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Dynamics of fission and Coulomb explosion
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This paper reports on studies of the fragmentation dynamics of multicharged (Aþ)55 Morse

clusters, where the variation of the range of the Morse potential parameters induces cluster

fission for a long-range potential and Coulomb explosion for a short-range potential.

The multidimensional energy landscapes for these fragmentation processes were explored

by constructing reduced coordinates utilizing the principal component analysis (PCA), which

was previously applied for the energy landscapes and folding dynamics of biomolecules.

The distance-matrix based PCA was applied to study the effects of the potential on the

fragmentation dynamics and to explore the structural diversity of the fragmentation processes.

The first principal coordinate (which captures 95% of the dynamic information content for

each trajectory) constitutes an appropriate reaction coordinate for both fission and Coulomb

explosion and was used to determine the temperature-dependent fragmentation rates. These

obey the Arrhenius law, with the barrier for fission (0.36 eV) being higher than for Coulomb

explosion (0.22 eV). Structural and energetic information on the radius of gyration and on

the potential energy for small values of the reaction coordinate manifest considerably larger

fluctuations for fission than for Coulomb explosion, indicating that in the former case the

cluster shrinks and swells prior to dissociation. The joint projection of multiple trajectories

for each fragmentation process allows for the description of the energy landscapes

and fragmentation pathways in terms of two principal coordinates, which manifest a form

of ‘ski slopes’. Different collective coordinates describe the spatially isotropic Coulomb

explosion and the spatially unisotropic fission.

1. Introduction

Cluster chemical physics explores the structure, ener-
getics, function and dynamics of elemental, molecular
and metallic clusters [1–8]. Electron-nuclear cluster
dynamics laid the foundations for the elucidation of
energy disposal, response to external electric, magnetic
and laser fields, and chemical reactivity of large, finite
systems [4–15]. Of considerable interest in the realm of
cluster dynamics are fragmentation processes of multi-
ply charged clusters, which are produced by clustering
of ions [16–19], one-photon or multiphoton ionization
[20–22], ionization by high-energy multicharged
ions [23], and extreme multielectron ionization
in ultraintense laser fields [24–35]. Ubiquitous

fragmentation phenomena in multicharged, large finite

systems driven by Coulomb (or pseudo-Coulomb [29])

forces involve clusters [16–21, 23, 24, 36–45], nuclei [46–

49], droplets [50–52], and ultracold optical molasses [53].
The unique fragmentation patterns of multicharged

finite systems do not have an analogue in the dynamics

of the corresponding bulk matter [32, 34, 35]. In this

context some interesting questions arise regarding

the energetics and dynamics of dissociation:

(1) How does a finite system respond to a large excess

charge or to an effective charge?
(2) What are the topography and topology of the

multidimensional energy landscape that guide the

system’s shape, evolution, and fragmentation?
(3) What are the fragmentation channels and under

what conditions are they realized?
(4) What is the interplay between fission, i.e. instabil-

ity towards dissociation, of the finite system

into two (or a small number of) fragments and
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Coulomb explosion into a large number � n
(where n is the number of constituents) of ionic
species?

In a previous study [54, 55], we reported on the
fragmentation of highly charged (Aþ)n (n¼ 55, 135, 321)
Morse clusters. These multicharged clusters were inves-
tigated by molecular dynamics simulations by varying
the range of the pair potential and of the Rayleigh
fissibility parameter X, which is defined by the ratio
E(Coulomb)/2E(surface). The constant energy molecu-
lar dynamics simulations were performed on a time
scale of up to 1 ns with the multicharged cluster
being subjected at t¼ 0 to a final temperature of
T¼ 500–104K. The fragmentation process results in
the fragments of cluster ions Akþ

