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The insured’s portfolio consists of an insurable (pure) risk,
an uninsurable (speculative) risk, a (proportional) insurance
policy and a risk-free asset. The optimal insurance policy (i.e.,
the proportion to be insured) is examined from the insured’s
point of view, using the reward to variability concept. The
importance of the risk-free asset in reaching an exact and
explicit solution is analyzed, while emphasizing the possibility
of substitution of the risk-free investment and insurance mech-
anisms. The paper demonstrates possibilities of improving the
insured’s welfare by the use of the risk-free rate — which is
sometimes less expensive than other risk reduction instruments.
The analysis leads to a two-step solution, similar to the well-
known Hirschleifer investment model and to the famous Capital
Assets Pricing Model.

Keywords: Correlation, Risk-free rate, Portfolio, Optimal
insurance, Risk loading, Reward to variability, Proportional
insurance, Capital assets pricing model.

1. Introduction

The problem of optimal insurance policies has
been discussed in quite a number of recent articles.
Most have viewed the insurance policy as a con-
tract between two parties, and used expected util-
ity functional analysis to select the optimal form
of the contract [Arrow (1965), Adar and Neumann
(1978), Doherty and Schlesinger (1983), Raviv
(1979), Smith (1968)]. An alternative approach has
been to use efficiency criteria [Doherty (1980,1985)

* The authors wish to thank anonymous referees. Harris
Schlesinger and Michael L. Smith for very constructive com-
ments on the September 1983 draft. We retain, of course,
responsibility for possible errors.

and Kroll (1985)] which only implicitly assume a
certain admissible group of utility functions. In
this paper the second approach is employed. It is
assumed that the insured can incorporate in his
portfolio a risk-free asset and thus can use the
reward to variability criterion in evaluating risky
portfolios. Although this measure suffers from the
well-known limitations of the mean variance crite-
rion, it is used in the present analysis since it
provides a good approximation for decision makers
even when the utility functions and the distribu-
tion functions do not fulfill all the necessary as-
sumptions [see Levy and Markowitz (1979), Kroll,
Levy and Markowitz (1985)].

The insured’s decision is examined in the con-
text of a portfolio of risks, which includes an
insurable (pure) risk, an uninsurable (speculative)
risk, insurance policy, and a risk-free asset. Previ-
ous studies of the optimal insurance problem have
not emphasized the impact of the risk-free asset on
the insured’s optimal strategy. It will be shown
that by incorporating the risk-free asset into the
analysis, considerable insight may be gained; as
has been the case when it was incorporated into
financial models (e.g., Hirschleifer investment
model and Sharpe—Lintner—Mossin Capital Assets
Pricing Model).

Similar to recent papers [Buser and Smith
(1984), Doherty and Schlesinger (1983), Mayers
and Smith (1983)] it is demonstrated that the
insurance transaction should not be considered in
isolation. We show that the amount of insurance is
related to other exposures of the firm, requiring
the insurance decision to be made as part of the
management of all the risks of the firm. From the
insured’s point of view, insurance instruments
compete with risk-free investments as well as other
investments in the portfolio as a means of risk
reduction. It is shown that the risk-free asset plays
an important role in the analysis of the optimal
insurance coverage.

By definition, the return on a risk-free asset is
not correlated with returns from risky investments.
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Thus, the decision On the amount of riskless asset
in the portfolio can be separated from the decision
on the optimal proportions between the risky al-
ternatives. This separation {heorem enables the
specification of a unique optimal risky portfolio
under the Capital Assets Pricing Model (CAPM).
gimilarly the inclusion of the risk-free asset in our
insurance portfolio problem enables us tO reach an
explicit and exact solution to the optimization
problem of determining the amount of insurance
that should be purchased. Note that an exact
solution cannot be obtained through the stochastic
dominance analysis even if a risk-free asset i8
included in the portfolio. Thus, Kroll (1983), who
used the stochastic dominance approach rather
than the mean-—variance approach. defines only
insurability regions.

