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We applied the quantum path integral Monte Carlo method for the study of (para-H2)N (N ) 5-33) clusters
at T ) 2 K, exploring static and dynamic order, which originates from the effects of zero-point energy,
kinetic energy, and thermal fluctuations in quantum clusters. Information on dynamic structure was inferred
from the asymptotic tails of the cage correlation function calculated from the centroid Monte Carlo trajectory.
The centroid cage correlation function decays to zero for large clusters (N ) 15-33), manifesting the
interchange of molecules between different solvation shells, with statistically diminishing back interchange.
Further evidence for the floppiness ofpara-hydrogen clusters emerges from the Monte Carlo evolution of the
centroid of a tagged molecule, which exhibits significant changes in the list of its first and second solvation
shells due to the interchange of molecules between these shells.

I. Introduction

H2 is the most ubiquitous molecule in the universe. In the
groundJ ) 0 rotational state, molecularpara-H2 constitutes a
spinless boson, which, together with the4He atom, is considered
as the only naturally occurring particle whose assembly might
manifest superfluidity.1 The attainment of Bose condensation
in a uniform, ideal gas ofpara-H2 is expected to be characterized
by a critical temperatureTc ) 6-8 K,1-3 which is consistent
with an early theoretical estimate,4 although a lower value of
Tc ) 2.1 K was inferred from later analysis.3,5 These estimates
of Tc are lower than the triple-point temperature of hydrogen
in the bulk,6 precluding the prevalence of Bose-Einstein
condensation. The lowering of the “melting” temperature, i.e.,
the order-disorder, broadened transition temperature in a cluster
relative to the corresponding infinite bulk system,7 may be
beneficial for the attainment of lower-temperature liquidpara-
hydrogen clusters, where Bose-Einstein condensation may be
manifested.4

This problem was addressed by quantum path integral Monte
Carlo simulations ofpara-H2 clusters.8 Sindzingre et al.2,8,9

reported on the melting of (para-H2)N clusters. ForN ) 33 and
N ) 13, the radial density profiles indicate “liquid”-type
behavior aboveTM ) 5 K, while belowT ) 5 K, structural
selectivity is manifested for these clusters, revealing rigid
structures, e.g., a pentagonal bipyramidal core forN ) 33 and
an icosahedral structure forN ) 13. Raman spectroscopy in
cryogenically cooled free jets provides significant information
on the identification of small (para-H2)N (N ) 2‚‚‚8) clusters.10

For (para-H2)N (N ) 13 and 33) clusters, liquid clusters appeared
early in the expansion. A larger cluster (N > 55) at lower source
temperatures and larger source pressures underwent a transition
to the solid configuration,10 with the coexistence between solid
and liquid. Raman peaks suggest that these large, predominantly
solid clusters have a significant liquid fraction, which is possibly
located at the surface.10 Early attempts to calculate Raman
spectral shifts assuming a rigid structure for these cluster were
unsuccessful.11 The good agreement that was accomplished

between experimental and model calculations, using pair
distribution functions for the individual clusters, indicates that
these clusters are nonrigid and floppy.10,12 However, direct
evidence for cluster floppiness and particle delocalization in
these quantum clusters is not yet available.

In this paper, we applied the quantum path integral Monte
Carlo (PIMC) method12,13 for the study of (para-H2)N (N )
5-33) clusters. To address the issue of floppiness, namely, are
the cluster solid or liquid like, we calculated the cage correlation
functions to describe the change in the molecular surrounding.14-16

In this context, the interesting issue is whether particles diffuse
or not, and the cage correlation function is an extremely useful
tool to address this issue for finite small systems.

As we consider the intermolecular pair-centroid distances,
the effects of exchange interactions, which originate from boson
permutation symmetry, will be of minor importance. Our
treatment of a cluster of particles that obey Boltzmann statistics
provides evidence for the highly delocalized nature of these
finite systems, despite the fact that boson permutation symmetry
has been neglected. Thus, spatial delocalization can originate
from zero-point energy and kinetic energy effects and the
inclusion of the proper Bose statistics can probably enhance,
but not suppress delocalization in these quantum clusters.

II. Model and Theory

In this section, we describe the model used to study the
structural properties of small clusters ofpara-hydrogen, provide
some technical details regarding the path-integral Monte Carlo
(PIMC) approach used, and describe the approach we adopt to
study the change in atomic surroundings of these quantum
clusters.

A. Model Potential. The model potential we used to study
smallpara-hydrogen clusters is based on the Silvera-Goldman
two-body potential,17,18 where the entire H2 molecule is
described as a spherical particle, so the potential depends only
on the radial distance between the molecules. It has been
developed to study the properties of condensed hydrogen and
has been used in this context to explain the thermodynamic
properties and the phase equilibrium of clusters and liquid
hydrogen,19-25 as well as dynamical properties of liquid

† Part of the special issue “Robert J. Silbey Festschrift”.
* Corresponding authors. E-mail: rabani@tau.ac.il (E.R.); jortner@

chemsgr1.tau.ac.il (J.J.).

