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Abstract

We establish some relations between the kinetics of incoherent, hopping charge transport in bridged large scale chemical systems
or in a single-component duplex DNA, and the electrical properties (electric current (j) and conductance (g)) of these systems con-
nected by two electrodes. We considered two distinct voltage distributions across the equienergetic chain (with N bridge elements,
and an intersite hopping rate k), which involve the voltage being biased only across the edge bridge elements (case (i)), and the volt-
age being equally distributed across the bridge (case (ii)). For sufficiently long chains in the low voltage (U) domain, we find that
j = (ek/N)G(j1,j�1)(eU/kBT), where G() is a function of charge injection rates j1(j�1) to (from) the electrode. The low field (con-
stant) conductance is g = 1.6 · 10�19(k/N)G X�1. At high voltages we established the existence of a maximal, constant, U indepen-
dent current (jmax), where g ! 0. For case (i) jmax = ek/N, being determined by the intersite hopping rate and by N�1, as appropriate
for diffusional charge transport. For case (ii) jmax = ej1, being independent of the chain length, and determined by the rate of charge
injection from the electrode. Finally, we applied our kinetic model for the description of incoherent charge transport in and the elec-
tronic properties of a donor–acceptor pair connected by two electrodes.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A significant development in the area of nanoelec-
tronics [1–3] pertains to the conduction of a single
molecule or a molecular wire connected by metallic
leads [3–11]. Nitzan [12] explored the relation between
the coherent conduction property of a donor–acceptor
(DA) molecular system to the electron transfer rate in
this system. He recently considered the relation between
bridge assisted electron transfer rate via sequential hop-
ping in a donor–bridge–acceptor (DBA) system and the
zero voltage bias molecular conduction within the same
supramolecule [13]. In this note we explore the relations
between the kinetics of charge migration via incoherent,
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thermal hopping between the bridge elements in a large
scale chemical bridged system [14,15] or in DNA [16–
43], and the electrical properties (current or conduction)
of these systems. In a B1B2. . .BN molecular bridge the
{Bn} elements can constitute large organic molecules
in a large chemical scale system [14,15], or nucleobases
within a double strand of DNA, whose electrical proper-
ties attracted considerable interest [16–23].

Charge transport in a �molecular wire�, i.e., a linear
chain of molecules interconnected by two electrodes
[3,6,7,10,11] can be realized for the common case when
the Fermi energies of the electrodes fall between the
HOMO and LUMO of the constituents, and correspond
to two categories: (a) The superexchange limit for
ssuper � shop. When the superexchange transfer time
ssuper [11], between electrons at the Fermi levels of the
two electrodes, is considerably shorter than the Bj ! Bj±1
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hopping time shop, unistep superexchangemediated by the
molecular wire will be exhibited. In this limit an exponen-
tial distance dependence of the rate and of the current is
exhibited [3,6,7,10,11]. (b) The hopping limit
[3,6,7,10,11]. When ssuper � shop, the electron transport
is accompanied by dephasing at each {Bj} site
[3,13,10,11,15,24–29,44] and the transport can be de-
scribed in terms of a kinetic scheme, with the individual
hopping rates being inferred from quantum mechanical
information. The �transition� between superexchange for
short chains and thermally induced hopping in long chains
was explored [15,29] and applied to molecular wires [11].

Recently, we stressed [24–29] the aspects of energetic
control and thermally induced hopping for (hole) charge
transfer within the (positively charged) nucleobases in
the DNA duplex [24–43]. The resting sites for holes in-
volve guanine (G), higher energy (D ’ 0.20–0.25 eV)
mediating states involve adenine (A), while high-energy
(D ffi 0.5–0.6 eV) involve thymine (T) and cytosine (C).
In a structurally disordered DNA (e.g., k DNA), and
in a one-component DNA (e.g., poly G), three major
hole transfer and transport mechanisms between guan-
ine pairs separated by a bridge can be distinguished.

(1) Superexchange mediation in structurally disor-
dered DNA. In the duplex

Gþ

C

A

T

� �
n

G

C
ð1Þ
with short (A–T)n bridges, i.e., n < 4, superex-
change mediated G+ � G transfer occurs and the
unistep rate exhibits an exponential distance
dependence, k / exp(�bn).
(2) Thermally induced hopping (TIH) via an adenine
chain in structurally disordered DNA. This mech-
anism prevails in a long duplex, Eq. (1), with n > 4,
via the adenine intrastrand or interstrand {An}
chain [27–29,42]. TIH prevails via thermally acti-
vated charge transfer from G to A, followed by
hopping transport in the {An} (n > 4) chain to
the terminal G nucleobase hole trap. As every
Watson–Crick pair mediating between two G
bases contains A, long {An} chains provide an
effective interstrand/intrastrand route for TIH.