The importance of the risk-free asset stems
from its ability to serve as an instrument for
controlling the overall level of risk in portfolios. It
may, thus, substitute other risk reduction mecha-
nisms such as insurance. The substitution relation-
ship is an important element in determining the
optimal policy in insurance related problems; it
has been shown to be an important factor in
determining the insurer’s financial policy and
ratemaking strategies [Kahane 1979k and in the
present article it is shown to be an important
element in designing the insured’s optimal in-
surance coverage.

in our analysis we assume that there is an
insurable risk and that the insured has to decide
what proportion of risk he would like to insure.
We focus on the case of property insurance cover-
ages where the loss typically cannot exceed the
value of the property. The analysis, however, 18
extended to deal with the possibility of the insured
buying more insurance to cover possible business
interruption losses (when the property damage
leads to an additional 1oss of income).

The inclusion of a risk-free asset in the permis-
sible portfolio expands sOme of the conclusions of
previous studies, which extensively analyzed the
relationship between optimal coverage to parame-
ters such as the loading factors, the risk levels and
the correlation between insurable and uninsurable
risks.

Since the main focus of the paper lies with the
effects of the risk-free asset, W€ prefer to con-
centrate on the simple case of proportional in-
qurance Coverage and to avoid the analysis of the

question of the existence of an optimal form of
insurance contracts. which has been dealt with
extensively in the insurance literature.

In the second section. the model is presented
and 1s supported by 2 graphical exposition thal
demonstrates its main features. Qection 3 analyzes
the effects of the parameters on the optimal solu-
tion and examines the special cases of non-correla-
tion and negative correlation between the insura-
ble and the uninsurable risks. the latter repre-
senting situations of moral hazard and business
interruption. The analysis 1s supported by several
numerical examples in Section 4. Some concluding
remarks are presemed in Section 5.

2. The model

Let Z be the end of period return on one dollar
which is invested in an asset. | Let us further
assume that the returd on this asset i composed of
two elements, X, the rate of return on the asset
from regular activities (uninsurable risk) and Y the
possible rate of losses due to damage to the asset
itself (insurable risk). Accordingly, the end of
period return can be expressed as follows:

z=1+X—-1Y. p<Y<l+ X 1

In the insurance literature terminology X is the
‘speculative' risk, and ¥ represents the ‘pure’ risk.
In a case of total loss, ¥ = 1, and in a case that no
loss occurs, ¥ = 0.7 The cas¢ of ¥Y>1+X results
in bankruptcy- Since we assumed liability, Y 1
constrained by 1+ X

Let us assume that it i8 possible t0 buy propor-
tional insurance coverage for the insurable risk, Y.
The decision variable — the proportion of Y which
is insured - is denoted by P ©0=<p= 1). The
coverage is purchased for a premium rate S(p)
which is stated in terms of percentage of the
investment value. The premium cate is assumed t0
cover the expected 10sse€s E(Y) plus a loading. For
the sake of simplicity W& assume that the insurer
charges 2 certain fixed loading. b. and 2@ propor-

1 This asset may be 2 portfotio of individual risks.

2 |t is assumed that ¥ is a stochastic variable with a continu-
ous of non-continuous density function. In practice, it is
possible that the extreme points (y=20 and Y=1)are points
of discontinuity since they typically have @ non-zero prob-
ability mass.
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tional loading factor, c.
S(p)=b+c-p-E(Y),

The rate of return on the portfolio consisting of
the asset and the insurance policy is Z.

Z=14+X—-Y+pY—-S(p). (3)

b>0,c>1. (2)

At this point we deviate from previous models
by assuming that the decision maker may use a
risk-free asset to diversify his portfolio. This asset
has a constant (risk-free) rate of return, R. No
short positions on the risky assets are allowed. If
the individual invests a proportion ¢ of his wealth
in the risky assets (including insurance), and a
proportion (1 — q) in the risk-free asset, his overall
final return Zg will be

Zq=q-Z+(l~q)~(1+R). (4)
Inserting (3) into (4) we get
Z,=ql1+X-Y+pY-S(p)]

+(1-¢q)(1 +R). (5)

The expected return on the overall portfolio is
given in (6)

E(Z,)=q[1+E(X)-(1~-p)E(Y)-S(p)]
+(1—-¢q)(1+R). (6)

The standard deviation is

12
an=q-{q3 +(1 —p)zo),z—Z(l -p) cov(XY)} .

| )

The reward to variability ratio provides the
optimal criterion for a mean-variance investor
who can diversify his risky assets with a riskless
one. Thus each risky venture can be evaluated by
this measure. *

In our case the reward to variability, denoted
by M, equals

M=[E(Zq)—(1+R)]/ozq. (8)

The insured wishes to maximize M. Inserting (2),

3 It has been recently shown that this measure provides a good
approximation for decision makers [see Kroll, Levy and
Markowitz (1985), and Levy and Markowitz (1979)]. More-
over, this concept has recently been used in the insurance
context by another researcher [Buser and Smith (1984),
Doherty (1980)].