k (1� k5 n) of sizes nk
with

P
k knk ¼ n. For the long-range Morse potential,

the clusters fragment into a small number of large,
multicharged clusters, which contain the majority of
the ions, and thus correspond to cluster fission. The
fragmentation pattern is qualitatively different for the
short-range Morse potential and involves a large
number of small ionic fragments and, accordingly,
corresponds to Coulomb explosion. The fragmentation
patterns via either fission or Coulomb explosion are
practically temperature independent. The fission process
is spatially unisotropic, with the deformation of the
parent multicharged cluster along a one-axis elongation
forming two large clusters. The Coulomb explosion
process, on the other hand, is spatially isotropic with the
small ionic fragments expanding radially. The fission
and the Coulomb explosion process also differ in the
kinetic energies of the fragments. For fission, the kinetic
energies and the internal energies of the large fragments
are high, with the total kinetic energy being comparable
to the total inner energy. For Coulomb explosion the
major kinetic energy of the fragments is considerably
larger than the inner energy.
In this paper, we address the dynamics of fission

and of Coulomb explosion by exploring the energy
landscapes for these processes. This is illustrated for
a Morse cluster composed of 55 ions, each with a single
positive charge. A comparison between the two pro-
cesses is achieved by applying Principal Component
Analysis (PCA) [56–60] to several trajectories of both
processes at different temperatures. PCA was originally
introduced to describe the energy landscapes and folding
dynamics of biophysical systems, e.g. polypeptides and
proteins [57–65]. We shall show that PCA constitutes
a useful tool for describing the dimensionality of the
dynamics and of the potential energy landscapes that
underlie cluster fission and Coulomb explosion
processes. The principal coordinates for fission and
for Coulomb explosion capture the essential information

of their dynamics and are accordingly appropriate

reaction coordinates. Projecting the multidimensional

dynamics onto the principal coordinates enables one

to explore the kinetics and structural properties of the

fragmentation of highly charged clusters.

2. Methods

2.1. Molecular dynamics simulations

We applied classical (constant energy) molecular

dynamics simulations to study the dynamics of

Coulomb explosion and fission processes of a multi-

charged (Aþ)55 cluster. The mass of each Aþ ion is

100 amu, its charge is q¼ 1, and the total cluster charge

is Z¼ 55. The interionic pair potential U(R) consists

of an attractive Morse potential and of Coulomb

repulsion,

UðRÞ ¼ DGðG� 2Þ þ Bq2=R ð1Þ

where

G ¼ exp½��ðR� ReÞ� ð2Þ

D is the dissociation energy, � is a range parameter,

Re is the Morse potential equilibrium distance, and

B¼ 14.385 eV/Å. Two sets of Morse potential param-

eters were used: (i) A short-range Morse potential with

D¼ 4.5 eV, �¼ 3 Å�1, and Re¼ 3 Å (�Re¼ 9, so that

the interaction between non-neighboring atoms is

negligibly small); (ii) A long-range Morse potential,

with D¼ 6.5 eV, �¼ 1 Å�1, and Re¼ 2 Å (�Re¼ 2,

so that the contribution of interactions between non-

neighbouring atoms is of significance). For each set

of Morse potential parameters 15 trajectories were

collected in the temperature range 3000–8000K (three

simulations at each temperature, labelled in figure 1).

The trajectories obtained at each temperature were used

to study the fragmentation kinetics and to sample

different regions of the potential energy surface of the

fragmentation under the short- and long-range poten-

tials. The initial t¼ 0 nuclear configuration of the

multicharged cluster is presented in the icosohedral

geometry of the low temperature (T¼ 10K) cluster, with

a thermal, Maxwell distribution of the velocities of

the atoms, which was obtained after an equilibration

time of 1000 fs at the low temperature. Thermal

excitation was achieved by a temperature jump to

a temperature T. This thermal excitation by a ‘tempera-

ture jump’ involves complete intramolecular vibrational

relaxation within the multicharged ionic cluster. The

molecular dynamics simulations were performed using

the 5-value Nordsieck predictor–corrector algorithm.

We used different seed numbers for generating the
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initial velocity distribution, and a propagation time

step of 0.02 fs, with the structure being sampled

for every 20 fs. The system’s dynamics can be described

as dissociation of the cluster into ionic fragments

followed by their translational motion while keeping

their sizes constant. Here, we are mainly interested

in the early dynamics stages of the charged clusters,

which involve the fragmentation mechanism of the

parent clusters under short-range and long-range

Morse potentials, rather than the escape dynamics of

the fragments, where the fragments’ translational

dynamics constitutes the main dynamics after dissocia-

tion. Accordingly, only configurations with a maximal

radius smaller than a specific cutoff value were

considered. For the (Aþ)55 cluster simulated with

a short-range and a long-range Morse potential, these

cutoffs were taken as 4 and 8 times the initial radius

of the equilibrated icosohedral cluster, respectively.