(3) A DNA single component duplex, e.g., poly
G
C

� �
n

or poly
A
T

� �
n

. From band structure calculations

of electronic coupling matrix elements for intra-
strand hole transfer between neighboring (G+G
or A+A) nucleobases, it appears that undoped,
neat, single-component DNA constitutes a large
gap (�3.5 eV), narrow band (�0.1 eV),
semiconductor [45–51]. Whether charge transport
(following charge injection) in a narrow band
semiconductor proceeds via hopping or by a
coherent, band-type mechanism, is determined by
charge scattering processes. On the basis of the
Ioffe–Frohlich–Sewell criterion [52] one can infer
that incoherent transport prevails when the band
width is smaller than the scattering width �h/sscattering,
where sscattering is the relaxation time of the carrier,
induced by medium phonons, intramolecular
vibrations, and static and dynamic disorder [52].
It was inferred from the wealth of kinetic data
for DNA [24–43] that charge transport (at room
temperature in DNA) is expected to proceed via
hole injection followed by incoherent (strong scat-
tering) hole transfer between adjacent guanine
nucleobases.

The mechanisms of charge transport in systems (2)
and (3), as well as in large scale {Bn} bridged chemical
systems, is taken by us to involve incoherent hopping
transport via molecular polaron states in vibronic nano-
wires [28]. In this paper, we explore the relations between
the kinetics of incoherent charge transport and the elec-
trical properties (electrical current and conductance) of
these systems connected by metallic leads (electrodes),
where charge injection is induced into the edge bridge
element. In view of the ubiquity of conflicting experimen-
tal data for conductivity of DNA (which were reported
to range from properties of an insulator to those of a
superconductor) [16–23] a scrutiny of the relevant model
systems for DNA ((2) and (3) above) is of interest.
2. Charge hopping kinetics and electric current in DNA

and in molecular bridges

We consider charge hopping transport in a molecular
bridge which connects two electrodes. The molecular
bridge, which may correspond to a large chemical scale
system or to a DNA duplex, is composed of (N + 1)
constituents {B0 B1 B2 . . .BN}. For a DNA duplex of
type (2), B0 � G, BN = G (or GGG), while Bn = A

(n = 1. . .(N � 1)). For a DNA duplex of type (3),
Bn = G or Bn = A for all n (=0. . .N). The LUMO ener-
gies of the Bn (n = 2 to (N � 1)) elements lie above the
Fermi level energies EF of the electrodes, and for any ap-
plied voltage these LUMO levels do not come in reso-
nance with EF. This assumption is valid for low
voltages, which will be considered herein. The terminal
B0 and BN elements of the bridge are strongly (chemi-
cally) bound to the electrodes, with charge injection
from one electrode (M1) into the first element (B0) and
an exchange of the charge upon arrival to the last bridge
element (BN) with the second electrode (M2). Two phys-
ical situations for equienergetic chains (e.g., case (3) for
DNA) will be considered, which differ by the voltage dis-
tribution across the bridge elements.
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(A) The voltage is biased only across the terminal bridge
elements.

(B) The voltage is evenly distributed along the entire
bridge.

From a kinetic analysis we shall calculate the steady
state charge current (J) for the bridge physical models
(A) and (B), which gives the electric current (j) via

j ¼ eJ . ð2Þ
On the basis of these results we shall be able to infer

on the maximal current and the conductance–voltage
relations in these nanosystems.

2.1. Steady-state charge transport along the energy

equienergetic bridge

We consider steady-state charge hopping transport in
an equienergetic chain with the voltage being biased
across the first (B0) and the last (BN) bridge elements.
This system is characterized by the kinetic/electrical
scheme

M1 ¢
j1

j�1

B0 ¢
k

k
B1 ¢

k

k
B2 ¢

k

k
B3 ¢

k

k
. . . ¢

k

k
BN ¢

j�2

j2
M2; ð3Þ

k are the forward/backward hopping rates within the
bridge. jj (j = ±1 and ±2) represent charge injection
rates to and from the electrodes M1 and M2. The charge
injection rate from the electrode is assumed to be pro-
portional to the probability that the accepting molecular
unit is empty. The overall charge exchange between the
metal electrode and the first bridge unit B0, with an
occupation probability A0, is therefore expressed in
terms of the incoming (entering) current

J in ¼ j1ð1� A0Þ � j�1A0. ð4Þ
Similarly, on the other side of the bridge, the charge

exchange between the metal and the last bridge unit
BN (with the occupation probability AN) is given in
terms of the outgoing (leaving) current

�Jout ¼ j2ð1� AN Þ � j�2AN . ð5Þ

In the present model, we assume that the spatial
dependence of an applied voltage bias will be concen-
trated at the electrode surfaces. Therefore, only the rate
constants for the processes between the electrodes and
the attached bridge units are influenced by the potential
drop. Without a voltage bias the rate constants for
charge exchange are identical on the two electrodes,
where upon j1 = j2, j�1 = j�2. Let the energy difference
of an electron between the Fermi surface and the termi-
nal bridge unit be D0. On applying a voltage difference of
U between the electrodes, one has

j1=j2 ¼ expðeU=kBT Þ; ð6aÞ
j�2=j�1 ¼ exp ðeðU� D0Þ=kBT ÞhðU� D0Þf g; ð6bÞ
where h() is the step function, i.e., h(x) = 0 for x < 0 and
h(x) = 1 for x > 0.