(6) and (7) into (8) and rearranging leads to
M=[1+E(X)-E(Y)-p(c—1)E(Y)

-b—(1 +R)]/{0_3+(1 -p)o?

—2(17p)cov(XY)]1/2. (9)

Note that this slope M is independent of the
proportion of the risky investment g. This result is
the parallel to ‘separation theorem’ which is the
corner stone of the CAPM in finance theory.

The problem is to find the optimal proportion
of the insurance coverage, p*, which maxirmizes
the reward to variability measure [equation (9)].
From the first-order condition it may be found
that the optimal value of p is

p*=1-{oE(Y)(c—1)
+cov( XY)[E(X)—cE(Y)-b—R]}
/{o2[E(X)—cE(Y)~b~—R]
+cov( XY)E(Y ) (e —1)}. (10)

The development of equation (10) can be found in
the appendix.

A graphical presentation of the optimization
problem for the simplified case where X and Y are
uncorrelated is quite instrumental for both the
analysis and understanding of the solution. Figure
1 presents the mean-standard deviation plane.
Point Z, reflects the expected return and standard
deviation on the uninsured project (the combina-
tion of pure and speculative risks). Point Z; repre-

EXPECTED
ReTurn |

EIX)=ElY) Zo

cElY)+b

E(X)-te-1)E(Y)-b
E(X)-cE(Y)-b-R ’;
[
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DEVIATION)

o | axl"/ 1-p) 20; er“’ai

Fig. 1. Note: The standard deviations are presented for the case

/=0




194 Y. Kahane. Y. Kroll / Optimal insurance

sents the expected return and standard deviation
on the portfolio which includes full insurance
coverage. 1f the risk-free option is unavailable, the
insured may determine the risk—return combina-
tion by holding partial insurance coverage. All the
possible risk—return combinations obtained by
partial insurance are on the locus ZoZ,-

Adding the possibility of lending and borrow-
ingata risk-free rate, R (which would typically be
lower than the expected value of Z,) alters the set
of the insured’s choices: he may now choose a
portfolio of a risk-free project plus one of the
combinations on the risky locus ZoZs- According
to the reward 10 variability criterion, the best
choice would be a combination of the risk-free
project and a risky combination, A. The exact
composition of portfolio A, i.e., the amount of
insurance to be purchased, is determined by the
tangency point between the ray Jeaving R and the
curve ZoZ, (the reward to variability M* is the
slope of this ray), and its explicit solution is ex-
pressed by equation (10).

Similar to the ‘gseparation’ idea in the well-
known CAPM and in Hirschleifer’s investment
model, the solution to the optimal insurance prob-
lem can be divided into two Stages: During the
first stage the optimal coinsurance proportion, P,
is selected (point A). The optimal level of
coinsurance is uniform for all insureds, regardless
of their tastes. During the second step, lending or
borrowing at the risk-free rate takes place - until
the insured maximizes his specific utility. An in-
sured who, in the absence of the risk-free rate,
would prefer to have only little insurance protec-
tion (e.g., would choose point B in the region
AZ,) would now probably prefer to be at 2 point
like B’ on the ray RA. Portfolio B’ is attained by
buying more insurance than would be purchased
in the absence of the risk-free option — thereby
reaching point 4 — and then discarding the exces-
sive insurance protection by assuming 2 higher
level of financial risk (borrowing at the risk-free
rate)., The two-step operation is profitable since
the investor buys extra \nsurance coverage at a low
insurance premiun. and then divests himself of
the excessive protection by using the financial
market mechanisms which are sold at a lower
marginal cost (the risk-free rate).