10.1021/jp057067z CCC: $33.50 © xxxx American Chemical Society
PAGE EST: 4.5Published on Web 04/21/2006



hydrogen and deuterium.26-39 The Silvera-Goldman potential
is given by

where the first term on the right-hand side (RHS) accounts for
short-range repulsion interactions, the second set of terms on
the RHS account for long-range attractive dispersion interac-
tions, and the last term on the RHS is an effective three-body
correction.17 The last two terms are multiplied by a damping
function, which turns off these interactions at short distances,
and is given by

where θ(r) is the Heaviside function (step function). The
parameters for the potential are given in Table 1.

B. Path Integral Monte Carlo Approach. The calculation
of the static structural properties ofpara-hydrogen clusters were
based on the PIMC approach described in ref 13. For reasons
discussed above, our simulations do not include exchange of
particles and, thus, are exact only in the limit of Boltzmann
statistics.

The path integral method is based on the evaluation of the
many-body density matrix,F̂â ) exp{-âĤ}, whereâ ) (1/
kBT) is the inverse temperature andĤ is the many-body
Hamiltonian given by (from now on we assume atomic units
where p) 1):

As before, the entire H2 molecule was described as a spherical
particle with massmand the two-body interaction potentialV̂(rij)
between particlesi and j at distancerij ) |r i - r j| is given by
eq 1.

The density matrix described above is the starting point for
evaluation of expectation values of an arbitrary observable:

whereR ) {r1‚‚‚rN} is a shorthand notation for the position
vector of all particles,Fâ(R, R′) ) 〈R|F̂â|R′〉, A(R, R′) ) 〈R|Â|
R′〉, and Z ) Tr exp{-âĤ} is the partition function. If the
operatorÂ depends only on the position of all particles, i.e., it
is diagonal in the coordinate representation, eq 4 takes a simpler
form given by:

We now rewrite the density matrix in terms of a product of
high-temperature density matrixes. This is required to transform
eq 5 to a form suitable for Monte Carlo techniques:

whereε ) â/P. By inserting a complete set of position states

between the high-temperature density matrixes, we can obtain
our working expression for the expectation value of the
observable under consideration:

whereFε(R, R′) ) 〈R|F̂ε|R′〉 ) 〈R| exp{-εĤ}|R′〉 is the matrix
element of the high-temperature density matrix.

In this work, we used the pair product approximation to
evaluate the high-temperature density matrix.13 This approxima-
tion reduces the numberP of slices required to converge the
full density matrix as compared to the widely used primitive
approximation. The two different approximations yield similar
results for several cluster sizes within the noise level of the
PIMC simulations. The pair-product approximation for the high-
temperature density matrix is given by:

wherer ij ) r i - r j andu(r, r′; ε) is the exact action for a pair
of hydrogen molecules (described each by a spherical particle)
given by

In the above equation,Fp(r, r′; ε) is the relative pair density
matrix of two hydrogen molecules, andFp

0(r, r′; ε) is the
corresponding relative free-particle pair density matrix. These
are given by:

and

respectively. In the above equations,φn and En are the
eigenstates and eigenvalues of the relative Schroedinger equation
for a pair ofpara-hydrogen molecules, andφn

0 andEn
0 are the

corresponding quantities when the interactions between the pair
of para-hydrogen molecules is turned off.

C. Modeling the Change in Atomic Surroundings.One of
the major goals of the present study is related to the issue of
mobility of hydrogen molecules in the cluster. In other words,
is the surrounding of each hydrogen molecule static or dynamic,
and does this property vary with system size? The answer to
this question cannot be obtained from static information such
as the pair distribution function. In classical disordered systems,
a valuable approach to address this question is based on the
cage correlation function,14-16 which provides an accurate
measure of changes in the molecule’s surroundings. Application
of the cage correlation function to extract the change in the
surroundings in classical systems can be obtained from either
Monte Carlo or molecular dynamics trajectories. In such
systems, it is found that for solids the cage correlation function
does not decay at long times, while for liquids, an exponential
decay is observed at long time.14

Here, we adopt this approach and apply the analysis based
on the cage correlation function to the Monte Carlo dynamics
of the centroid (center of mass of the beads) of each molecule.
To calculate this correlation function forpara-hydrogen clusters,

TABLE 1: Parameters of the Silvera-Goldman Model
Potential for para-Hydrogen in Atomic Units