In the steady state situation the charge occupation
probabilities {Aj} of the {Bj} bridge elements are given
by

dAj=dt ¼ �2kAj þ kðAj�1 þ Ajþ1Þ ¼ 0; N > j > 0;

ð7aÞ
while for the edge bridge elements

dA0=dt ¼ j1 � ðk þ j1 þ j�1ÞA0 þ kA1 ¼ 0; ð7bÞ
dAN=dt ¼ j2 � ðk þ j2 þ j�2ÞAN þ kAN�1 ¼ 0. ð7cÞ

The steady state charge current J through the bridge
is given by

J ¼ kðAj � Ajþ1Þ. ð8Þ
From Eqs. (7) and (8) we infer that the steady state cur-
rent is proportional to the hopping rate, i.e.,

J ¼ ka; ð9Þ
which implies that the steady state occupation probabil-
ity along the bridge is linear, being given by

Aj ¼ A0 � ja. ð10Þ
The current conservation for entering and leaving the

bridge implies that J = Jin = Jout. A straightforward
analysis (Appendix A) results in the following expres-
sion for the current proportionality constant

a ¼ j1j�2 � j2j�1

Nðj�1 þ j1Þðj2 þ j�2Þ þ kðj1 þ j�2 þ j2 þ j�1Þ
.

ð11Þ
Eqs. (9) and (11) provide the solution for the steady
state current along the equienergetic bridge.

Several limiting cases are of interest. For large values
of N, i.e., when N/k � (j1 + j�1 + j2 + j�2)/(j�1 +
j1)(j2 + j�2), Eqs. (9) and (11) take the form

J ¼ ðk=NÞf ðj1; j2;j�1; j�2Þ; ð12Þ

where

f ðj1; j2; j�1; j�2Þ ¼
j1j�2 � j2j�1

ðj�1 þ j1Þðj�2 þ j2Þ
. ð13Þ

Eqs. (12), (13) and (6) then take the form (assuming that
j�2/j�1 � 1)

J ¼ ðk=NÞ½j1j�1=ðj�1 þ j1Þ2�½expðeU=kBT Þ � 1�; ð14Þ

which for a very low bias, eU/kBT � 1, reduces to

J ¼ ðk=NÞ½j1j�1=ðj�1 þ j1Þ2�ðeU=kBT Þ. ð15Þ

Finally, at a high bias, eU/kBT � 1, one expects from
Eq. (6) that j1 � j2 and j�2 � j�1. Eqs. (12) and (13)
result in

J ¼ k=N . ð16Þ
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Fig. 1. Model calculations for the voltage (U) dependence of the
electric current (j) and the conductance (g), for incoherent, hopping
charge transport in a M1B0B1B2. . .BNM2 system, where {Bn}
(n = 0,. . .,N) are the molecular bridge elements thermally connected
to the electrodes M1 and M2 according to Eqs. (9) and (11). The data
are represented in terms of the dependence of j/ek (solid lines, right-
side scale) and of g/(e2k/kBT) (dashed lines, left-side scale) vs. eU/kBT,
where k is the intersite hopping rate, and j is the charge injection rate.
The numbers on the curves represent the chain length N (with the
number of molecular constituents being N + 1). The voltage is biased
across the first (B0) and the last (BN) bridge elements. Data are for
k/j = 1 at T = 300 K.
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Fig. 2. Model calculations for the voltage dependence of the electric
current and the conductance for hopping charge transport in a
molecular chain, specified in Fig. 1, with the voltage being biased
across the first and the last bridge elements. Data according to Eqs. (9),
(11) and (11a) are for k/j = 100 at T = 300 K, and are represented in
terms of j/ek (solid lines, right-side scale) and of g/(e2k/kBT) (dashed
lines, left-side scale) vs. eU/kBT.
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At T = 300 K, eU/kBT = 39 (U/V). The limits of low
(high) voltage are realized when eU/kBT � 1 (eU/
kBT � 1), that is 39(U/V) � 1 (39(U/V) � 1). The elec-
trical current, Eq. (2), is given by

j ¼ eka. ð17Þ
The electrical properties for the equienergetic chain,

with all of the potential drop at the electrode surfaces,
Eqs. (11)–(17), are characterized by:

(1) A maximal electric current, jmax, for a sufficiently
long chain is realized at a high voltage, where j is
independent of U. According to Eqs. (16) and
(17), jmax is determined by the hopping rate,
jmax / k, and exhibits an ‘‘ohmic’’ type size depen-
dence jmax / 1/N.

(2) The magnitude of the maximal current is
jmax = 1.6 · 10�7 k/N (pA). From our estimates
of the hole hopping rates between identical nucle-
obases in a DNA strand k ’ 108 s�1 [28,35], we
infer that jmax ’ 16/N pA.