Another investor may, in the absence of a risk-
free rate, prefer to hold a portfolio C in the region
Z,A4 (ie. he prefers being heavily protected). He,

too. may benefit from the perfect capital market:
instead of buying as much insurance as he origi-
nally intended, be may add less insurance to his
uninsured portfolio Zg, and reach point A. At this
point he 1s still in a too risky situation, and may
decrease his excessive risk by lending (investing)
money at the risk-free rate until reaching point C".
Point ¢’ dominates the original portfolio C. The
superior performance has been achieved by buying
only a limited amount of expensive commercial
insurance (point A4) and then getting the desired
risk reduction effect at 2 lower cost through the
market risk-free investment.

3. Analysis of the optimal solution

The optimal solution, which is uniform for all
investors, Is expressed in equation (10). which has
several interesiing implications.

3.1. The effects of R and b

The effects of the risk-free investment on the
optimal insurance decision have not been studied
in the earlier models (which ignored this parame-
ter). From equation (10) we can learn the inter-
esting point that the risk-free rate R and the
constant loading factor b, have a similar impact on
the optimal insurance proportion p*. Earlier stud-
ies have shown that 2 higher loading factor gener-
ates a disincentive for purchasing insurance. We
obtain similar results in our model for both R and
b: by differentiating p* in (10) with respect to the
loading factor b or with respect to the risk-free
rate, R, we find that the higher these parameters,
the smaller the proportion p*. This result is quite
clear. since the higher the fixed loading factor is,
and the better the risk-free opportunities are in the
market, it is more advantageous {0 reduce risk by
holding more of the risk-free assets in the portfolio
than by using the insurance mechanism. In other
words, there is a substitution effect between in-
vestment in the risk-free asset and the insurance
policy.

3.2. The effect of Py
The speculative (uninsurable) risk, X, and the

pure (insurable) risk, Y, may be correlated. Con-
sider first the effect of the covariance On p* for
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the special and simple case where ¢ =1, i.e., when
the insurer charges only the expected loss plus a
fixed loading, b. In this case equation (10) is
replaced by equation (11).

1—99~V(—)§—’ﬁ=1 =

g, v

*=

(11)

From (11) we learn that the higher the covariance
between x and y, the smaller the optimal propor-
tion p*. Also note that for p,. <0 the amount of
the optimal insurance is at p* > 1.4

For a loading factor ¢ > 1, the effects of the
covariance between X and Y on the optimal cover-
age p* may be studied by differentiating (10) with
respect to the covariance. It may be found that
ap* /3 cov( X, Y)>0if

E(X)—cE(Y)——b—R<_6_{
(c—1)E(Y) o,

(12)

In other words, the covariance effect is not uni-
form, and depends on the direction of the in-
equality sign in (12). The numerator in (12) is the
expected rate of the speculative return on the
asset, less the deduction of the full insurance pre-
mium c¢E(Y)+b, and the risk-free rate. Thus,
E(X)—cE(Y)—b— R can be viewed as the ‘risk
premium’ for the speculative risk. The denomina-
tor, (¢ — 1)E(Y), is equal to the portion of the
loading factor which is affected by the expected
loss E(Y). Thus, the ratio on the left-hand side of
(12) is simply the premium on the speculative risk
over the marginal loading factor. Inequality (12)
tells us that the optimal proportion of insurance
p* is an increasing function of the covariance
when the ratio of speculative risk to pure risk is
higher than the premium on speculative risk over
marginal cost loading.

From the points of view of the economist and
the insurance experts there are three interesting
relationships between the speculative and the pure
risks.

(a) X and Y are negatively correlated (p,, <0).
Such a situation is of special practical interest

4 The desire to buy more than full coverage regardless of
existence of the positive constant loading looks peculiar.
However, one should bear in mind that equation (11) is
constrained to the case of ¢ =1. In all other cases also E(Y),
E(X), b and R are important elements in determining p*
see equation (10).

since it may have two important interpretations in
the insurance context:

(1) Moral hazard: In periods of low returns on
the investment there is a higher chance for insura-
ble damage.

(2) Business interruption: Damage to the prop-
erty causes an additional loss of profit in the form
of loss of income or incremental costs.

When p,, <0 the optimal insurance coverage,
p*, resulting from equation (10) may often be
greater than 1 because the insured is willing to
purchase coverage for an amount larger than the
value of the property in order to compensate for
the consequential losses.

