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New developments in the field of charge separation in large finite systems pertain to ex-
treme ionization of elemental and molecular clusters in ultraintense laser fields (peak in-
tensities 10'°-10?! Wem 2) with the production of highly charged ions (e.g., completely
ionized deuterium, water and methane clusters or X636+). Concurrently and parallel to
extreme ionization, Coulomb explosion occurs with the production of high-energy
(keV—MeV) ions. The large cluster and nanodroplet sizes, for which Coulomb explosion
drives efficient table-top dd fusion and nucleosynthesis with heavier nuclei, preclude the
use of the traditional particle molecular dynamics simulation methods. We consider a
scaling method for molecular dynamics and explore its validity conditions. The scaling
method will be applicable for large finite systems (with a number of constituents up to 108
and sizes up to 100 nm) where particle motion is governed by long-range (e.g., Coulomb)
interactions.
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Zbigniew Grabowski made seminal contributions to charge separation processes
in electronically excited states of large molecules [1]. A recent development in the
broad and important area of charge separation in large, finite systems pertains to ex-
treme ionization of elemental and molecular clusters in ultraintense and ultrafast la-
ser fields, with peak intensities of Iy = 101°-10*! Wem 2 and a pulse duration of T =
10—100fs [2—4]. The intensity of Iy = 102! Wem ™2 currently constitutes the highest
available light intensity on earth. Such an ultrahigh intensity is characterized by an
electric field of3-10!! Voltem !, a magnetic field of~10° Gauss and an effective tem-
perature of ~10% K, which exceeds that in the interior of the sun and is comparable to
that prevailing in the interior of hot stars [5]. Multielectron ionization of clusters
(whose size is considerably smaller than the laser wavelength) is distinct from the
electron dynamics response in ordinary radiation fields (Iy < 10'0 Wcm_z), with per-
turbative quantum electrodynamics being inapplicable, and from the response of a
single atom or small molecule to ultraintense fields [2—4]. Ultraintense laser-cluster
interactions manifest new ionization mechanisms and attosecond-femtosecond time
scales for electron and nuclear dynamics [2—4,6—8].

* Dedicated to Prof. Zbigniew R. Grabowski on the occasion of his 80th birthday.
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Extreme multielectron cluster ionization involves three sequential-parallel pro-
cesses [2—4, 6-8] (Fig. 1):

(1) Inner cluster ionization resulting in multicharged ions and electrons within the
cluster. This process is driven by barrier suppression ionization (BSI), being induced
by a composite electric field involving the superposition of the laser field and of the
ions and “free” electrons [7]. In addition to BSI, an inner ionization channel involves
electron impact ionization induced by nanoplasma electrons (section (ii)).

(i1) The formation of a nanoplasma consisting of cluster positive ions and an
‘electron cloud’ within the cluster or in its vicinity. The nanoplasma electrons re-
spond to the laser field on the time scale of halfthe laser cycle [9,10],i.e.,~1.5fs fora
near infrared laser. This response provides novel physical features of ultrafast (fs—as)
‘pure’ electron dynamics, with nuclear motion being frozen [11-15].

(ii1) Outer cluster ionization, which results in partial or complete sweeping out of
the nanoplasma, which is driven by the laser field. Outer ionization was modeled by
the entire cluster BSI model [7,10].
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Figure 1. Anartist’s view on ultrafast electron and ion dynamics for molecular clusters in ultraintense
laser fields.

The highly multicharged cluster is subjected to Coulomb instability. Concurrently
and in parallel with outer ionization, nuclear dynamics of Coulomb explosion (CE) sets
in on the time scale of 10—-100fs with the production of high-energy (1 keV—1 MeV),
highly charged ions and nuclei [2,4,16—18]. In the higher intensity range of Iy >10'®
Wem 2 ultrafast time scales for electron dynamics (in the cluster size domain of
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55-2000) correspond to 1-10fs for inner ionization and 10-30fs for outer ionization,
while in the lower intensity range of Iy ~ 105 Wem ™2 outer ionization is only partial
and the nanoplasma is persistent on longer time scales of >100fs [4,7—10].

