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The superfluid transition in helium clusters
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We address cluster size effects on thel temperature (Tl) for the rounded-off transition for the
Bose–Einstein condensation and for the onset of superfluidity in (4He)N clusters of radiusR0

5aN1/3, wherea53.5 Å is the constituent radius. The phenomenological Ginsburg–Pitaevskii–
Sobaynin theory for the order parameter of the second-order phase transition, in conjunction with
the free-surface boundary condition, results in a scaling law for the cluster size dependence ofTl ,
which is defined by the maximum of the specific heat and/or from the onset of the finite fraction of
the superfluid density. This size scaling law (Tl

02Tl)/Tl
0}R0

21/n}N21/3n, wheren ~50.67! is the
critical exponent for the superfluid fraction and for the correlation length for superfluidity in the
infinite bulk system, implies the depression of the finite systemTl relative to the bulk value ofTl

0.
The quantum path integral molecular dynamics simulations of Sindzingre, Ceperley, and Klein
@Phys. Rev. Lett.63, 1601~1989!# for N564, 128, together with experimental data for specific heat
of 4He in porous gold and in other confined systems@J. Yoon and M. H. W. Chan, Phys. Rev. Lett.
78, 4801~1997!; G. M. Zahssenhaus and J. D. Reppy,ibid. 83, 4800~1999!#, are accounted for in
terms of the cluster size scaling theory (Tl

02Tl)/Tl
05(pj0 /a)3/2N21/2, wherej051.760.3 Å is

the ‘‘critical’’ amplitude for the correlation length in the bulk. The phenomenological theory relates
Tl for the finite system to the correlation lengthj(T) for superfluidity in the infinite bulk system,
with the shift (Tl

02Tl) being determined by the ratioR0 /j(T), in accord with the theory of
finite-size scaling. ©2003 American Institute of Physics.@DOI: 10.1063/1.1622651#
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I. PROLOGUE

Cluster chemical physics focuses on the energy la
scapes, spatial structures and shapes, phase changes, e
ics, nuclear-electronic level structure, spectroscopy,
sponse, dynamics, and chemical reactivity of large, fin
systems.1–3 Central issues in this broad, interdisciplinary, r
search area pertain to the bridging between the propertie
molecular, surface, and condensed phase systems an
utilization of cluster size equations as scaling laws for
nuclear-electronic response of nanostructures.4–7 When is
such size-scaling partial and incomplete? Several exam
come to mind in the context of energetics, nuclear dynam
and cooperative effects. First, specific cluster size effec4

involving self-selection and existence of ‘‘magic number
for moderately sized clusters, manifest an irregular variat
of structure and energetics, which is not amenable to
scaling. Second, structural characterization and specifica
of distinct phase-like forms, e.g., solid~rigid! and liquid
~nonrigid!, or solid ~rigid! and solid~rigid! configurations,
and ‘‘smeared’’~rounded-off! phase changes between the
in clusters and nanoparticles, may differ from the cor
sponding feature in bulk matter.8–10 Third, nuclear adiabatic
dynamics of clusters manifests new collective excitatio
e.g., bulk compression modes,5,6 and exhibits novel fragmen
tation patterns, such as cluster fission11,12 and Coulomb
explosion,13,14which are unique for finite systems and do n
have an analogue in the dynamics of the corresponding

a!Electronic mail: jortner@chemsg1.tau.ac.il
11330021-9606/2003/119(21)/11335/7/$20.00
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matter. A striking example constitutes the dynamics of Co
lomb explosion, whose energetics is characterized by a
vergent scaling size equation.15,16

Notable recent developments in the realm of lo
temperature large, finite, quantum systems pertain to the
ploration of homonuclear molecular clusters~aggregates or
nanodroplets!, where the nuclear dynamics is dominated
quantum effects and by permutational symmetry.17–33 Land-
mark examples involve (4He)N (N>2) and (3He)N (N
>25) quantum clusters, which exhibit large zero-point e
ergy motion, being the only clusters~and bulk materials!
which are liquid and correspond to floppy nonrigid structu
down to T50.17–19,34–46These clusters manifest boson~for
4He) or fermion~for 3He) permutational symmetry.17–46The
two most important properties for the finite boson (4He)N
systems~which are well established in the corresponding h
mogeneous bulk systems! are superfluidity and Bose–
Einstein condensation.17,30,33–47Superfluidity pertains to the
hydrodynamic effects of the response to a slow movemen
the system’s boundaries,30,33–48 while Bose–Einstein con-
densation manifests off-diagonal long-range order, with
occupation number of the ground state becoming prop
tional to the number density of the atoms.33,47,48While the
properties of superfluidity and of Bose–Einstein conden
tion are distinct, both phenomena manifest the implicatio
of boson permutation symmetry and are characterized by
same transition temperature.31,33,48 Some of the features o
the finite (4He)N boson systems17,30,33,49–55are as follows.