The cutoff values were chosen to ensure that the

dynamics on the two potential energy landscapes

will be represented on similar reaction coordinates.
To study the fragmentation pattern of the charged

cluster with short-range and long-range potentials,

two time-dependent structural measures were selected.

The first is the radius of gyration Rg(t), which reflects

the compactness of the cluster ions,

RgðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðriðtÞ � rCMðtÞÞ2

s
ð3Þ

ri(t) is the set of Cartesian coordinates of the ith ion
at time t, n is the number of ions, and rCM is the position
of the centre of mass. The second measure is the
maximal ellipsoid volume occupied by the cluster ions.
While both structural measures may capture dissocia-
tion of the cluster and the spatial dynamics of their
fragments, the radius of gyration cannot distinguish
between isotropically and unistropically spatial dissocia-
tion while, in principle, the maximal ellipsoid volume
can provide this information.

2.2. Principal component analysis

In general, (3n–6) coordinates are required to describe
the dynamics of the cluster. However, since both the
fission and the Coulomb explosion of a multicharged
(Aþ)n cluster are not spatially homogeneous but take
place along specific directions of the fragment motions
(in 1D space and in 3D space for the fission and for the
Coulomb explosion, respectively) not all the coordinates
are important. As a result a much smaller number
of coordinates is sufficient to capture the dynamical
characteristics of these processes. Reducing the effective
dimensionality of these systems can be achieved by using
the PCA, which is based on the principle that the
Cartesian coordinates are not necessarily the best ones
to describe dynamics of complex systems. It is possible
to reveal some new properties of the dynamics
by describing it in a different set of coordinates
[56, 57]. The PCA reduces the effective dimensionality
by choosing orthogonal components, so that the
variance in the original data is well described.
Accordingly, the relations of similarity/dissimilarity
among the original data can be well approximated
in the reduced description. Projecting the original
multidimensional data onto an optimal low-dimensional
subspace allows for the visualization of trajectories and
for the mapping of energy landscapes [56, 58–60, 66].

PCA methods have been extensively applied to study
the dynamics of molecules and, in particular, biological
macromolecules such as proteins [57–65]. The PCA
is often applied on the m�m covariance matrix,

Cij ¼ ðxi � hxiiÞðxj � hxjiÞ
� �

ð4Þ

where m¼ 3n, with n being the number of atoms.
The averaging is over the instantaneous structures
sampled during the ith period of simulation and
xi is an atomic coordinate. The covariant matrix-
based PCA concentrates on the collective motion of
the atoms and was successfully applied to find
functionally relevant motions of proteins [57, 59–65].
Another approach is to apply the PCA on the N�N
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Figure 1. Time evolution of the first principal coordinate
for the cluster fragmentation under short-range (ççç) and
long-range (^ ^ ^ ^) potentials for representative trajectories
simulated at temperatures in the range 3000–8000K.
Temperatures labelled on curves.
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distance-matrix, where N is the number of sampled

conformations. The distance-matrix based PCA was

used to compare the conformational space of analogous

molecules and thus provides a visualization and

a quantitative measure for the shifting and shrinking

(or increasing) of the conformational space as a result

of structural constraints [67], point mutations [68, 69],

and the chemical environment [60]. Recently, the

distance-matrix based PCA was used to study the effects

of dimerization on the flexibility of a protein [70, 71].

However, it should be pointed out that, because usually

N4m, the distance-matrix-based PCA is computation-

ally more expensive than the more common covariance-

matrix-based PCA due to matrix diagonalization.

