig. 4. The derivative perpendicular to the surface in this
geometry is ∂

∂r⊥
= 1

r
∂
∂θ

. Using Eqs. (33) and (48) we find
the entropic pressure on the surface of the wedge (still for
N → ∞),

P (r) = π

4α2

kBT

r2

1

1 + (h/r)π/α
. (49)

It is interesting to note the asymptotic behavior of the pressure
for small r ,

lim
r→0

P (r) ∝ rπ/α−2 →
⎧⎨
⎩

0 0 < α < π/2
const. α = π/2
∞ π/2 < α < π

. (50)

When the polymer is held outside the wedge (α > π/2) the
pressure on the tip diverges. This behavior can be seen in Fig. 5,
where we plot the pressure on the wedge for three different
opening angles. Both in d = 2 and in d = 3, for r � h close
to the surface of a wedge or a cone the monomer density
must exhibit SF power-law behavior. The density as well as
its gradient vanish at the surface, but the second derivative is
proportional to the pressure, and therefore P (r) must exhibit a
power-law behavior. The singularity at the tip of the wedge is
similar (but not identical) to the one found in the electric field
near the tip of a charged conductor. The analogy to electric
fields is not surprising, since we have seen that the monomer

(c)

(b)

(a)

z

α

α

h

h

α

h

FIG. 3. (Color online) An ideal polymer confined to scale-free
spaces: (a) wedge in d = 2, (b) wedge in d = 3, and (c) circular cone
in d = 3.

density is related to the electrostatic potential of a point charge
[Eq. (38)]. The electric field near the tip of a conducting wedge
scales as rπ/2α−1 [31], whereas the polymer pressure scales as
rπ/α−2 [see Eq. (50)]. For a flat plane (α = π/2), both powers
vanish. We note, that the divergence of P (r) is integrable, and
therefore the total force is finite. If the tip is rounded, then the
divergence will be truncated.

B. Wedge in d = 3

The boundary of a wedge in three-dimensional space is
defined in cylindrical coordinates by −α < θ < α [Fig. 3(b)].
Consider a case where one end of the polymer is held at a

022601-7



YOSI HAMMER AND YACOV KANTOR PHYSICAL REVIEW E 89, 022601 (2014)
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FIG. 4. Contour plot of the monomer density for a long ideal
polymer with one end held at a distance h from the tip of a wedge
(d = 2) with opening angle 2α = π/3. The boundary is marked by
the thick solid line. The density is highest at the origin of the polymer,
and the constant density lines are equally separated on a linear
scale.

distance h from the corner, along the symmetry axis of the
wedge, at z = 0. The Green function for this geometry is given
in Eq. (A4). It is obtained by multiplying the Green function of
the wedge in d = 2 by the d = 1 free space propagator. When

h

r

FIG. 5. (Color online) Scaled entropic pressure of a long ideal
polymer on a wedge (d = 2) as a function of the scaled distance from
the tip for three opening angles of the wedge, α = π/4 (dot-dashed
line), α = π (dashed line), α = 3π/4 (solid line).

z2 � DN , the Green function is independent of z and when
in addition h2 � DN , r2 � DN , it assumes the general form
of Eq. (24). The force amplitude is the one found in d = 2
[Eq. (47)]. The monomer density in the wedge in the limit
N → ∞ is

ρ(r,θ,z) = 1

π1/2Dα

(r/h)π/2α

(r2 + h2 + z2)1/2
cos

(
πθ

2α

) ∞∑
i=1

�

(
1

2
+ πi

2α

)
sin

(
πi

2

)
cos

(
iπθ

2α

) (
rh

r2 + h2 + z2

)iπ/2α

× 2F̃1

[
1

4
+ iπ

4α
,
3

4
+ iπ

4α
,1 + iπ

2α
,

(
2rh

r2 + h2 + z2

)2]
, (51)

where 2F̃1 is the regularized hypergeometric function. The pressure on the surface of the wedge is