The energies of ions or nuclei produced by CE increase with increasing the clus-
ter size, as shown experimentally [19-21], demonstrated by molecular dynamics
(MD) simulations [22—-24], and established theoretically with the advent of scaling
laws [23-26]. Important applications of high-energy CE for nuclei pertain to
2D(d,n)3 He dd fusion driven by CE of deuterium containing clusters (i.e., (D2)n
homoclusters, and (D20)y, (CD4)y, (DI)y heteroclusters) [23—31], which made an 80
years’ quest for table top nuclear fusion come true. We recently proposed and calcu-
lated that a table top nucleosynthesis scheme of p + A reactions (A= o N, OS+)
driven by CE of (CHa)p, (NH3), and (H0),, clusters is amenable to experimental ob-
servation [32,33]. These predictions for table-top nucleosynthesis involving moder-
ately heavy nuclei pertain to the reactions which constitute the CNO cycle in hot stars
[34], bridging between cluster dynamics and nuclear astrophysics [32].

Computational and theoretical information on cluster multielectron ionization
and CE energetics emerged from MD simulations of high-energy electrons and nuclei
[7-10,35-37]. The use of MD simulations for nuclei is traditional, while the applica-
tion of this method to high-energy electrons required scrutiny. We demonstrated that
for nanoplasma electrons the validity conditions for classical MD simulations, which
rest on the localization of the wave packet and the neglect of quantum permutation
symmetry constraints, are indeed satisfied [37]. Particle MD simulations incorpo-
rated their coupling with the laser field, with ion-ion, ion-electron and electron-elec-
tron interactions being described by Coulomb potentials with short-range smoothing.
Such MD particle simulations require computational times, which scale as (N, + ne)2 ,
where N; and n. are the number of ions and electrons, respectively. These particle
MD simulations were performed for molecular and elemental clusters containing up
to (N + ne) = 5.10* particles and n = 10°-3-10* constituents. Typical examples for
moderately large clusters accessible to particle MD simulations are (D2), with n <
210 [23], and Xe, with n <2200 [8,9,37]. This cluster size domain has to be ex-
tended for the description of the efficient p + A nucleosynthesis, which requires CE of
nanodroplets with n = 10107 (radius Ro = 100-500 R) [32,33]. We have recently
demonstrated that high-energy dynamics of multicharged nanostructures transcends
dd fusion driven by CE (in the 5-100 keV energy range) of deuterium containing
clusters (n £2200) towards nucleosynthesis with moderately heavy elements driven
by CE (in the 1-10 MeV energy range) of nanodroplets [33]. To treat the dynamics of
nanodroplets we advanced a scaled electron and nuclei dynamics (SEID) simulation
method [38]. Our SEID simulations allow for computations of extreme ionization lev-
els, electron dynamics and CE energetics in nanodroplets driven by ultraintense lasers
[38]. In this paper we address the validity conditions for the applicability of the SEID
simulation method. This approach is of practical interest for the elucidation of
ultraintense laser-nanostructure interactions, as well as of methodological interest for
the advent of scaling methods by size transformation for large, finite systems.
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SCALING OF MD SIMULATIONS

The SEID procedure considers MD in a scaled cluster, which is based on the fol-
lowing approach [38]: (a) The identical particles, i.e., ions with the same charge and
mass, and the electrons are replaced by pseudoparticles. (b) A single scaling parame-
ter s is used for the composition, mass and charge of all the pseudoparticles. (¢) The
initial distances between the pseudoparticles are taken as the interparticle distances
scaled by s, (d) The scaled cluster consists of heavy pseudoparticles (HPPs) ofions
(or nuclei) and of light pseudoparticles (LPPs) consisting of electrons. (e¢) SEID sim-
ulations are performed for scaled clusters containing pseudoparticles. The potentials
between the pseudoparticles are Coulomb potentials that are properly scaled for the
charges according to point (b) and that contain a scaled short-range parameter. (f) The
SEID simulations provide inner ionization levels (per HPP), outer ionization levels
(per HPP and LPP) and CE energies (per HPP). (g) The SEID MD results (section (f))
are used to calculate inner and outer ionization levels per constituent and CE energies
of individual ions.