In this study, we apply the distance-matrix-based

PCA to study the structural diversity of the fragmenta-

tion of multicharged clusters and to explore the effects

of the potential on the fragmentation dynamics.
The PCA starts from N�m data matrix M, which

holds the m coordinates defining N configurations

in an m-dimensional space. That is, each matrix element

Mij is equal to qij, the jth coordinate of the ith con-

figuration. PCA operates on the square N�N, MMT

matrix, reflecting the relationships between the config-

urations (the snapshots along a trajectory). The elements

of this matrix, also known as the distance matrix �, are

the dij distances between two configurations i and j

of a given chemical system. In this study, the dij distance

is measured by the RMS deviation in Cartesian

coordinates between the i and j configurations and

is defined as the minimum of the functional

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

r
ðiÞ
k � r

ðjÞ
k

��� ���2
s

ð5Þ

where k¼ 1�n is an index over the ions, and r
ðiÞ
k , r

ðjÞ
k are

the Cartesian coordinates of the kth ion in the i and

j configurations, respectively. The minimum value dij
of equation (5) is obtained by an optimal superposition

of the two configurations. Since the dij distances can

also be obtained from the N�Nmatrix A of latent roots

(eigenvectors), one can use this matrix for the projec-

tion, defining Aij ¼ �1=2d 2
ij and Aii¼ 0 (for i, j¼ 1,

2, . . . , n). To ensure that the A matrix has a zero root

(and thus guarantee that it corresponds to a real

configuration) it is ‘centred’, so that the sum of every

row and the sum of every column of A is zero.

This centring, which does not alter the dij distances,

is defined by

A�
ij ¼ Aij � Aij

� �
i
� Aij

� �
j
þ 2 Aij

� �
ij

ð6Þ

where �h ik is the mean over all the specific indices

k¼ i, j, ij. The centred matrix A� is diagonalized using

standard matrix algebra to obtain the latent eigenvectors

and the diagonal matrix of eigenvalues. The resulting

(normalized) eigenvalues give the percentage of the

projection of the original distribution on the new

coordinate set, and the eigenvectors (scaled by their

corresponding eigenvalues) give the new coordinates

of the original points in the new axes set [56, 59].

Following the PCA procedure, each new axis k is

associated with a normalized eigenvalue, �k, that

represents the relative weight of that axis in reproducing

the original data. An axis with a high value of �k
is significant for the projection, whereas axes with

small values of �k are insignificant. By sorting the new

axes according to their �k weight it is possible to select

a small subset of effective coordinates that captures

most of the configurational relationships of the original

high-dimensional space. It was found that in

polypeptide systems the effective dimensionality of

conformational spaces is significantly smaller than the

dimensionality of the full spaces, with only a few

principal axes contributing to the projection. In fact,

in many cases a projection quality of 70–90% can be

achieved for a subspace spanned only by three effective

coordinates [67, 69, 72].
The PCA is useful for the reduction of the dynamic

dimensionality of complex systems, as well as for

the comparison between different sets of trajectories

in the same system, which are obtained from different

conditions. For example, the dynamics along two

trajectories of a (Aþ)n multicharged cluster simulated

for the same or for a different potential can be obtained.

When configurations of two sets of trajectories, a and b,

of the same molecular system are to be compared with

each other, the ‘cross’ distance matrix, �a,b, must be

calculated in addition to the two self-distance matrices,

�a and �b. The elements of the rectangular ‘cross’

matrix are the distances between all configurations

of set a and of set b. Thus, to obtain a joint projection

of sets a and b within the same molecular system,

the PCA is applied to the combined D matrix,

D ¼
�a �a,b

0 �b

 !
ð7Þ

where �a and �b are the upper diagonal ‘self ’-distance

matrices and �a,b is the rectangular ‘cross’ distance

matrix. The size of the joint D matrix is

(NþN0)� (NþN0), with N configurations in set a

and N0 configurations in set b. Equation (7) is easily

extended to any arbitrary number of configuration sets.
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In this study, we applied the PCA to project the
multidimensional cluster fragmentation dynamics
on a subspace, and thus explore the complex dynamics
of the cluster fragmentation. More specifically, the
dynamics along a single trajectory was studied by
applying the PCA for configurations collected along
each trajectory. It should be noted that, because the
fragmentation mode is determined in the early stage
of the dynamics, which is followed by diffusion motion,
a single reaction coordinate is expected to be sufficient
to characterize the dynamics. In addition, all the
structures collected along the 15 trajectories obtained
from the simulations with the short-range potential,
as well as from those obtained with the long-range
potential, were projected using the PCA in order
to compare the fragmentation dynamics along each
trajectory and to characterize the energy landscape.
Finally, all structures obtained from all simulations
(i.e. both with the short-range and with the long-range
potential) were jointly projected using the PCA to reflect
the difference in the dynamics induced by the two
potentials.