P (r,z) = kBT π3/2

8α3

(r/h)π/2α

r2(r2 + h2 + z2)1/2

∞∑
i=1

i sin

(
πi

2

)(
rh

r2 + h2 + z2

)πi/2α

�

(
1

2
+ iπ

2α

)

× 2F̃1

[
1

4
+ iπ

4α
,
3

4
+ iπ

4α
,1 + iπ

2α
,

(
2rh

r2 + h2 + z2

)2]
. (52)

Note that at the tip of the wedge we get the same irregular
behavior that was encountered for d = 2, i.e., for r � h,

lim
r→0

P ∝ rπ/α−2

(h2 + z2)(π/α+1)/2
.

The unusual influence of the geometry of two- and three-
dimensional wedges is known in the theory of critical
phenomena and the remarkable effects of such geometries have
been studied in detail [32] in the context of critical adsorption
of liquids.

C. Circular cone in d = 3

Now consider a cone defined in spherical coordinates by
θ < α [Fig. 3(c)]. The polymer is confined to the cone with
one end held at a distance h from the tip along the symmetry
axis of the cone. The Green function for this geometry is given
in Appendix A. Once more, it contains a sum which becomes
a power series when h2 � DN , r2 � DN . As in the case of
the wedge, in the limit N → ∞ the first term in the series
is dominant, and the Green function converges to the general
form of Eq. (24). The force amplitude, η, is the lowest root of
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the equation

Pη(cos α) = 0, (53)

where Pη is the Legendre function. When we apply the
procedure described above to calculate the monomer density
in the limit N → ∞, we find

ρ(r) = − 1

2πD
√

hr
Pη(μ)

(
r

h

)η

×
∞∑
i=1

([(
1 − μ2

0

) ∂

∂μ
Pηi

(μ0)
∂

∂ηi

Pηi
(μ0)

]−1

×Pηi
(μ)

{
(r/h)ηi+1/2 r < h

(h/r)ηi+1/2 r > h

)
, (54)

where ηi are the roots of Eq. (53), in ascending order, η = η1,
μ = cos θ , and μ0 = cos α. The derivative in the direction
perpendicular to the surface is the same as in the case of the
wedge (with θ being the polar angle in spherical coordinates).
The pressure on the surface is

P (r) = − kBT

2πr3

∂

∂μ
Pη(μ0)

×
⎧⎨
⎩

( r
h

)η+1 ∑∞
i=1

(r/h)ηi

∂
∂ηi

Pηi
(μ0)

r < h

( r
h

)η
∑∞

i=1
(h/r)ηi

∂
∂ηi

Pηi
(μ0)

r > h.
, (55)

Note that for r → 0 we get P ∝ r2(η−1). The singular asymp-
totic behavior of the pressure on the tip of the cone is similar
to the one found on the wedge [Eq. (50)]. It is also similar
to the behavior of electric fields near the tip of a conducting
cone, where the field scales as rη−1. For a flat plane (α = π/2,
η = 1), the powers vanish. In fact, if we consider a point
charge q held at height h above a grounded conducting plane,
the electric field on the plane is identical with the polymer
pressure on a flat plane if we replace kBT /2π by 2qh.

VI. POLYMERS HELD AT BOTH ENDS AND
RING POLYMERS

Consider an IP held at both ends at points h1 and h2 close to
scale-free surface as depicted in Fig. 6. The monomer density
at a point r in the allowed space is

ρN (h1,h2,r) =
∫ N

0 G(h1,r,n)G(r,h2,N − n)dn

G(h1,h2,N )
. (56)

For large N , such that h2
1,h

2
2 � DN , we can follow the same

reasoning as in Sec. IV A, and divide the integral
∫ N

0 into

three parts
∫ n1

0 + ∫ N−n1

n1
+ ∫ N

N−n1
, where n1 was chosen such

that h2
1,h

2
2 � Dn1 � DN . (Note, that when the integration

variable n is replaced by N − n in the third integral, it
becomes similar to the first integral with the roles of h1 and
h2 reversed.) The first Green function in the integrand of
Eq. (56) provides a significant contribution to the integral

∫ n1

0 ,
while the second Green function is similarly significant in∫ N

N−n1
. Both functions are negligible in

∫ N−n1

n1
. In fact it can be

shown that for fixed x1 = n1/N , in the N → ∞ limit, the latter
integral divided by G(h1,h2,N ) vanishes. In the range of the
first integral (n < n1 � N ) we can assume G(r,h2,N − n) ≈

h
1

h
2

FIG. 6. (Color online) Ideal polymer with both ends held near a
scale-free surface.