R δ γ C6 C8 C9 C10 rc

1.713 1.5671 0.00993 12.14 215.2 143.1 4813.9 8.321

V(r) ) exp(R - δr - γr2) -

(C6

r6
+

C8

r8
+

C10

r10) fc(r) +
C9

r9
fc(r) (1)

fc(r) ) e- (rc/r - 1)2θ(rc - r) + θ(r - rc) (2)

Ĥ ) -
1

2m
∑
i)1

N

∇ı̂
2 + ∑

i>j

N

V̂(rij) (3)

〈Â〉 ) Z-1TrF̂âÂ ) Z-1 ∫ dRdR′Fâ(R, R′)A(R′, R) (4)

〈Â〉 ) Z-1 ∫ dRFâ(R, R)A(R) (5)

F̂â ) exp{-âĤ} ) (exp{-εĤ})P≡ F̂ε
P (6)

〈Â〉 )

Z-1 ∫ dR1‚‚‚dRPFε(R1, R2)Fε(R2, R3)‚‚‚Fε(RP, R1)A(RP) (7)

Fε(R, R′)∝ exp{-
m

2ε
∑
i)1

N

(r i - r i′)
2 - ∑

i>j

N

u(r ij, r ij ′; ε)} (8)

u(r, r′; ε) ) - log{ Fp(r, r′; ε)

Fp
0(r, r′; ε)} (9)

Fp(r, r′; ε) ) ∑
n

φn
/(r)φn(r′) exp{-εEn} (10)

Fp
0(r, r′; ε) ) ∑

n

φn
0
/(r)φn

0(r′) exp{-εEn
0} (11)
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we generate a Monte Carlo trajectory of the centroid of all
molecules in the cluster using the PIMC method described above
and carry out the calculation of the cage correlation function
for each trajectory.

The cage correlation function is based on introducing a
generalized neighbor list (li) for moleculei in an N molecule
system. This list is a vector of lengthN, and is defined as

where f (rij
c) is a function of the intermolecular centroid

distance (rij
c) and is taken to be the Heaviside function,

wherernlist
c is the centroid neighbor list cutoff radius taken to

be at the location of the first minimum in the pair correlation
function. The centroid cage correlation function is defined using
the generalized neighbor list,li, as

where t is the Monte Carlo step. The properties of the cage
correlation function for classical fluids has been described in
detail elsewhere.14-16 In brief, if the surroundings of a molecule
are static, the cage correlation function will decay to a plateau
due to the vibrational motion. When the surroundings change,
the fast decay to the plateau will be followed by a longer time
decay associated with the change in the surroundings of the
molecule. Below, we use this correlation function to study the
quantum fluctuations of the surroundings of hydrogen molecules
in small cluster.

D. Computations. We have performed PIMC simulations
for several (para-H2)N clusters in the size domain fromN ) 5

to N ) 33 atT ) 2 K. The staging algorithm40 for Monte Carlo
chain moves was employed to compute the numerically exact
static information and the centroid Monte Carlo trajectory
required to obtain the centroid cage correlation function. The
imaginary time interval was discretized intoP slices of sizeε
) â/P with P ) 30. 3× 106 Monte Carlo passes were made,
each pass consisted of attempting moves in all molecules and
all the beads that were staged. The acceptance ratio was set to
be approximately 0.25 for the staging moves, which required
5-10 staging beads, depending on the system size. Following
the staging moves, to accelerate the sampling of configuration
space, we have added single-particle centroid moves. These
moves consist of an attempt to displace the center of mass of
the beads of each particle in a random direction. Such a move
was accepted with the standard Metropolis criteria. The
magnitude of the displacement was set to obtain an acceptance
ratio of 0.25 for this move.

III. Results

In Figure 1, we plot the pair distribution function,PN(r), for
para-H2 clusters of varying size. This set of clusters was also
studied recently by Tejeda et al. using the diffusion Monte Carlo
(DMC) method at zero temperature.10 The pair distribution
function calculated using the PIMC method atT ) 2 K is
qualitatively very similar to that obtained using the DMC
approach. The common features are the position and height of
the first peak inPN(r) and the development of the shoulders
into a second and a third solvation peak as the cluster size is
increased. The differences are mainly associated with the relative
magnitude of the solvation peaks. These can result from the
effect of thermal fluctuations (relative to the quantum fluctua-
tions), even atT ) 2 K, and from the fact that different
interacting pair-potentials were used in the studies. We believe
that Bose statistics may also contribute to this difference;
however, we would like to point out that, for liquid helium,
Bose statics have a negligible effects onPN(r), even below the
λ transition.41

One of the major conclusions drawn from the work of Tejeda
et al.10 is that the shape of the pair correlation function, which

Figure 1. Radial pair distribution functions,PN(r), for para-hydrogen clusters of different size. All distributions are normalized to
∫0

∞ PN(r) dr ) 1.