Table 1 provides a guideline for the scaling of MD in an elemental A, cluster (or
nanodroplet), where for the sake of simplicity the n ionic constituents of the ionized
{A9"} cluster are taken to be characterized by equal charges q, and by masses m. In
real life SEID simulations, this restriction is removed [38]. In what follows the sym-
bols and attributes related to the scaled cluster will be denoted by tildes. Adopting the
SEID procedure outlined above, the following attributes are scaled:

(1) The number ofions is scaled to give a good approximation for the number of HPPs

n=n/s (1

where n represents the integer closest to n/s. The deviations between nand n, given by
On = |(si/n) —1|, are small, i.e., 3, < 0.05 [38].
(2) The number of n. = nq electrons is scaled to give the number of LPPs

e = Ne/s 2

(3) The masses of the HPPs are m = sm and the masses of the LPPs are m, = sm, where
me is the electron mass.

(4) The charges of the HPPs are § = sq and the charges of the LPPs are ¢ = —se.
(5) All the characteristic distances ¢ in the particle systems are scaled for the
pseudoparticle systems according to

1 =5y 3)



Scaled molecular dynamics simulations... 665

Table 1. Scaling for A, clusters.

Ordinary cluster Scaled cluster

Scaling parameter - s
Number of constituents n n=n/s
Cluster radius Ro=r1on"¢ Ro=%7"¢
Constituent radius Iy 0 =s"r
Particles and Tons Heavy pseudoparticles
pseudoparticles electrons Mass m Mass m = sm

Charge qe Charge q = sqe

Electrons Light pseudoparticles

Mass m, Mass m = sm,

Charge q. = —¢ Charge q. = —se
Potentials Coulomb + Coulomb +

Short-range Scaled short-range
Initial conditions (A'e), (A% + (se)i

1, — barrier radius T = 5"

Molecular dynamlcs SEID simulations
1j;, o i Erpps
4., Expps,
{

Convert to
single particle properties

The initial interparticle distances rqp between the o and partlcles are scaled to give
the initial distances T 56 = 5173 rqp between the pseudoparticles o and B Foran elemen-
tal cluster the initial interparticle radius ro scales asrg=s 173 ro, while the initial density
p o< 1/r3 scales as p = p/s.
(6) The short-range interparticle potential parameters, which are characterized by ef-
fective lengths rp, [7,37], are scaled according to Eq. (3) by T, = s]/3rp.
(7) The location 1, of the BSI barrier for inner ionization [7,37] is scaled, according to
Eq. (3),by 1, = sPrp.

The following attributes are invariant under the scaling procedure:
(8) The initial cluster radius Rg. This is given by Ro = ronmq) where ¢ is the packmg
fraction of the particles. The initial radius IN{O of the scaled cluster is Ro ron ¢
where, according to Egs. (1) and (3), iH =s 3ty and & = n/s. Provided that the scaled
cluster packing parameter is 0 =0, we get Ro = Ro.
(9) The distance r from an arbitrary origin is invariant under scaling, i.e., T =r.

Attributes (5) and (8), which characterize the initial packing of pseudoparticles
within the cluster, provide two conditions for the scaling parameter. First, the sphere
of a single pseudoparticle contains a large number of particles, Y03 >> rg. Then, ac-
cording to Eq. (3), s >> 1. Second, as the cluster radius is considerably larger than the
pseudoparticle radius, T, << I~{0 = ronm(b. According to Eq. (3), s!3<< nm(b. As for
the dense (face center cubic) three-dimensional packing of spheres ¢ = 0.74, one gets
s <<n. Amore elaborate discussion of the validity of the scaling procedure, based on
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small variations between & and n and between R o and R [38], leads to the same con-
ditions.

While attributes (1)—(8) specify mass, charge, composition, initial structure and
packing of the scaled cluster at the temporal onset of the simulation, attribute (9)
specifies the system at any time t. The first straightforward, but relevant, conclusion
emerging from attribute (9) is the invariance at any time t of the total volume of the
system that contains the electrons and the ions of the extremely ionized Coulomb ex-
ploding cluster. Of considerable interest is the scaling of the interparticle potential at
any time, which is given by a modified Coulomb potential [7,37]