3. Results

The fragmentation process of a multicharged (Aþ)55
cluster was explored by applying PCA to the analysis
of sets of trajectories simulated on the energy
landscapes, which are determined by the potentials,
equations (1) and (2), with the parameters specified in
section 2.1. The dynamics of the cluster prior to and
after fragmentation is different. While the dynamics
before and during fragmentation is dominated by
deformation of the cluster due to fluctuations of the
positions of the cluster ions, motion of the fragments
characterizes the post-fragmentation dynamics. Post-
fragmentation dynamics is obviously more extensive
than pre-fragmentation dynamics. Using PCA, the
multidimensional dynamics can be viewed by projecting
each dissociation trajectory onto a subspace defined
by several collective coordinates. In this study, we focus
mainly on exploring the pre-fragmentation dynamics,
however, the simple translational dynamics of the
fragments after dissociation can assist in characterizing
the collective reaction coordinate. Accordingly, a single
collective coordinate may be sufficient to describe the
dynamics. This collective coordinate will serve as the
reaction coordinate, which captures the fragmentation
of the cluster and the motion of the fragments.
Figure 1 portrays the time evolution of the first

principal coordinate (the principal axis with the largest
eigenvalue) obtained when projecting representative
trajectories simulated at five different temperatures.

It should be noted that the reaction coordinate might
be different among the trajectories because the frag-
mentation pattern can be affected by the temperature
and by the initial velocity distribution. The reaction
coordinate was independently obtained for each trajec-
tory by applying the PCA and was found to have a large
(495%) normalized eigenvalue, reflecting the high
weight of that axis in reproducing the original data.
For the sake of a simpler comparison, all the principal
coordinates were shifted to zero at t¼ 0. The propaga-
tions of the dissociation reactions along the principal
coordinates indicate that they are good reaction
coordinates for the characterization of cluster frag-
mentation. The dissociation rate was estimated by the
time � required to achieve 5 Å on the first principal
coordinate of each of the three trajectories simulated
at each temperature. Some variations exist in the
dissociation rates of these trios of simulations, indicat-
ing the complexity of their energy landscape. Yet, the
averaged dissociation rates from the trios of trajectories
at different temperatures can be used to obtain an
estimate of the activation barrier for cluster fragmenta-
tion. More extensive sampling has to be performed
to study the detailed kinetics. Figure 2 shows the
temperature dependence of the fragmentation rates
and indicates that the dissociation rate obeys the
Arrhenius law. The x¼ log(1/�) and y¼ 1/T axes
in figure 2 correspond to the logarithm of the dissocia-
tion rate and the inverse of the temperature, respec-
tively. The activation barrier for dissociation under
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Figure 2. Arrhenius analysis of the fragmentation rate as
a function of temperature. The x¼ log(1/�) and y¼ 1/T axes
correspond to the logarithm of the averaged dissociation rate
(estimated by the time � required to achieve 5 Å on the first
principal coordinate of each of the three trajectories simulated
at a given temperature) and the inverse of the temperature,
respectively.
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long-range and short-range Morse potentials are 0.36
and 0.22 eV, respectively, showing that the barrier for
fission is about 75% higher than that for Coulomb
explosion.
Figures 3(a) and 3(b) show the decrease of the

potential energy along the reaction coordinates for the
short-range and for the long-range potentials, respec-
tively. The insets indicate that regions of the potential
energy surfaces with higher potential energy are sampled
at higher temperatures. While the potential energy decay
curves, which were obtained for short-range and for
long-range Morse potentials, are similar at high values
of the reaction coordinate, they are different at the early
stage of the fragmentation dynamics. The simulated
potential energy of the cluster at short distances
(�1 Å) manifests larger fluctuations for the long-range