l i ≡(f (ri1
c )

l
f (riN

c ) ) (12)

f (rij
c) ) θ(rnlist

c - rij
c) ) {1 if rij

c e rnlist
c

0 otherwise
(13)

Cl(t) ≡ 〈l i(0)·l i(t)〉

〈l i(0)2〉
(14)
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resembles that of bulk liquid,19 indicates that thepara-hydrogen
cluster is highly delocalized and floppy. Of course, the pair
distribution function provides only an indirect measure of
delocalization, and for small cluster sizes, it is probably not a
very good indirect measure. In fact, for smaller clusters where
a second solvation shell has not developed, the difference
between the pair distribution function of a floppy versus a rigid
cluster is not noticeable, and even for a larger cluster where a
second solvation peak appears, it is very difficult to determine
whether the cluster is floppy or rigid based on the pair
distribution function alone.

A more decisive picture emerges from the analysis shown in
Figure 2, where we plot the centroid cage correlation function
obtained from the Monte Carlo centroid trajectories for a subset
of para-H2 clusters (i.e.,N ) 10, 15, 20, 25, 30, 33). We would
like to note that this correlation function cannot be used to infer
information about the real-time dynamics of these systems.
However, it does provide a clear-cut evidence for the floppiness
and particle delocalization in these clusters because we expect
the centroid cage correlation function to decay to zero for floppy
clusters, even if the trajectory is generated using the Monte Carlo
method.

As can be seen in Figure 2, for largerpara-H2 clusters (N >
15), indeed, the centroid cage correlation function decays to
zero. This can be understood only if each molecule loses its
original surrounding molecules at long Monte Carlo time. In
contrast, for the smaller clusters (N ) 10-15), the centroid cage
correlation does not decay to zero at large Monte Carlo time,
but rather decays to a small plateau. The appearance of this
finite size plateau is a result of the fact that the definition of
the generalized neighbor list,li, does not constitute a sensitive
probe when the clusters are small when nearly all atoms reside
within the first solvation shell of each other.

A closer examination of individual centroid Monte Carlo
trajectories for the smaller clusters (not shown here) reveals that
they are indeed floppy. For example, we followed the Monte
Carlo evolution of the centroid of a tagged molecule and found
significant changes in the list of its first and second solvation
shells. Specifically, we find that, occasionally, a molecule from
its first solvation shell pops out to the second solvation shell

and, in return, a molecule from the second solvation shell pops
in to the first solvation shell. Because the cluster is small, this
process occurs also in the back direction, while for larger
clusters, the probability that the same two molecules will re-
interchange solvation shells is quite small.

This particle interchange process results in a decay of the
centroid cage correlation function at intermediate Monte Carlo
times. When the back interchange is blocked for statistical
reasons, the centroid cage correlation function decays to zero.
However, for small cluster, this back interchange occurs with a
finite probability, and indeed, the centroid cage correlation
function decays to a finite plateau at long Monte Carlo times.
The height of the plateau is a direct measure of the probability
for this back interchange. As can be seen in Figure 2, the value
of the plateau decreases with increasing cluster size, approaching
zero for large clusters.

IV. Conclusions and Discussion

The quantum path integral Monte Carlo method provided
information on cluster floppiness and particle delocalization in
para-hydrogen clusters atT ) 2 K, which originate from the
effects of zero-point energy, kinetic energy, and thermal
fluctuations. Of considerable interest is the static and dynamic
structure of these quantum clusters. Regarding the static
structure, the pair distribution function atT ) 2 K exhibits
solvation peaks, which manifest both quantum fluctuations and
thermal fluctuations at this finite, low temperature. Information
on dynamic structure ofpara-hydrogen clusters was inferred
from the asymptotic tails of the cage correlation function,
calculated from the centroid Monte Carlo trajectory. The decay
of the centroid cage correlation function to zero for large clusters
(N ) 15-33) manifests the interchange of molecules between
different solvation shells, with statistically diminishing back
interchange. This analysis of the cage correlation function
provides new information on the floppiness ofpara-hydrogen
quantum clusters that is supported by the Monte Carlo evolution
of the centroid of a tagged molecule to interrogate changes in
its list in different shells. The extension of the analysis of the
cage correlation function from classical fluids to quantum

Figure 2. Plot of the centroid cage correlation computed forpara-hydrogen clusters at different cluster size.
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clusters will be of considerable interest for the exploration of
the structure of dislocations in low-temperature solidpara-
hydrogen and of4He, which are of considerable current interest
in the context of probable Bose-Einstein condensation in these
solids.42-45 The methods advanced herein will be useful for the
understanding of the dynamic structure of lattice vacancies in
these quantum solids, while Bose condensation has to be
explored by incorporating quantum exchange effects.13
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