(3) The concept of voltage independent conductance g
is applicable for the sufficiently low voltage
U � 0.026 V (at T = 300 K). The effective conduc-
tance g = dj/dU assumes the form g = (e2/kBT)
(k/N)j1j�1/(j1 + j�1)

2. Measurements of j in the
sub-pA and pA domain are of interest.

Model calculations (Fig. 1) were performed for the
general voltage dependence of the current j/ek = a,
where a is given by Eq. (11). At a finite voltage we take,
according to Eq. (6), j1/j2 = j�2/j�1 = exp(eU/kBT),
and we further assume that j1 = j�2 = j, whereupon
j2 = j�1 = jexp(�eU/kBT). Eq. (11) takes the form

a ¼ ½1� expð�2eU=kBT Þ�=fN ½1þ expð�eUÞ=kBT �2

þ 2ðk=jÞ½1þ expð�eU=kBT Þ�g. ð11aÞ

In the zero voltage limit U ! 0, a = (eU/kBT)/
(2N + k/j), which gives the limiting conductance
g = (e2/kBT)k/(N + k/j). For large voltage eU/kBT � 1,
we expect the appearance of a maximal current with
jmax/ek = (N + k/j)�1. The relation j / 1/N, both for
the low U current and for the maximal current, is real-
ized for N � k/j. These conclusions are borne out by
the model calculations of Figs. 1 and 2, which reveal
the linear range of j/ek vs. U for low values of eU/
kBT � 39(//V) � 1, and the saturation of jmax/ek to-
wards the value of (N + k/j)�1 for large values of (eU/
kBT) J 5, i.e. U J 0.13 V. The dependence of the con-
ductance g = dj/dU on eU/kBT (Fig. 1) nicely manifests
a constant g value at low U values and the vanishing of g
at high U values. For low values of k/j (�1), g vs. U
manifests a monotonous decrease with increasing U,
while for large values of k/j (�100) the conductance
exhibits a maximum before starting to decrease. This
maximum is a manifestation of the interplay between
charge injection and hopping and does not reflect on
an inelastic scattering process.

2.2. Linear voltage bias across the entire bridge

In the foregoing analysis we considered hopping rates
which were independent of the electric field, the voltage
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being biased along the terminal bridge elements. We
shall now consider the implications of an even electric
field bias across the entire bridge. Due to the external
field with the voltage U (applied between the electrodes),
there is a forward bias in the hopping rate constants for
charge transfer among the bridge elements in the isoen-
ergetic chain. The kinetic/electrical scheme is

M1 ¢
j1

j�1

B0 ¢
kc

kc�1
B1 ¢

kc

kc�1
B2 ¢

kc

kc�1
B3 ¢

kc

kc�1
. . . ¢

kc

kc�1
BN ¢

j2

j�2

M2. ð18Þ

The forward hopping rate is kc, while the backward
hopping rate is kc�1, where the rate constant k corre-
sponds to the hopping rate in the unbiased case. The for-
ward bias is given by c2, where

c2 ¼ expðDe=kBT Þ ð19Þ
and the nearest-neighbor (voltage induced) energy gaps
are

De ¼ EðBj�1Þ � EðBjÞ ¼ eU=N ; ð20Þ
so that

c ¼ expðeU=2NkBT Þ. ð21Þ
The kinetic system of equations for the population

probabilities in the steady state is

dAj

dt
¼ �kðc�1 þ cÞAj þ kðcAj�1 þ c�1Ajþ1Þ ¼ 0; ð22Þ

dA0

dt
¼ j1 � ðkcþ j1 þ j�1ÞA0 þ kc�1A1 ¼ 0 ð23Þ

dAN

dt
¼ j2 � ðkc�1 þ j2 þ j�2ÞAN þ kcAN�1 ¼ 0. ð24Þ

The steady state current, inside the bridge, should
obey the relation

J ¼ kcAj � kc�1Ajþ1. ð25Þ
A kinetic analysis (Appendix B) results in the explicit

expression for the charge current

J ¼ k
j1c2Nðj2 þ j�2Þ

ðj1 þ j�1Þ
� c�1j2

� �

� ðc�1k þ j2 þ j�2Þ þ c2ðj2 þ j�2Þ
1� c2ðN�1Þ

1� c2

�

þ kc2N
ðj2 þ j�2Þ
ðj1 þ j�1Þ

��1

. ð26Þ

Provided that (j1 + j�1) = (j2 + j�2), Eq. (26) re-
duces to

J ¼ kðj1c
2N � c�1j2Þ

	 ðc�1kþj2 þj�2Þþ c2ðj2 þj�2Þ
1� c2ðN�1Þ

1� c2
þ kc2N

� ��1

.