~1! The onset of the superfluid transition in the fini
system.17,30,33This transition is referred to as thel point in
the bulk system. What is the analogy in a finite system? T
5 © 2003 American Institute of Physics
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pioneering quantum path integral Monte Carlo simulation
Sindzingre, Ceperley, and Klein30 established the appearan
of a rounded-off~smeared! l transition in finite (He)N (N
564 and 128! clusters, as manifested by a maximum in t
temperature dependence of the specific heat~Fig. 1!, which
occurs at the temperatureTl , with DTl5Tl

02Tl.0, where
Tl

052.172 K is the temperature of thel transition in the
bulk,48 while experimental values ofDTl were recorded50–55

down to DTl>231024 K. Early experimental studies49 of
the heat capacity of4He confined in microscopic bubble
~cavities! in Cu foils indicated the occurrence of the supe
fluid transition with the lowering ofTl in the confined space
however, pressure effects and size effects on the super
transition cannot readily be separated. Relevant in this c
text of superfluidity in finite systems50–55are several experi
mental studies of the superfluid transition interrogated by
density and specific heat of4He in confined geometries,50–55

i.e., films,50 cylinders,50,52 and pores.52,53These confined ge
ometries involve polymer membranes~nucleopore filters!,
with films of 20–80 Å thickness50 and cylindrical channels
of 102– 103 Å diameter50 ~Fig. 1!, porous gold with pore
diameter of 240 Å~Fig. 1!,52 vicor glass involving a highly
intercorrelated network of pores of average diameter of
Å,53 and confinement between sheets of Myler54 separated by
4600 Å and4He between Si wafers.55 These specific hea
data manifest the rounding off of the transition and the s

FIG. 1. The temperature dependence of the specific heat of (4He)N clusters
~lower panel forN564 andN5128) obtained from quantum simulation
~Ref. 30!, and from experimental data for4He in porous gold~pore radius
R05120 Å, upper panel, Ref. 52! and for 4He in cylindrical channels in
polymer membrane~cylinder radiusr 05400 Å, upper panel, Ref. 52!. The
bulk infinite system specific heat (N5`) is presented in the lower panel.
Downloaded 28 Apr 2008 to 132.66.152.26. Redistribution subject to AIP
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of its maximum (Tl) to lower values, i.e.,DTl.0. Alterna-
tively, the onset of the appearance of a finite fraction of
superfluid density can be taken as a measure of thel transi-
tion in the finite system. From the available simulation da
for (4He)N (N564,128) clusters30 the maximum of the spe
cific heat is manifested atTl51.58 K for N564, and atTl

51.82 K for N5128, while the onsets of the superfluid de
sity areTl51.7560.10 K for N564, andTl52.060.10 K
for N5128. Thus theTl values inferred from the maximum
of the specific heat are nearly~within numerical uncertainty!
equal to the temperatures corresponding to the onset of
superfluid density. The experimental data for4He confined in
porous gold52 and vicor glass53 also reveal an approximat
coincidence of the temperatures corresponding to the m
mum of the specific heat and to the onset of the superfl
density. Both observables characterize the rounded-ofl
transition in the finite system. Fisher8 has advanced the con
cept of finite size scaling in a confined system, relating
lowering of Tl to the smallest confining dimensionL, by

DTl /Tl
0;L21/n, ~1!

wheren50.67 is the characteristic exponent for the dive
gence of the correlation length.50–53 Similarly, the region
dTl of the rounding off of the specific heat curve is expect
to be determined by the relation8 dTl;L21/n, whereupon
the ratio dTl /(DTl /Tl

0)5const, being size independen
When these relations forDTl /Tl

0 and dTl were originally
subjected to experimental scrutiny,50 it was found that the
specific heat data in polymers, films, and cylinders~over a
small size domain! obey the Fisher relation,7 Eq. ~1!, how-
ever, the scaling exponent was lower50 than the valuen
50.67. A possible resolution of this finite size scaling pro
lem was considered51 by replacingTl

0 by a size-dependen
reference temperature. A more elaborate scrutiny of spe
heat and superfluid fraction data for finite systems ove
larger size domain is called for.