Va.p(r) = qaqpf(r.rp) “)
with
fe,rp) = [ +rf T (42)

ris the distance between particles o and 3 at time t (which corresponds to rqg, attrib-
ute (5), only at the onset of the pulse), r, is a short-range distance parameter, and yis a
numerical parameter [7]. For the scaled cluster, the potential between pseudo-
particles is

Ve (1) = qadpflr. 5) (5)

where T, is given by attribute (6). According to attribute (1)

Ve 5(10=5°q0qpflr, ) ()

Except for very short distances, where the contribution of the short-range potential
parameter is important, the relation between the interparticle potential and the
interpseudoparticle potential is

\7& §(0= szvaﬁ(r); r>>T, (6a)

After the scaled cluster was constructed in its initial structure, standard MD simu-
lations for the pseudoparticles were conducted with the potentials given by Eq. (6).
Important physical information and applications emerge from the energies of CE,
which are characterized by the average energies E,y and the maximal kinetic energies
Ewm of the exploding ions at long times. The average energy E,y and the maximal ki-
netic energy Em of the HPPs in CE of the scaled cluster can be obtained from the
energetics under cluster vertical ionization (CVI) conditions [4,23,24], which imply
complete outer ionization with small configurational expansion. The analytical ex-
pressions for CE under CVI[4,23,24], when applied to the scaled cluster [38], give
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Ea = (41/5)Bpq R (7a)
Eu = (4n/3)Bpq R, (7b)

where B = 14.4 V. Taking for the initial density p = p/s (attribute (5)), for the HPPs
charges q = sq (attribute (4)), and for the cluster radius IN(O = Ry (attribute (8)), one
gets the scaling rules Eav =sE,, and EM = sEm. In Fig. 2 we show the energies for
deuterons from CE of (D;)y/2 clusters driven by a Gaussian laser pulse with a maximal
intensity of Iy = 10" Wem 2 and a pulse length of 25fs. The cluster sizes are n =
1.62-10* (Rg=43 R) and n=3.36-10* (R =80 R). These energies were simulated for
different values of s in the range from s = 1 (ordinary cluster) to s =200 (scaled cluster
with n/s £400). The maximal deviations of the SEID energies from the standard MD
simulations do not exceed 15%. This good agreement between the simulation results
for standard and scaled clusters manifests the applicability of the SEID method,
which was recently applied to CE of nanodroplets (Ryp = 100-500 R) [33,38].

We shall now examine dynamic observables, which are invariant under scaling.
An interesting example pertains to time-resolved CE dynamics of elemental clusters
under CVlinitial conditions. This is described by the first moment <R(t)> of the spa-
tial distribution of the ions at time t [23,24,26]. After rapid switching off of accelera-
tion effects (on the time scale tonger) a linear time dependence of <R(t)> is exhibited
with <R(t)>/<R(0)> = a(t — tonser), With the CE velocity a =< (p/m)?q [23,24,26]. For
the scaled cluster a e (5/51)1/261“ withq=p/s, m=smand q=sq so thata =a. The ve-
locity of CE is invariant under scaling.
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Figure 2. SEID simulations of the energies of deuterons produced by CE of (D,),, clusters (n=3.36-10"
with Ry =54.6 R and 1.05-10° with Ry = 80 R) driven by a Gaussian laser pulse with Iy, = 10"
Wem 2 and T = 25fs. The average ion energies E,, are represented by open triangles and
squares, while the maximal ion energies Ey are represented by closed triangles and squares.
The scaling parameter s was varied in the range from s =1 (standard MD simulations) to s =100
for Ry =54.6 R and s = 200 for R, = 80 R.
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FACETS OF PSEUDOPARTICLE DYNAMICS

The success of the SEID raises the interesting question: What is the nature of the
interactions for which this scaling procedure is applicable? We shall demonstrate the
applicability of the SEID for long-range Coulomb interactions and then explore other
forms of the interparticle interactions as appropriate candidates for the use of this
scaling procedure.

Consider a system governed by Coulomb interactions where the total force 130( on
the particle o, which is located at 1y, is given by

Fu a0 [ 3P0 ¢ 50 ®)
[T —1¢,
where
()= Y, 8(F —1p) (8)
B=o

is the potential density, while q(F) is the charge density at 1.