ð27Þ

Taking j1 = j2, j�1 = j�2 and defining b =
(j2 + j�2)/k, we can rewrite Eq. (27) in the form
J ¼ j1½c2N � c�1� ðc�1 þ bÞ þ c2b
c2ðN�1Þ

c2 � 1
þ c2N

� ��1

. ð28Þ

The electrical current is obtained from Eqs. (2) and
(28) in the form

j ¼ ej1½c2N � c�1� ðc�1 þ bÞ þ c2b
c2ðN�1Þ

c2 � 1
þ c2N

� ��1

.

ð29Þ

Note that Eqs. (28) and (29) differ only by a factor
of e.

In the limit of long chains (N � 1), when eU/
2NkBT � 1 (i.e., U� (2N/39) V), Eq. (29) takes the
form

j ¼ ðek=NÞ½j1=ðj1 þ j�1Þ�½expðeU=kBT Þ � 1�. ð30Þ

Furthermore, at a low voltage, when exp(eU/
kBT)�1 � 1, Eq. (30) is reduced to the form

j ¼ ðek=NÞ½j1=ðj1 þ j�1Þ�eU=kBT . ð31Þ

For the opposite limit of a very high bias of c� 1
(and j1 > j�1), Eq. (29) gives the limiting value

jmax ¼ ej1. ð32Þ

From this analysis we infer that at the low voltage
limit, Eq. (31), the conductivity is g = (e2/kBT)
(k/N)j1(j1 + j�1)

�1. For the high voltage bias across
the entire bridge, the maximal current, Eq. (32), is deter-
mined by the charge injection rate j1 from the electrode.
Unlike in the cases of field bias on the terminal bridge
elements, when the maximal current is realized for eU/
kBT > 1 (Section 2.1), in the present case the maximal
current is realized for sufficiently high voltages, i.e.,
39(U/V)/N P 1 (at T = 300 K). The maximal electrical
current exhibits the jmax / ej1 relation and is indepen-
dent of N. A numerical estimate for the maximal current
in such a chain results in jmax ’ 1.6 · 10�7 (j1/s

�1)pA.
The maximal current is independent of U, so in this limit
g = 0.

The general voltage dependence of the current, as
obtained from Eq. (29), is displayed, together with
the conductance in Figs. 3 and 4 for different values
of N and of b = (j1 + j�1)/k. The dependence of j/
ej1 vs. eU/kBT reveals a linear range of j/ej1 and a
constant g for low values of eU/kBT � 1, with the ini-
tial value of g decreasing with increasing N. The volt-
age dependence of j/ej1 saturates and the
conductivity vanishes for large values of eU/2NkBT.
The conductance exhibits a monotonous decrease with
increasing eU/kBT for lower values of b (�0.1–1). With
increasing b (towards �10) a maximum in g vs. U is
exhibited, which may be due to the dominance of the
charge injection from the electrodes relative to charge
hopping within the chain.
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3. Concluding remarks

Our analysis provides the relations between incoher-
ent electron transport kinetics and electric properties
of several types of large-sized chemical systems and of
DNA. The evaluation of electrical current in the molec-
ular chain connected by electrodes led to several results
for the maximal current in different model systems.
Three major results emerge from our analysis: the con-
cept of a maximal current, the features of the low volt-
age domain, and the possibility of defining the
conductance of the molecular bridge.
(1) The maximal current. For sufficiently high volt-
ages, i.e., eU/kBT > 1 in the isoenergetic chain with
the voltage biased only across the edge bridge ele-
ments, and eU/2NkBT > 1 for voltage biased
across the entire bridge the current reaches a con-
stant value, which is independent of the voltage.
For the isoenergetic chain, with potential bias
across the terminal bridge elements, jmax = ek/N,
Eq. (16), is determined by the inter-element hop-
ping rate k, while for the voltage biased hopping,
jmax = ej1 is determined by the rate of charge
injection from the electrode. In the limit of high
voltage there are qualitative differences between
the models. In the first model the charge motion
along the bridge is diffusive. The maximum current
can be deduced from the diffusion equation
towards a sink with the extreme boundary condi-
tions of a concentration of unity on one side and
zero on the other side. The concentration profile
is linear and the limiting current is jmax = ek/N,
being independent of the kinetics of charge injec-
tion. On the other hand, if the potential changes
continuously along the bridge, the rate of charge
transport in the bridge increases (effectively) with-
out a bound. As a result the maximum current
depends only on the rate of injection.

(2) The low voltage domain. At low potential differ-
ences and long bridges, the two models show sim-
ilar behavior as a function of bridge length and
potential difference. In the first model, where all
the potential drop appears at the electrode sur-
faces, the current is given by Eqs. (15) and (17).
In the second model, where the potential changes
linearly along the bridge, the steady state current
is given by Eq. (31). In both cases j / (k/N)U, with
the low U conductance being g / (k/N)G(j1,j�1).
The function G(Æ) of the charge injection rates
from/to the electrodes is different in the two cases.