(b) X and Y are independent (p., =0). In this
case the damaged property may be replaced in-
stantaneously without causing any further loss of
income, and only the insurance against physical
damage to the property is considered. Under this
assumption the optimal coverage is

o\’ E(Y)(c—1)
*=1-|= . 13
g (o) E(x)—b—R—cE(Y) =
The optimal coverage is partial ( p* < 1), if
E(X)—R=cE(Y)+b. (14)

Condition (14) can be easily explained: the left-
hand side represents the excess expected return
from the asset, above the risk-free rate. The right-
hand side represents the full insurance premium. It
is necessary that the risk premium that the insured
earns on his speculative activities (about the risk-
free rate) exceeds the premium he is required to
pay for the insurance coverage. This is most prob-
ably the case in reality.

(¢) X and Y are positively correlated (p,, > 0).
This can happen, for example, if high profitability
induces more crime against the insured property
(theft, sabotage, vandalism, etc.). Under the natu-
ral condition E(X)—cE(Y)—b— R>0 partial
coverage (p* <1) is the optimal strategy. This
result is explained by means of a graphical exposi-
tion (see Figure 2). The curve describing the com-
bination of uninsured project plus insurance does
not remain in the same location as in Figure 1: the
point Z, is located at a different location, Z;, and
the new frontier has a kink. The tangency between
the ray leaving R and the frontier Z;Z, cannot be
at Z, due to this kink, and therefore the optimal
solution is always one with partial insurance
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coverage. It is noteworthy that unlike the usual
case in the Capital Assets Pricing Model, when the
risks are uncorrelated (cov( X, Y)=0) there is no
kink in the frontier ZoZ;. and the lowest standard
deviation would be at Z;.

3.3. The effect of the expected insurable loss

By differentiating (10), we find that p* is de-
creasing with respect to the expected loss, E(Y),
(for ¢>1).” Such a relationship between the ex-
pected loss, the Joading factor and the optimal
insurance coverage has already been discovered in
much earlier studies [see €.g., Arrow (1965). Smith
(1968)].

Rewriting (13) we obtain the optimal propor-
tion for the special case where p,, = 0,

L. e ezl
pret (0) E(X)—R-b_ (1)
BY)

It is easy to see that apP* /AE(Y) <0 (for ¢> 1)
when E(X)>b+ R, i€, as long as the expected
profits from the activities are higher than the fixed
charges (risk-free interest plus the fixed cost in-
volved in insurance). ¢ This is a reasonable as-

5 This claim is correct under the additional, and natural,
assumption that E(X)> B+ R.

6 Note that if (14) holds then E(X)> b+ r. However. the
converse does not hold. Thus (14) is sufficient for p* <1 and
also for 3p* /E(Y) < 0.

sumption in the practice, since the firm will not
buy insurance when it is unable to cover the fixed
costs.

3.4. The effect of the expected speculative profi,
E(X)

The expected speculative profit, E(X), has an
opposite effect than that of the pure risk E(Y).
Namely, as long as ¢ > 1, then the optimal propor-
tion of insurance, p*. is higher when the expected
return on the speculative risk is higher. This result
can be interpreted as the combined result of the
‘income effect’ and the ‘qubstitution effect’. when
the investment project is more profitable, the in-
sured is willing to buy less insurance coverage -
provided that insurance ;s an inferior good. ™ To
some people this result may seem to be counterin-
tuitive. However, in the portfolio context we can
understand this phenomenon as follows: the re-
ward to variability with respect 1O the speculative
risk can be expressed as (E(X)— cE( Y)—b—
R) /o, [see the explanation for inequality (12)]. The
higher the expected value of the speculative risk
E(X), the higher this ratio. It is well known in
finance that in such a case the optimal proportion
of the risk-free asset in the portfolio may decrease.
In our case, the higher E(X) is, the risk-free asset
held in the portfolio decreases and the risk reduc-
tion is obtained by increasing the amount of in-
surance p*, i.e., we face a substitution effect be-
tween the risk-free asset and the insurance policy.
This substitution effect, in our €ase offsets the
above mentioned income effect.