potential, considerably exceeding those for the short-
range potential (insets to figures 3a and 3b). The
latter observation suggests that for an energy landscape
generated by long-range interactions, the cluster under-
goes swelling, lengthening and shrinking prior to
dissociation. For reaction coordinates smaller than
5 Å the potential energy slope, dE/dR, is larger with
the short-range potential than with the long-range
potential (figures 3(c) and 3(d)). However, at the later
stages of the dynamics (i.e. above 5 Å along the reaction
coordinates), the slope of the potential energy along the
reaction coordinate is very similar for both potentials.
This indicates that in that region the long-range
interactions are dominated by the Coulomb repulsion
and the cluster fragments move independently with both
short-range and long-range potentials.
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The time-dependent radii of gyration, Rg(t), along the
trajectories collected under short-range and long-range
Morse potentials are shown in figure 4. The increase
of the radius of gyration for both potentials reflects

on dissociation induced by the repulsive electrostatic
forces. Figures 4(b) and 4(c) describe the radius of
gyration prior to fragmentation and indicate that,
while the Rg(t) profiles are very similar at high values
of the reaction coordinate, they reveal a different
pattern at low values of this coordinate. The oscillations
in the radius of gyration of the cluster calculated for
the long-range potential are much more pronounced
than those observed for the short-range potential and
they are larger for higher temperatures. Rg(t) along the
trajectories simulated with the long-range potential
shows marked fluctuations of up to 0.8 Å of the reaction
coordinate. On the other hand, the fluctuations are
minor and persist for about 0.1 Å of the reaction
coordinate for the trajectories simulated with the
short-range potential. The different characteristics
of Rg(t) before and during fragmentation in the two
Morse potentials suggest that the cluster experiences
shrinking and swelling prior to dissociation due to the
long-range interactions, while with short-range inter-
actions the cluster dissociates almost without the
involvement of breathing motions.

To complement the fragmentation dynamics with
structural properties, we calculated the time dependence
of the maximal ellipsoid volume of the ions from the
fragmenting clusters. The maximal ellipsoid volume
increases smoothly along the reaction coordinate that
describes the dissociation processes for both Morse
potentials. However, for the short-range Morse poten-
tial the increase of the maximum ellipsoid volume
is considerably larger (figure 5). The latter observation
indicates that the dynamics under the short-range
potential is more isotropic than that under the long-
range potential. This conclusion is supported by
dynamic information from the simulations.

Figure 6 presents several snapshots, which illustrate
the different patterns of the fragmentation of the
charged (Aþ)55 clusters under the short-range and
under the long-range potentials. The cluster dissociation
should be described as a fission process when it is
induced by a long-range potential, and as a Coulomb
explosion when it is induced by a short-range potential.
The fission and the Coulomb explosion reactions have
different characteristics. The fission reaction occurs
mainly along one dimension, however, the dynamics
of the Coulomb explosion is nearly spatially isotropic.
Moreover, cluster fission results in fewer fragments than
Coulomb explosion, which ends up with many small
fragments.

PCA was further applied for a joint description of
all the trajectories obtained for each potential. While
the projection of a single trajectory onto a principal axis
enables the study of its dynamic characteristics along
the reaction coordinate, the joint projection of multiple
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trajectories onto the same principal axis provides
a useful tool to explore the effects of the energy
landscape on the dynamics and to characterize the
number of possible reaction pathways. This approach
was applied to study the potential energy surfaces for
fission and for Coulomb explosion. Projecting all the
trajectories on the same principal axes can be achieved
only after measuring the RMS deviations, equation (5),
between all pairs of configurations in each trajectory,
as well as the RMS deviation between any configura-
tions for each trajectory and all configurations from
the other trajectories, equation (7). The joint projection
of the 15 trajectories of the dissociation of the (Aþ)55
cluster under short-range and long-range potentials
are shown in figures 7(a) and 7(b), respectively. The
first and second principal coordinates of the joint
projection of all the short-range trajectories capture
47 and 11% of the dynamics, respectively. The observa-
tion that the first principal coordinate captures only
47% of the dynamics of the cluster dissociation when
jointly projected (in comparison to 98% when projected
individually) illustrates the diversity of Coulomb explo-
sion pathways among the different trajectories. Even
lower values (20 and 18% for the first and second