(3) The electrical conductance of molecular bridges.
Among the molecular models explored by us, the
constant conductance for low U is g = (e2/kBT)
(k/N)G(j1,j�1) for both cases. At high voltage
g ! 0 both for the voltage bias across the terminal
bridge elements only and for the voltage biased
hopping. In some cases a maximum of g vs. U is
manifested, reflecting on competition between
charge injection and intrachain charge hopping.

Some order of magnitude estimates of currents in the
incoherent transport domain are in order. The maximal
current for the voltage biased isoenergetic chain is
jmax = ek/N, which for a single component DNA was
estimated as jmax = 16/N pA. Such currents in the pA
range are amenable for experimental observation in a
single component DNA duplex. The low field conduc-
tance assumes the value g = 1.6 · 10�19(k/N)G X�1.
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Using the estimate for a single-component DNA with
k � 108 s�1 [28], the molecular bridge conductance is
g ’ 1.6 · 10�9/N X�1. On the other hand, for a linear
potential change across the bridge, the low voltage
resistance is again expected to show the conductance
g ’ 1.6 · 10�9/N X�1, while the high voltage current
jmax = ej1 is independent of N and determined by
charge injection kinetics. The experimental observa-
tion of picoamper currents and G X resistance in these
DNA nanoelectronic current measurements under
appropriate experimental conditions is expected to
be realized for proper voltage bias. Prior to the con-
frontation of the results of the present model calcula-
tions for the hopping charge conductivity with
experimental reality, several extensions of the theory
are required. First, one should provide a detailed
treatment of the electrode charge injection kinetics,
which was phenomenologically represented in terms
of the rates jj (j = ±1, j = ±2). Second, the inclusion
of the effects of inelastic processes, involving vibra-
tional excitation of the molecular components, which
were not considered by us, should be incorporated in
the treatment of the electrical properties. The available
conflicting experimental data [16–23] require further
scrutiny. Some reports of metallic [16] and supercon-
ducting [20] DNA lack experimental basis [21–23] and
theoretical foundation [17,28], while some of the recent
experimental data [18–22] support the notion [17,28]
that neat undoped DNA corresponds to a large gap,
narrow band semiconductor [18] or insulator [17,19–
23]. Further experimental studies of charge injection
and electrical transport in DNA are called for.

The present study establishes the relation between the
electrical properties and the kinetics of incoherent
charge transport in large scale molecular systems and
in DNA. This relation pertains to incoherent kinetics
of charge transport, which is characterized by the
sequential hopping events between adjacent sites in the
molecular chain (or DNA). Complete erosion of coher-
ence prevails, as the system looses its phase memory at
each site, and the population probability is described
in terms of the diagonal matrix element of the density
matrix. Another limit pertains to coherent transport
across the molecular chain, where the mean free path ex-
ceeds, or is comparable to, the intersite spacing. The dis-
tinction between the incoherent transport limit (2V < �h/
sscattering [52]) and the coherent transport limit (2V > �h/
sscattering [52]) in the valence or conduction band large
gap semiconductors (with a band width 2V � 0.1–
1.0 eV), e.g., DNA, where 2V ’ 0.1 eV [24–43] or organ-
ic polymers (where 2V ’ 0.1–1.0 eV) [14,15,53,54], is
governed by the Ioffe–Frohlich–Sewell criterion [52]
for the relaxation time (sscattering) of the carrier in the
band. Several independent guidelines for the identifica-
tion of the incoherent transfer limit rest on kinetic
information:
(1) Kinetic rates for charge injection and transfer. The
interpretation of the kinetic data in terms of the
traditional charge transfer theory [55], expressing
the rate in terms of the product of the square of
the electronic coupling and the nuclear Franck–
Condon factor, points towards chemically incoher-
ent charge hopping within the bound identical
system.

(2) The �transition� from superexchange unistep charge
transfer through short chains of bridge constituents
to thermally induced hopping (TIH) in long chains
of bridge elements, which are connected to a donor
and an acceptor on both sides [11,14,15,28,29,44].
The signature of TIH is manifested by the onset
of the weak bridge length dependence on the bridge
mediated donor–acceptor charge transfer. A quan-
titative kinetic analysis of the donor–acceptor
charge transfer rates or yields in terms of a charge
hopping between the bridge constituents [14,15,
28,29] supports the picture of incoherent charge
transport in such a system.

The kinetic data for charge injection [30–39], transfer
[30,31,36], transport [24,25,30,31,39] and TIH [28,29,40–
43] in double strand DNA segments in solution support
the picture of hole injection followed by incoherent hole
transport between adjacent identical nucleobases (e.g.,
(Adenine)n chains [32,33,41–43]). On the basis of these
kinetic data we infer that charge conduction in one-com-
ponent DNA duplexes like poly(G–C) (with hole trans-
port through the guanines) or poly(A–T) (with hole
transport through the adenines) will correspond to the
hopping, incoherent transport limit in a system charac-
terized by a narrow bandwidth (2V ’ 0.1–0.2 eV
[50,51]). The same situation is expected to prevail in or-
ganic oligomer polymers [14,15] which manifest the
superexchange – TIH transition [15]. In the incoherent
hopping transport limit the charge mobilities are ex-
pected to be low, i.e., l � 10�5–10�3 cm2/V s [52]. On
the other hand, in the coherent band transport limit
the charge mobilities are expected to be high, i.e.,
l = 0.1–1.0 cm2/V s [52,57]. Such high electron and hole
mobilities are manifested in poly-phenylene-vinylene
polymers [53,54], indicating that charge transport in
these organic semiconducting polymers (with a band-
width in the region 2V ’ 0.1–1.0 eV depending on the
torsion angle [56]) corresponds to the coherent transport
limit [52,57].