The scaled system is specified by the total force Fg on the pseudoparticle a,
which is located at Ty and given by

Fa =qa [ 00 ¢ 5o 0% ©
- Tl
where
p(H= Y8 - 75) (%)
B#ol

is the pseudoparticle density, while q(r) is the charge density at 1.

The scaling procedure (section 2) requests that g = sqq, and cN]E = sqg, so that
q(r) = sq(r). Next, we consider long-range interactions within identical volumes for
the ordinary and for the scaled cluster. The pseudoparticle density is related to the
particle density (section 2) by p(T) = p(¥)/s. The scaling of the total forces is then
given from Egs. (8), (8a), (9) and (9a) by

Fg =sF, (10)

The equations of motion for the particles dzﬁx /dt? = 150( /mg, and for the pseudo-
particles dz?@z /dt? = l?@z /mg, together with Eq. (10), show that
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4’ /dt? = d %, /dt? (11)

for all t. Eq. (11) implies identical accelerations for a given particle and the corre-
sponding pseudoparticle. The trajectories within the ordinary and the scaled clusters
with initial positions Ty (0) = Tg (0) will be:

T (A) = Ty, (0) + (dTy, /dt)moAt + (dTy, /dtP)co(AD)*/2 (12a)

o (A) = Ty (0) + (AT /dO)coAt + (T /dE)co(A /2 (12b)

so that in view of the identical accelerations for the trajectories of a particle and a
pesudoparticle with identical initial condition, i.e., T, (0) = T5 (0), we have

Ty (A1) = T5 (AD) (13)

Eq. (13) results (for a sufficiently small time interval At) in identical trajectories of
the cluster particles and of the composite pseudoparticles within the cluster or the
nanoparticle.

Eq. (13), which provides the basic validity condition for the applicability of the
scaled MD procedure, requires the fulfillment of two conditions:

(A) The general form of the interparticle pair potential. Following the discus-
sion of the scaling procedure in section "Scaling of MD simulations", we infer that a
generalization of Eq. (6a) implies that the pair potential has to be central (being de-
pendent on the interparticle distance r) and that it satisfies the relation for the pair po-
tentials V&ﬁ(r) = sZVaﬁ(r). This relation can be satisfied for any interparticle
potential of the form Vq8(r) = gogpf(r), where the parameters g and gg will scale as s,
while f(r) is a general function of r. An example that comes to mind is gravitational in-
teractions with gg o< mg and f(r) o< —r!, for which the scaling procedure is, of course,
applicable. Another relevant example involves dispersion interactions with a good
approximation of gg e< & ég , where & is the polarizability of the Bth constitute (with
o = s&ﬁ) and f(r) o< —r °. MD in a system characterized by the latter potential is ap-
parently not amenable to treatment by the scaling procedure, as condition (B) below
will not be satisfied.

(B) The general form of the total force acting on each particle. The pair inter-
actions have to be of a long-range nature. This physical situation allows for the scal-
ing of the total force acting on a pseudoparticle according to Eq. (10), leading to
identical trajectories of the cluster particles and the composite pseudoparticles. We
note in passing that this condition is inapplicable for the dispersive interactions al-
luded to above.
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We conclude that Coulomb interactions satisfy validity conditions (A) and (B)
for the scaling procedure. We have shown that for short-range interparticle, radial po-
tentials of the form Vg = (a/r)k (k>3), where only nearest-neighbor interactions pre-
vail, the scaling procedure is inapplicable because of the violation of both conditions
(A) and (B). The expression for the pseudoparticles is V&E(r) =g(* kB)Vap,(r), while
the nearest-neighbor interactions make Eq. (10) inapplicable.

EPILOGUE

We have shown that the scaling procedure for MD will be applicable for larger
nanostructures (n = 10°-107, Ry = 10-100 nm) where the particle motion is mainly
governed by long-range Coulomb interactions. Our scaling procedure is based on a
size transformation of the number of particles, charges and masses, using a single
scaling parameter. The same parameter is used for the scaling of the initial packing of
the pseudoparticles, the initial distances between the pseudoparticles, their geome-
try, as well as the short-range components of the pair potential. For a three-dimen-
sional system all initial interpseudoparticle distances in the scaled cluster are
obtained by scaling the corresponding initial interparticle distances by s Ina sys-
tem of D-dimension we expect that the s!/P scaling of the initial distances should be
introduced. This interesting problem of dimensionality scaling of size transforma-
tions in SEID deserves further study.