principal coordinates, respectively) were obtained for
the joint projection of the trajectories simulated with the
long-range potential, reflecting widely different path-
ways during the fission process. The decay of the
potential energy landscapes of the cluster during
dissociation is similar for both fission and for
Coulomb explosion (figures 7(a) and 7(b)) and can be
described as ‘ski slopes’. For a given fragmentation
mode, the projected trajectories do not overlap,
indicating that the fragmentation pathways differ in
their trajectories for both Coulomb explosion and
for fission. Accordingly, while the cluster undergoes
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Coulomb explosion under the short-range Morse
potential, the number of small fragments, their size,
and composition might be different from one trajectory
to another. Similar features characterize the cluster
fission. The trajectories simulated at the same tempera-
tures sometimes do not show the same fragmentation
pattern. The oscillations in the trajectories in the two-
dimensional principal coordinate spaces are observed
at the early stage of fragmentation for cluster fission
(figure 7(d)), compared with the smooth patterns of
these trajectories for Coulomb explosion (figure 7(c)).
This observation concurs with the fluctuations observed
in the time dependence of the radius of gyration (figure
4), and indicates that the dynamics of fission is more
complex than that of Coulomb explosion. While cluster
fission and its fragmentation into a small number
of fragments involves cluster swelling, lengthening,
and shrinking, cluster explosion into a large number
of small clusters is dynamically simpler.

To establish the different dimensionality of the
fragmentation processes, PCA was applied to construct
the joint projection of the trajectories for both fission
and for Coulomb explosion on the same two-principal
axis. Figure 8 shows that such a joint projection of the
trajectories reflects on different patterns of dissociation
for fission and for Coulomb explosion. While all the
trajectories for Coulomb explosion, as well as all the
trajectories for fission, are essentially represented by
a single principal axis, there is a qualitative distinction
between the two sets of trajectories. The Coulomb
explosion dynamics is dominated by the first principal
axis (which captures 55% of the dynamic information).
On the other hand, the fission dynamics is dominated
by the second principal axis (which captures only 7%
of the dynamic information). The relatively low
eigenvalues obtained when jointly projecting the short-
range and the long-range Morse potential trajectories
is indicative of limited reproduction of the original
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high-dimensional space. We would like to emphasize
that because of this limitation, the principal coordinates
were used as reaction coordinates to infer on fission
and on Coulomb explosion, kinetics were obtained by
applying PCA to each single trajectory. However,
although a principal coordinate capturing 7% of the
dynamic information is not very significant, it is still
meaningful because it manifests the spatially hetero-
geneous dynamics of the different trajectories.
Furthermore, the joint projection of all the trajectories
illustrates that different collective coordinates describe
the spatially isotropic Coulomb explosion and the
spatially unisotropic fission.

4. Conclusions

We studied the structural and dynamic features of the
fragmentation of multicharged Morse clusters during
fission and during Coulomb explosion. The multidimen-
sional energy landscapes for these processes were
explored by applying the PCA method to reduce the
effective dimensionality and for finding the principal
coordinates that capture the essential dynamic informa-
tion. The first principal coordinate was found to be
an appropriate reaction coordinate for both fission
and Coulomb explosion processes and was used to
estimate the fragmentation rates of the cluster at
different temperatures. The dissociation rates obey
the Arrhenius law and indicate that the barrier for
fission is about 50% higher than that for Coulomb
explosion. In addition, the collective coordinates serve
to study the fragmentation pathways. The fission and
Coulomb explosion processes have distinct dynamical

properties. The fission process is spatially unistropic
and involves breathing motions of swelling, lengthening
and shrinking of the cluster prior to complete dissocia-
tion, which is characterized by the motion of the
fragments. The Coulomb explosion process exhibits
a simpler dynamic behaviour, being spatially isotropic
with the small ionic fragments expanding radially.
The present study manifests unifying features of
chemical dynamics in large finite systems, with PCA
providing a useful scheme for both isomerization
(and folding) dynamics of biomolecules [56–60], and
‘reactive’ fragmentation dynamics of clusters.
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