Finally, we address the issue of incoherent charge
transport in a single donor (D) – acceptor (A) pair. A
theoretical model for the conductance of a D–A pair
involving coherent transport was presented by Nitzan
[13]. In what follows we advance our kinetic model to
describe incoherent charge transport in a DA pair con-
nected by two electrodes (M1 and M2), described by
the kinetic scheme
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M1 ¢
j1

j�1

D ¢
kCT

kCT�

A ¢
j�2

j2
M2. ð33Þ

The forward (kCT) and backward ðkCT� Þ unistep
charge transfer rates (which are taken to be U indepen-
dent, neglecting Stark effects) are well known from
electron transfer theory. The charge injection rates
are j1 (j2) from the electrodes to D (A), while the
charge injection rates from D (A) to the electrodes
are j�1 (j�2). From the analysis of Appendix C we im-
ply that for a finite, small, voltage drop, the steady
state current is

j ¼ ekCTj1d
j1dþ j�1

� ekCT� j2

j2 þ j�2

; ð34Þ

where d = exp(eU/kBT). Making use of Eq. (C.7), the
electric current is

j ¼ ½ekCTj1j�1=ðj1dþ j�1Þðj1 þ j�1Þ�ðd� 1Þ. ð35Þ
In the limit j1 � j�1 (which is realized when the di-

rect charge transfer dominates, i.e., kCT � kCT� ), Eq.
(35) results in the simple relation

j ¼ ekCTðj1=j�1Þ½expðeU=kBT Þ � 1�; ð36Þ
which, for sufficiently low voltage, reduces to

j ¼ ekCTðj1=j�1Þðe2U=kBT Þ; ð37Þ
with the current j / ekCT(j1/j�1)U and the constant
(U independent) conductance being g / kCT. This re-
sult, derived for incoherent DA charge transfer,
exhibits an identical dependence of the conductance
on the (forward) charge transfer rate, as previously
derived for the coherent case [12]. Accordingly, as
long as the DA charge transfer is dominated by the
forward process, one cannot readily distinguish be-
tween the coherent and the incoherent case on the ba-
sis of the linear dependence of g on kCT. For the
coherent case [12] g / kCT/(FC) / V2, where (FC) is
the nuclear Franck–Condon factor and V is the non-
adiabatic electronic D–A coupling. On the other
hand, for incoherent transport studied herein
g / V2(FC), where (solvent and intramolecular) nucle-
ar distortions contribute to the electrical properties of
a single molecule. In the foregoing discussion of the
electrical properties of a single DA molecule or of a
molecular chain embedded between two electrodes,
the Stark effect on the unistep charge transfer rates
on intersite hopping rates (in the high fields of 107–
108 V cm�1) was not considered and requires further
scrutiny.
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Appendix A. Steady state current in energy equidistant

bridge

The same steady state current, J = ka, Eq. (9), should
enter and leave the bridge. The leaving current from the
terminal unit N is given by

J ¼ ðj�2 þ j2ÞAN � j2 ¼ ka ðA:1Þ

from which we can deduce an expression for the occupa-
tion of the terminal

AN ¼ j2 þ ka
j2 þ j�2

. ðA:2Þ

Using Eq. (9), AN = A0 � Na, which, together with
Eq. (A.2), results in the following expression for A0,

A0 ¼
j2 þ ka
j2 þ j�2

. ðA:3Þ

Next, we utilize the equations for the current injec-
tion into the bridge, Eqs. (4) and (5)

J ¼ �ðj�1 þ j1ÞA0 þ j1; ðA:4Þ

which results in the occupation probability on the first
bridge unit

A0 ¼
j1 � ka

ðj�1 þ j1Þ
. ðA:5Þ

From the two expressions for A0, Eqs. (A.3) and
(A.5), we obtain

j2 þ ka
j2 þ j�2

þ Na ¼ j1 � ka
ðj�1 þ j1Þ

. ðA:6Þ

Eq. (A.6) constitutes an equation for the unknown
parameter a, whose solution is given by Eq. (11).
Appendix B. Steady state current for voltage biased

hopping rates

Because of the steady state situation, the same cur-
rent should enter the bridge from the electrode, where,
according to Eq. (4),

J ¼ j1 � ðj1 þ j�1ÞA0 ðB:1Þ
and the same current should leave the terminal bridge
unit, where, according to Eq. (5)