3.5. The loading factor ¢

The amount of insurance purchased decreases
with the loading factor c. Since this is not a new
result, we shall demonstrate this relationship only
for the special case of p., = 0. The partial deriva-
tive of (13) gives '

apr__o'x EQ)-[B(X)-E(V)-b-R]
ST (BN - cE()—b=RI"

dc &
v

(16)

7 1f we assume Decreasing absolute Risk Aversion (DARA)
then insurance is an inferior good. and the highest the
income. the less insurance is purchased.
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The derivative in (16) is negative under the realis-
tic assumption that ¢ >1 and E(x) — R > cE(y)+
b. Therefore, in general a higher loading factor, c,
will lead the insured to cover a smaller proportion
of the exposed asset’s value.

Figure 3 depicts the different assumption of
E(X)—cE(Y)—b—R<0. In this case the in-
surance premium exceeds the excess return on the
uninsured project. Thus, the optimal proportion of
insurance would be at point Z;, where no in-
surance is purchased. Actually, the firm would be
interested in reaching a negative proportion; i.e.,
would like to sell insurance. Note that the situa-
tion of full insurance would represent a negative
return to variability. (See the ray RZ, in Figure 3.)

3.6. The effects of o, o,

The optimal insurance coverage is typically a
decreasing function of o, and an increasing func-
tion of o,." The willingness to buy insurance is
lower when, and as long as, the variability (‘risk’)
of the speculative project is relatively high, and
when the insurable risk is relatively less noticeable.
In other words, the optimal insurance p* is a
decreasing function of the ratio o, /g, .

The special case where o, =0

When the speculative risk does not exist, (i.e.,
when the return on the investment is known with
certainty), the asset is exposed only to the insura-

8 This conclusion is made under the ceteris paribus assumption
and especially that the covariance remains constant (inde-
pendent of o, and o,).

ble risk. The reward to variability in this interest-
ing case is

M:E(X)—E(Y)+p(l—c')E()')—b~R

(17)

(1-p)o,
and
oM 1
E—m)o‘z[E(X)"(E(Y)—b“R] (18)

The reward to variability increases with p and
reaches a maximum at p = 1, as long as the condi-
tion E(X)— R > b+ cE(Y) is met. We thus have a
corner solution with full insurance coverage. On
the other hand, if our assumption is not met, and
E(X)—R<b+ cE(Y), the reward to variability
will be a decreasing function of p, and will reach
its maximum at p = 0 when no insurance is bought.
The latter case is quite reasonable since in a com-
petitive capital market a risk-free asset will have
an expected return of E(X)=R and the only
result of purchasing insurance would be a decrease
in expected return (i.e., insurance premium = b +
cE(Y)> 0= E(X)— R) without affecting the vari-
ability. Only when the insurance premium would
be negative (i.e., E(X)—R=02> b+ cE(Y)),
would insurance be worthwhile from the insured’s
point of view.

4. Numerical examples

The solution of the optimization problem is
quite sensitive to its parameters. A slight change in
the risk-free rate, the correlation coefficient or the
standard deviation may cause a significant change
in the optimal insurance coverage ( p*). This is
shown with simple numerical examples. Assume
E(X)=0.25 expected return on the project,
E(Y)=0.04 expected (insurable) loss, °
o =1 the insurable risk,

b=0.01 constant insurance loading ' (1%
of the value of the property),
c=12 proportional loading factor (20%

above the expected loss).
The values in Table 1 state the proportions of the

° The expected loss in this example tends to be higher than in
most areas of insurance in practice.

' The assumed constant loading factor is higher than the
common loading in practice.
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Tablc 1
The optimal proportion of insurance. *

Y, Kahane, Y. Kroll / Optimal insurance

Line Risk-free Correlation o, /0,
rate coefficient 0.25 05 P S " __.__.._._4‘0
R Py
1 0.05 0 0.99 0.99 0.94 078 0.49 010
2 0.05 ~0.05 1.01 1.01 0.99 .85 0.64 0.29
3 0.05 -0.1 1.02 1.03 1.04 0.97 0.79 0.49
4 0.05 ~05 1.12 1.24 1.46 1.82 2.09 2.24
5 0.10 ~05 1.12 1.23 1.43 1.71 1.82 1.73
o 0.15 —0.5 1.11 1.21 1.34 1.29 0.70 —-0.69

% In this table B(X)=0.25 and E( Y)y=0.01.

property value that should be insured p* from
equation (10). The analysis demonstrates the sensi-
tivity to the following parameters:

o, = the risk of the project (speculative risk).