G(r,h2,N ) and take it out of the integration so that for large
N the contribution of this integral to the density becomes
[G(r,h2,N )/G(h1,h2,N )]

∫ x1N

0 G(h1,r,n)dn. For large N the
ratio of the Green functions preceding the integral can be
replaced by the ratio of G̃ functions defined in Eq. (19), which,
by using Eq. (24) and the reciprocity relation (8), becomes
(r/h1)η[
(r̂)/
(ĥ1)]. Similar treatment, with the roles of h1

and h2 reversed, can be performed for the integral
∫ N

(1−x1)N .
The results discussed above become exact in the N → ∞
limit leading to

ρ(h1,h2,r) =
(

r

h1

)η

(r̂)


(ĥ1)

∫ ∞

0
G(h1,r,n)dn

+
(

r

h2

)η

(r̂)


(ĥ2)

∫ ∞

0
G(h2,r,n)dn. (57)

By comparing this result with Eqs. (35) and (57), we see
that the contribution from each end of the chain will be equal
to the density calculated before for a polymer with one free
end, i.e.,

ρ(h1,h2,r) = ρ(h1,r) + ρ(h2,r), (58)

where ρ(hi ,r) is the density which was calculated in
Secs. III–V with h = hi . This result could be expected since
the strands leaving the endpoints h1 and h2 do not interact
with each other, and the midsection of the polymer is so far
away, that the fact that this is a single polymer rather than
two independent strands does not influence the density. From
the relation between the monomer density and the pressure on
the surface [Eq. (33)] we see that this additive correspondence
between a pair of IP strands and a single polymer held by
both ends will also apply to the pressure and the total force on
the surface. This result can also be immediately applied to the
density of infinite ring polymers:

ρring(h,r) = ρ(h,h,r) = 2ρ(h,r), (59)

as well as to the pressure exerted by such polymers.
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VII. DISCUSSION AND CONCLUSIONS

In Ref. [10] it was shown that the force between a polymer
and a scale-free surface can be written in terms of universal
exponents, which depend on the geometry of the surface and
the nature of the interactions between the monomers, but are
independent of the microscopic details of the system. In this
paper we have shown that the universal exponent η also plays
an important role in the monomer density and the pressure
of IPs on scale-free surfaces. Additional calculations were
needed to completely describe the pressure and the density,
but η controlled the behavior at very short distances. We
found the general form of the Green function G̃ [Eq. (24)]
for long IPs. By using the simple connection between the
exponent η and the mean end-to-end distance of the polymer Re

[Eq. (26)], one can measure η by solving the diffusion equation
numerically or extracting Re from simulations.

In Sec. IV we showed that the monomer density and the
entropic pressure can be derived from the electrostatic potential
of a point charge in a confined space. It was also shown that
the density possesses some powerful scaling properties that
enable one to map the density and the pressure from points near
the origin to points far away, and vice versa. The relation to
electrostatics also enabled the use of a formalism resembling
Gauss’ law in electrostatics, to relate the total force to the
pressure distribution.

Our calculations were limited to IPs. While they provide
some guidance to understanding polymers in good solvents,
several important differences exist. The presence of repulsion
between monomers modifies both exponent ν and η. The basic
expression (10) cannot be used in its simplest form to calculate
the density because the probability of a polymer reaching point
r in n steps is influenced by the presence of the remaining
N − n steps, and proper adjustments need to be made. Even
in free space the distribution of the end-to-end distance of

self-avoiding polymers is significantly more complicated (see
[33] and references therein) than the Green function of ideal
polymers. Thus, we cannot expect such simple behaviors as
exhibited by G̃ in Eq. (24). Nevertheless, we may expect some
qualitative similarities between IP and self-avoiding polymers.
Polymer adsorption to curved surfaces [34] introduces yet
another dimension into the problem deserving a detailed study.