~2! Superfluidity in the finite systems. The quantum pa
integral simulations30 for the (4He)N (N564,128) clusters
indicate the onset of the superfluid fractionfl at T.Tl ,
with a gradual increase offl with decreasing temperature
reaching a large finite value (fl.0.9) atT50. Even more
interesting is the use of molecular spectroscopic probes
superfluidity in large (4He)N clusters (N5104– 106) at 0.4 K
~where fl.1).38–42 Another microscopic probe for supe
fluidity in large (4He)N clusters (N>105) at 0.4 K involves a
transport probe, i.e., electron tunneling from the elect
bubble,56,57 which provided evidence for vanishingly low
viscosity of the superfluid finite system.

~3! Elementary excitation in the superfluid clusters. T
existence of a roton-type collective excitation spectrum
large (4He)N clusters (N5104– 105) at 0.4 K was estab-
lished from electronic spectroscopy of large molecules, e
glyoxal.36

While the characteristics of superfluidity and of the e
ementary excitations in the large, cold (T50.4 K) (4He)N
clusters (N5104– 106) were considered in analogy to th
properties of the corresponding bulk system,34–46,56,57the in-
teresting problem of size effects on the phenomena of Bo
Einstein condensation and superfluidity in finite bos
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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systems30,31,37,38,50–55is not yet fully elucidated. The avail
able information emerges from the path integral Monte Ca
simulations of (4He)N (N564,128) clusters30 and experi-
mental specific heat data of4He in confined porous
systems.50–53 In this paper we address the issue of the s
scaling of thel point in finite (4He)N clusters. As a starting
point, we shall utilize the phenomenological theory of Gin
burg, Pitaevskii, and Sobaynin,58,59 for the l transition with
proper boundary conditions for free surfaces, to explore
cluster size dependence ofTl in (4He)N clusters. The cluste
size scaling theory for superfluidity in (4He)N clusters pro-
vides a satisfactory semiquantitative account of the result
the path integral Monte Carlo simulations results30 and ex-
perimental specific heat data of4He confined in pores50–53

for the lowering ofTl with decreasing the size of the (4He)N
clusters. The phenomenological theory relates the inten
property (Tl) of the finite system~of sizeL! to the correla-
tion lengthj(T) for superfluidity in the corresponding bul
system, with the shift (Tl

02Tl) depending on the ratio
L/j(T). This result of the phenomenological model for t
size dependentl transition is related to the theory of finit
size scaling,8,9,60–64 which is extensively used to interpre
simulations of phase transitions, e.g., liquid–vapor criti
point8,62 and Bose–Einstein condensation in liquid4He and
in a hard sphere gas.61,63,64 While the finite size scaling
theory routinely allows one to deduce the transition point
the infinite system from simulations for finite-siz
samples,61,63,64one can invert the argument using finite si
scaling for the estimate of the ‘‘smeared’’l point in the finite
quantum boson system.

II. PHENOMENOLOGICAL THEORY OF Tl

IN „

4He…N CLUSTERS

The Ginzburg–Pitaevskii theory58 for bulk liquid 4He
near thel point rests on Landau’s theory of second-ord
phase transitions.65 This theory was extended by Ginzbu
and Sobaynin59 for the treatment of thel transition in finite
systems, e.g., thin films, narrow channels, confined sp
and vortices, exploring size effects, and confinement on
superfluid transition, which is pertinent for the analysis
the onset of superfluidity in (4He)N clusters. This phenom
enological theory58,59 rests on the introduction of a macro
scopic complex wave functionc, which is used as an orde
parameter for the superfluid transition. The~complex! order
parameterc is related to the superfluid densityrs , and is
normalized in the form

rs5mucu2, ~2!

wherem is the mass of the helium-4 atom. The normal H
fluid is considered to be at rest and the free energy den
f (0) ~which depends on the pressurep and temperatureT! of
the homogeneous infinite fluid can be expanded in term
powers ofucu2, while the local free energy densityf (r ) for
an inhomogeneous finite system can be expressed in term
powers ofuc(r )u2. Thus for a homogeneous system

f ~0!~P,T,c!5 f 1~P,T!1Aucu21~B/2!ucu41¯ , ~3!

wheref 1 is the free energy density of normal4He, while the
coefficientsA andB depend onT andP.66 From the equilib-
Downloaded 28 Apr 2008 to 132.66.152.26. Redistribution subject to AIP
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rium condition for the homogeneous fluid (] f (0)/]ucu2)P,T