J ¼ j�2AN � j2ð1� AN Þ ¼ ðj2 þ j�2ÞAN � j2. ðB:2Þ
Expressions for the steady state occupation probabil-

ities inside the bridge were obtained in terms of the cur-
rent J, Eq. (25), and the occupation, A0, of the zeroth
bridge unit, in the form

Aj ¼ kc2jA0 �
c2j � 1

c2 � 1
J ss

� �
1

kc�1
. ðB:3Þ
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From the steady state condition on the occupation of
the terminal bridge unit, Eq. (24), together with the
expression for the occupation probability of the
(N � 1)th unit, one obtains AN (expressed in terms of
the two unknowns J and A0) in the form

AN ¼ 1

ðc�1kþj2 þj�2Þ
j2 þ kc2ðN�1ÞA0 �

1� c2ðN�1Þ

1� c2
J

� �
c2

� �
.

ðB:4Þ

The current out of the terminal unit is given by
(j2 + j�2)AN � j2, which results in the equation

J 1þ ðj2 þ j�2Þ
ðc�1k þ j2 þ j�2Þ

1� c2ðN�1Þ

1� c2
c2

� �

¼ ðj2 þ j�2 � kc2NÞA0

ðc�1k þ j2 þ j�2Þ
� c�1kj2

ðc�1k þ j2 þ j�2Þ
. ðB:5Þ

The occupation probability of the zeroth unit can be
deduced from the expression for the current that enters
the bridge, Eq. (4),

J ¼ j1 � ðj1 þ j�1ÞA0; ðB:6Þ

which results in

A0 ¼
j1 � J

ðj1 þ j�1Þ
. ðB:7Þ

Substituting Eq. (B.7) in Eq. (B.5) results in an implicit
equation for the current,

J ¼ ðj2 þ j�2Þ
ðc�1k þ j2 þ j�2Þ

kc2N
j1 � J

ðj1 þ j�1Þ
� 1� c2ðN�1Þ

1� c2
c2J

� �

� c�1kj2

ðc�1k þ j2 þ j�2Þ
;

ðB:8Þ

whose solution gives Eq. (27).
Appendix C. Incoherent transport in a bridge composed of

a donor–acceptor pair

The kinetic equations for the D–A bridge between
two metallic electrodes are given by

dD
dt

¼ j1ð1� DÞ � ðj�1 þ kCTÞDþ kCT� A;

dA
dt

¼ �ðj�2 þ kCT� ÞAþ kCTDþ j2ð1� AÞ;
ðC:1Þ

where D and A stand for the populations of the donor
and the acceptor, respectively. Without a potential bias
the system is in equilibrium and no current can exist.
This fact is not obvious from the kinetic equations.
Based on the kinetic equations, one can obtain three
expressions for the steady state current
J ¼ j1ð1� DÞ � j�1D;

J ¼ kCTD� kCT� A;

J ¼ j�2A� j2ð1� AÞ.
ðC:2Þ

In order for the current to vanish at U = 0, three con-
ditions should be fulfilled:

D ¼ j1

j1 þ j�1

; ðC:3AÞ

A ¼ j2

j2 þ j�2

ðC:3BÞ

and

A
D

¼ kCT=kCT� . ðC:4Þ

The conditions are not independent. The current van-
ishes only if the following relation between the rate con-
stants is satisfied

kCT

kCT�
¼ 1þ ðj�1=j1Þ

1þ ðj�2=j2Þ
. ðC:5Þ

This is a relation between the inter-bridge rate con-
stants and the rate constants for the charge exchange
on the two electrodes (that are in equilibrium, with equal
Fermi level). The exchange rate constant between the
molecule and the electrodes depends on the energy gap
between the molecular states and the Fermi level. The
formation of a junction potential at the surfaces, due
to partial charge shifts, establishes the equilibrium con-
ditions. In the limit of U = 0 the electrical current

j ¼ ekCTD� ekCT� A ðC:6Þ
is expected to vanish which, on the basis of Eq. (C.3),
implies that

j ¼ ekCTj1

j1 þ j�1

� ekCT� j2

j2 þ j�2

¼ 0; U ¼ 0. ðC:7Þ

For a finite voltage bias, the electrical current is given
by Eq. (34).
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Herrero, P. Herrero, A.M. Baró, P. Ordejón, J.M. Soler, E.
Artacho, Phys. Rev. Lett. 85 (2000) 4992.

[18] D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403
(2000) 635.

[19] A.J. Storm, J. van Noort, S. de Vries, C. Dekker, Appl. Phys. Lett.
79 (2001) 3881.

[20] A.Yu. Kasumov, M. Kociak, S. Geo�ron, B. Reulet, V.T. Volkov,
D.V. Klinov, H. Bouchiat, Science 291 (2001) 280.

[21] K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, H. Kim, J.J. Kim,
H.-Y. Lee, T. Kawai, H.Y. Choi, Phys. Rev. Lett. 87 (2001) 198102.
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