In good solvents the density of the monomers no longer
decays quadratically with the distance x from the boundary.
Scaling analysis shows [35] that close to the walls the density
scales as x1/ν . (In good solvent 1/ν < 2 [1].) Bickel et al.
[26] used this scaling law to compare the behavior of IPs to
self-avoiding polymers near flat surfaces, and found numerous
qualitative (and even quantitative) parallels between the two
cases. It remains to be seen if such parallels can be found in
connection with the properties discussed in this paper. Hanke
et al. [36] found interesting depletion effects of polymers in
good solvent near curved surfaces.

The properties of the monomer density discussed in Sec. VI
indicate that the results in this paper can be applied to entropic
systems where both ends of the polymer are attached to scale-
free surfaces. This may provide a pathway to dealing with
polymers attached by both ends to different surfaces, such
as a polymer with one end grafted to an AFM tip and the
other to a flat substrate. In good solvents, expressions like Eqs.
(58) and (59) are obviously incorrect. However, like in IPs, we
expect that for very long polymer the behavior of two ends of a
polymer will be the same as that of two (interacting) polymers
with their remote ends completely free.
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APPENDIX A: GREEN AND PARTITION FUNCTIONS

Below we list the exact solutions of Eq. (7) that were used to derive the results in this paper. These solutions were taken from
Ref. [37].

Wedge in d = 2: The wedge defined in Fig. 3 is described in polar coordinates by −α < θ < α. The exact solution of Eq. (7)
is [37]

G(r ′,θ ′,r,θ,N ) = 1

2αDN
exp

(
− r2 + r ′2

4DN

) ∞∑
i=1

Iηi

(
rr ′

2DN

)
cos(ηiθ ) cos(ηiθ

′), (A1)

where

ηi = iπ

2α
, i = 1,2,3, . . . (A2)

and Iηi
is the modified Bessel function of the first kind. The partition function can be found by integrating Eq. (A1):

Z(r ′,θ ′,N ) =
∫

G(r ′,θ ′,r,θ,N )rdrdθ

= r ′
√

πDN
exp

(
− r2

8DN

) ∞∑
i=1

1

i

[
I ηi−1

2

(
r ′2

8DN

)
+ I ηi+1

2

(
r ′2

8DN

)]
sin2

(
πi

2

)
cos(ηiθ

′). (A3)

022601-10



IDEAL POLYMERS NEAR SCALE-FREE SURFACES PHYSICAL REVIEW E 89, 022601 (2014)

Wedge in d = 3: The solution in d = 3 is obtained by multiplying the Green function of a wedge in d = 2 by the free space
propagator in d = 1 leading to

G(r ′,θ ′,z′,r,θ,z,N ) = 1

4απ1/2(DN )3/2
exp

(
− (z − z′)2

4DN

) ∞∑
i=1

exp

(
− r2 + r ′2

4DN

)
Iηi

(
rr ′

2DN

)
cos(ηiθ

′) cos(ηiθ ). (A4)

Integrating Eq. (A4) one can immediately see that the partition function for the wedge in d = 3 does not depend on the z

coordinate. In fact it is identical with the partition function for the wedge in d = 2 in Eq. (A3).
Circular cone: Circular cone in d = 3 is defined in spherical coordinates by θ < α [Fig. 3(c)]. The solution to Eq. (7) in the

cone is [37]

G(r ′,θ ′,φ′,r,θ,φ,N ) = − 1

4πDN
√

rr ′ exp

(
− r2 + r ′2

4DN

) ∞∑
i=1

{
Iηi+1/2

(
rr ′

2DN

)
(2ηi + 1)