50 Ginzburg and Pitaevskii58,59 established the relation
A1Bucu250, which results in an explicit relation betwee
the homogeneous system superfluid densityrs and the coef-
ficients A and B, so thatrs52A/B. At this stage the phe-
nomenological theory of Ginzburg and Sobaynin can
adopted, representing the bulk order parameter and its su
fluid densityrs in terms of a critical exponent

rs /rl5tn, ~4!

with

t5~Tl
02T!/Tl

0, ~5!

where the critical exponent for the superfluid fraction
n50.6702,67 i.e., manifesting the ‘‘2/3 scaling law.’’Tl

0 is
the l point temperature of the infinite system. Here the s
perfluid effective density isrl50.351 g cm23,67 while
r(Tl)50.146 g cm23 is the experimental density atTl

0. The
equilibrium condition results inucu252A/B, which from
Eq. ~4! implies thatrs /rl52A/B}tn. In the temperature
range belowTl

0, i.e., (Tl
02Tl).0, the parameterA is

negative.56,57 The temperature dependence of the expans
parameters is expressed in the form

A52at2n ~a.0!, ~6!

B5btn. ~7!

Equations~6! and~7! are consistent with the scaling relation
~4!. All the terms in the expansion~3! exhibit the samet
dependence, and the parametersa and b are temperature
independent.59,66

The free energy densityf (r ) of the inhomogeneous finite
system with a local order parameterc~r ! was expressed59 by
adding to f (0), Eq. ~3!, an even expansion of the gradie
term, so that

f ~r !5 f 11~\2/2m!u¹c~r !u21Auc~r !u21~B/2!uc~r !u4

1¯ . ~8!

The total free energyF5*d3r f (r ) is minimized with respect
to the order parameter. The minimization with respect toc*
results in the Schro¨dinger-type equation

2~\2/2m!¹2c1Ac1Bucu2c1¯50. ~9!

At this stage the correlation lengthj(T) for superfluidity
in the bulk is introduced

j~T!5~\2/2muAu!1/2, ~10!

which according to Eq.~6! is

j~T!5j0t2n, ~11!

where

j05~\2/2muau!1/2. ~12a!

The critical exponentn for the correlation length, Eq.~11!, is
identical to that for the superfluid fraction,8,52,53,58,67Eq. ~4!.
j0 , Eq. ~12a!, is the ‘‘critical’’ amplitude for the correlation
length. j0 can be related to the superfluid density by t
Josephson relation68

j05kBTl
0m2/\2rl , ~12b!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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whererl is the superfluid effective density,67 Eq. ~4!. Equa-
tion ~12b! results inj053.1 Å for bulk 4He. Note that this
short ‘‘critical’’ amplitude for the correlation length implie
thatj0 is comparable to the interatomic spacinga53.5 Å in
liquid 4He.

The application of Eq.~9! for the order parameter in
finite system, e.g., clusters, requires the introduction of
appropriate boundary condition, with the vanishing of t
order parameter, i.e.,c50 at the boundaries of the cluste
This boundary condition explicitly invokes a step functio
approximation for the cluster surface profile, while the re
istic description of (4He)N clusters involves a broadened pr
file with a full width at half maximum~FWHM! of 4.5 Å.4

Introducing the reduced coordinates

r* 5r /j~T! ~13!

and using Eqs.~10! and ~12a!, Eq. ~9! is then expressed in
the form

2¹
*
2 c1@211~B/A!ucu21¯#c50, ~14!

where¹
*
2 is the Laplacian in the reduced coordinates, E

~13!.
Equation~14! was advanced by Ginzburg and Sobayn

for superfluidity in confined finite systems.59 This theory will
be applied herein for the onset of superfluidity of4He con-
fined in a sphere of radiusR0 . Adopting the step function
approximation, the boundary condition for the order para
eter at the free surface is taken asc(R0)50. For low values
of c the first-order linear form of Eq.~9! is

1

R
*
2

d

dR*
S R

*
2 dc

dR*
D1c50, ~15a!

where

R* 5R/j~T! ~15b!

with the lowest solutionc(R* )5sinR* /R* . The free-
surface boundary conditionc(R0 /j)50 results inR0 /j(T)
5p, so thatR05pj0t2n with t is given by Eq.~5!. This
result implies that the order parameter in the finite syst
vanishes at the boundary, marking the onset of the super
transition in the cluster at the temperatureTl when

~Tl
02Tl!/Tl

05~pj0 /R0!1/n. ~16!

Equation~16! implies that the lowering of thel temperature
Tl in the finite clusters is given by

~Tl
02Tl!/Tl

05~pj0!1/n/R0
1/n . ~17a!