Avariety of scaling properties and methods constitute ubiquitous, general and of-
ten universal theoretical and computational methods for the description of the
energetics, spectroscopy, response, dynamics, thermodynamics and phase changes in
large, finite systems, i.e., clusters, nanostructures, ultracold clouds and biomolecules
[39-51]. Scaling methods also provide a powerful tool for the description of phase
transitions in infinite lattice systems [50,51]. The scaling methods and procedures
fall into two general categories involving (1) scaling properties by the variation of a
physical parameter, e.g., the system’s dimensionality [48,49] or the number of parti-
cles [39-43,45-47], and (2) scaling methods by transformations, e.g., the scaling by
size transformation in our SEID method or the scale transformation in the re-
normalization group (RG) method [50,51].

We first consider the scaling methods in category (1). Dimensional scaling in the
quantum theory of atomic and molecular structures provides new insights [48,49].
For example, the ground state wave function of the hydrogen atom in D dimensions is
exp[-2r/(D — 1)] [48,49], manifesting extreme delocalization for D = 1 and extreme
localization for D = e. Extensive and intensive studies were conducted on fractals
with a noninteger Hausdorf dimensionality [52], which are important for the descrip-
tion of the structures and dynamics in a variety of systems and processes, e.g., depos-
ited clusters, biomolecules, and percolation transport in disordered materials [53].
Another class of scaling methods in category (1) involves size scaling [40-43] in fi-
nite systems. A wealth of physical properties x(n) of clusters with a (sufficiently
large) number of constituents n can be related to the corresponding bulk property
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% (=) by the size scaling relation y(n) = )((oo)—AnfB .Here 3> 01is asize scaling param-
eter, which is property dependent [40—43]. Such cluster size equations bridge be-
tween the properties of the molecular system and those of the macroscopic condensed
phase [40—43]. The combination of size scaling and dimensionality scaling was ad-
dressed for the response and dynamics of clusters in different dimensions and for
fractal clusters [42]. Notable recent developments for low-temperature large, finite
quantum systems pertain to the onset of the superfluid transition in finite boson
(4He)n clusters. In these systems the depression of the A point temperature T, relative
to the bulk value T}? was obtained from the theory of finite-size scaling [45,46] result-
ing in [43,47] (Tf — Tx)/T)? oc n71/3v, where v = 0.67 is the critical exponent for the
superfluid fraction and for the correlation length for superfluidity in the bulk system.
A common interesting game in the realm of size scaling rests on the question: “What
is the minimal cluster size for the attainment of bulk properties?” This led to the sig-
nificant conclusion that cluster size effects are general but not universal. For quan-
tum boson (4He)n clusters, the short correlation length &y = 2 R, resulting from the
analysis of quantum size scaling, implies that the smallest superfluid cluster will be
remarkably small, consisting of a central atom and the first coordination layer [47].
The scaling properties in category (1) are based on scaling exponents, e.g.,  for x(n)
or critical exponents, e.g., v for Tj.

The scaling properties in category (1) have to be extended to consider scaling
procedures by size and scale transformations (category (2)). Our SEID procedure
[38] involves scaling by a size transformation, which is performed on a finite system
characterized by specific (long-range, Coulomb) interactions. This scaling by size
transformation in finite cluster (nanostructure) systems is physically distinct from
the scale transformation inherent in the RG theory for phase transitions in infinite lat-
tice systems [50,51]. In the RG the lattice (with a lattice constant a) is divided into
cells with a scaled lattice constant a”= Aa, so that the number n” of the new lattice sites
isn’=1"n. This approach leads to the important concept of universality, with differ-
ent values of couplings manifesting the same physical situation for a phase transition
[50,51]. A relation between the size transformation in the SEID and the scale trans-
formation in the RG is limited to the analogy between the SEID scaling parameter s
and the parameter AP in the RG, as well as to the invariance of the physical distance r
and the system volume in the two approaches. However, the analogy stops here. Our
scaling by size transformation is limited to a single class of potentials and is not expected
to manifest universality inherent for the scale transformation in the RG procedure.
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