R =the risk-free rate,

p.,.=the correlation coefficient between the in-

" surable and uninsurable risks.

A comparison of the figures within each of the
first two lines in Table 1 shows that when the
correlation is close to zero and the uninsured risk
increases in relation to the insured risk, less in-
surance will be purchased. However, when the
correlation coefficient is significantly negative, the
above conclusion, ceteris paribus, may be reversed
for a wide range of o, /o, values. The risk of
business interruption may become so great that
the insured would be interested in purchasing much
more insurance (for proportion exceeding 1- see
the fourth line).

Although a higher risk-free interest rate, ceteris
paribus, may reduce the willingness to buy in-
surance (compare the fourth and fifth lines), a
further increase in the risk-free rate may suddenly
turn the insurance mechanism into an unattractive
risk reduction mechanism. At that point the indi-
vidual may elect to be an insurance seller rather
than an insurance buyer (compare the fifth and
sixth lines).

5. Summary and concluding remarks

In this paper we have analyzed the insurance
buying decision as part of the portfolio optimiza-
tion problem; where the insurance mechanism
serves as a means of reducing the risk of the entire
portfolio. Although earlier papers have already

addressed this issue. they ignored the possible risk
reduction which may be achieved by the inclusion
of a risk-free asset in the portfolio. The incorpora-
tion of this option in our model draws attention to
the impact the risk-free asset has on the optimal
insurance coverage. We were able to show interest-
ing relationships - which may be regarded as
‘income’ and ‘substitution’ effects — between the
risk-free asset and the insurance mechanism, when
used as a means of controlling the portfolio’s risk.

The importance of the risk-free asset concept,
and its ability to lead to clear and exact solutions
is not surprising, however. Early studies of other
financial problems (and especially the seminal
works of Hirschleifer, Tobin, and the Capital As-
sets Pricing Model) have already demonstrated the
potential of the risk-free asset concept in solving
problems of choice for optimal risk-return combi-
nations. It is only surprising to observe that until
now such a straightforward step has not been
taken in the insurance literature.

Since the major thrust of this paper was the
implications of the risk-free rate concept, we did
not attempt to examine the broader problems of
the optimal form of the insurance contract, or the
optimal deductible policy [which were analyzed by
Arrow (1965), Raviv (1979) and others]. We con-
strained the analysis to proportional insurance
arrangements, and to the selection of the optimal
proportion of the assets value that should be
insured.

The paper re-establishes old principles.
example, that a risk-averse insured will prefer to
be fully insured when faced with an actuarially fair
insurance (no loading above the expected 1oss),
but otherwise would prefer to share the risk.

The analysis led, however, to new findings con-

for
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cerning the substitution effect between the risk-free
investment and insurance mechanisms, and the
effects of other parameters such as the correlation

Appendix: The development of equation (10) in the text

Equation (9) in the text is

M:E(X)—E(Y)—p(c-1)~E(Y)—b~R

1/2

(62+(1-p)o2=2(1-p)os,p,,)

between the insurable (pure) risk and the unin-
surable (speculative) risk.

(A1)

By differentiating M with respect to p and equating to zero we find that the first order conditions for

extremum of M is

(c= DE(Y)[02+ (1= p*) 07 = 2(1 = p*) 0,00,
— [B(X)=E(Y)=p*(c—DE(Y)~b~R]-[(1 - p*) a2~ 0,0,p,,]. (A.2)

Through a quite tedious manipulation of terms in (A.2) we find that p* can be written as follows:

(E( X) - b - R)(O‘z - q"a)'px_l ) - (Cl - l)E( Y )0)&2 - (‘E( )/)(jl2 + 2(jE( Y)o,\q)'p\vl' - E( }y )0\0\ p\"

E(Y)oro\pr\ - (E(Y)U‘z - E(Y)oro_vpxy + 0‘2(E( X) —b- R)

With additional manipulations we obtain
o E(Y)(c—1)+cov(XY)A
024 + cov( XY )E(Y)(c—1)

[ J—

where 4 = E(X)—cE(Y)-b—R.
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