×
∞∑

m=0

(2 − δm,0)P −m
ηi

(μ)P −m
ηi

(μ′) cos (m(φ − φ′))
[

(1 − μ0)2 ∂

∂μ
P −m

ηi
(μ0)

∂

∂η
P −m

ηi
(μ0)

]−1}
, (A5)

where P −m
η are associated Legendre functions, μ = cos θ , μ0 = cos α and ηi are the roots of the equation Pη(μ0) = 0 in ascending

order. The Green function is somewhat simpler when the starting point of the polymer is along the symmetry axis of the cone,
i.e., θ ′ = 0. In this case the solution does not depend on the azimuthal angle φ′. Denoting r ′ = h, we get

G(h,r,θ,N ) = − 1

4πDN
√

hr
exp

(
− r2 + h2

4DN

) ∞∑
i=1

Iηi+1/2
(

rh
2DN

)
(2ηi + 1)Pηi

(μ)(
1 − μ2

0

)
∂

∂μ
Pηi

(μ0) ∂
∂η

Pηi
(μ0)

. (A6)

The partition function can be found for any r′ by integrating Eq. (A5),

Z(r ′,θ ′,N ) =
∫

r2 sin θG(r ′,θ ′,φ′,r,θ,φ,N )drdθdφ

= e− r′2
4DN

∞∑
i=1

�

(
3 + ηi

2

)
1F̃1

(
3 + ηi

2
,
3

2
+ ηi,

r ′2

4DN

)
Pηi

(μ)

(
r ′2

4DN

)ηi/2
Pηi+1(μ0) − Pηi−1(μ0)

(1 − μ0)2 ∂
∂μ

Pηi
(μ0) ∂

∂η
Pηi

(μ0)
, (A7)

where 1F̃1 is the regularized confluent hypergeometric function [38]. Note that due to the cylindrical symmetry Z does not
depend on the azimuthal angle φ′.

APPENDIX B: MONOMER DENSITY IN THE N → ∞ LIMIT

In the calculation of the monomer density and the entropic pressure we examined separately the contribution of different parts
of the polymer. The monomer density in the limit N → ∞ is given by

ρ(h,r) = lim
N→∞

∫ N

n=0
G(h,r,n)Z(r,N − n)dn/Z(h,N ). (B1)

In order to evaluate this integral we select the ratio x1 = n1/N such that 0 < x1 � 1 and split the integral in Eq. (B1),

ρ(h,r) = lim
N→∞

{(∫ n1

0
+

∫ N−n1

n1

+
∫ N

N−n1

)
G(h,r,n)Z(r,N − n)dn/Z(h,N )

}

= lim
N→∞

{
N

(∫ x1

0
+

∫ 1−x1

x1

+
∫ 1

1−x1

)
G(h,r,n)Z(r,N − n)dx/Z(h,N )

}
, (B2)

where we have changed the variable of integration to x = n/N . Using the scaling properties of the functions G and Z for large N

[G scales as in Eq. (24) and Z(h,N ) = (h/
√

DN)η
(ĥ) as in Eq. (14)], we see that in the limit N → ∞, for n1 < n < N − n1,

G(h,r,n) ∝
(

1

N

)d/2+η

G∗(h,r,x), Z(r,N − n) ∝
(

1

N

)η/2

Z∗(r,1 − x),

where Z∗ and G∗ do not depend on N . Therefore,

N

∫ 1−x1

x1

G(h,r,n)Z(r,N − n)dx/Z(h,N ) ∝
(

1

N

)d/2+η−1

→ 0.
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Since for x → 1 the partition function Z(r,N − n) → 1 and becomes independent of N , and it is always smaller than one (it is
the survival probability of a random walker), in the same limit,

N

∫ 1

1−x1

G(h,r,n)Z(r,N − n)dx/Z(h,N ) ∝
(

1

N

)d/2+η/2−1

→ 0.

Only the first part of the polymer will contribute to the monomer density in the limit of an infinitely long polymer, as described
in the main text, and will lead to density in Eq. (35).
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