SettingR05aN1/3, whereN is the number of the He atom
anda (5@m/r(Tl)1/3#) is the constituent radius~the average
interatomic distancea53.5 Å), results in

~Tl
02Tl!/Tl

05~pj0 /a!1/n/N1/3n. ~17b!

Equations~17a! and~17b!, together withn.2/3, provide the
size scaling of thel point in clusters.

In the original Ginzburg–Sobaynin58 analysis of4He su-
perfluidity in confined spaces, thel transition in a cylinder
of radiusr 0 and length, (,@r ) was considered making us
of Eq. ~14! together with the appropriate boundary con
tionsc(r 0)50 and (dc/dr) r 0

50. This treatment results in58
Downloaded 28 Apr 2008 to 132.66.152.26. Redistribution subject to AIP
e

-

.

-

id
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02Tl!/Tl

05~aj0 /r 0!1/n, ~18!

wherea52.405 is the first root of the Bessel function. Equ
tions ~17a! and ~18! provide explicit expressions~with ap-
propriate numerical coefficients@p53.14 for spherical clus-
ters, Eq.~17!, anda52.41 for cylinders, Eq.~18!#! for the
relation (Tl

02Tl)}L21/n, whereL5R0 or L5r 0 , in accord
with Eq. ~1!.8,9

III. SIZE SCALING OF THE l POINT IN CLUSTERS
AND FINITE SYSTEMS

From the preceding analysis we infer that the depress
DTl5Tl

02Tl of the l point in (4He)N clusters, Eq.~17!,
size scales asDTl /Tl

0}R0
21/n'R0

23/2, and similarly in cy-
lindrically confined systems, Eq.~18! ~of radius r 0)
DTl /Tl

0}r 0
21/n'r 0

23/2. For (4He)N clusters the dependenc
of DTl on the number of constituents, Eq.~17b!, is given in
the form DTl /Tl

0}N21/3n'N21/2. The relative depression
of thel point in clusters provides a proper cluster size eq
tion, i.e.,

DTl /Tl
05d/N1/2 ~19a!

5g/R0
3/2, ~19b!

where d5(pj0 /a)3/2 and g5(pj0)3/2, with DTl→0 for
R0 , N→`.

The scaling relation, Eq.~19!, with the proper critical
exponent (n.2/3), will be utilized to establish the validity
of this cluster size equation over a large range of fin
spherical (4He)N systems (R0514– 400 Å,N56421.5
3106) from isolated clusters30 to supported pores in
metals,52 and glasses53 ~Table I and Fig. 2!. Concurrently, the
scaling relation, Eq.~18!, will be applied with the same criti-
cal exponent (g52/3) to account for the depression of thel
point for 4He confined in cylindrical channels of polyme
membranes52 and nucleopore filters50 ~Table I and Fig. 2!.
Spherical geometry was taken for the isolated clusters,30 for
pores in metals52 and in glasses,53 while cylindrical geometry
was taken for the polymers.50,52 From this analysis an esti
mate of the ‘‘critical’’ amplitudej0 for the bulk correlation
length will emerge. The fit of the quantum simulations r
sults of Sindzingre, Ceperley, and Klein30 ~Table I and Fig.
2! to Eq. ~19! results ind52.17 andj051.9 Å for N564
andd51.82 andj051.7 Å for N5128. Thus the finite size
scaling law provides a semiquantitative account of the qu
tum simulation data for small4He clusters.30 The cluster size
dependence ofDTl /Tl

0, according to Eq.~19!, was extended
over a considerably larger size domain of spherical cavit
whose size was obtained from structural data,52 with the
analysis of the experimental specific heat data~Table I and
Fig. 2! for 4He in porous gold (R05120 Å)52 and vicor glass
(R0535 Å).53 The analysis for these porous spherical s
tems and, in particular, for the vicor glass, implies compl
pore filling.50~b! The values ofd, Eq. ~19a!, obtained for all
the finite spherical systems, are nearly constant within a
merical spread of 30%~Table I and Fig. 2!, providing evi-
dence for the validity of the cluster size equation, Eqs.~17!
and ~19!. The values of the ‘‘critical’’ amplitudej0 inferred
from this analysis~Table I and Fig. 2! for spherical4He pores
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Specific heat of (4He)N finite systems.

System N
R0

~Å! DTl /Tl
0 d f j0 ~Å!g dt ~K!h

dt/(DTl /Tl
0)

~K!

Isolated cluster
quantum simulationsa

64 14.3 0.271 2.17 1.9 0.372 1.4

Isolated cluster
quantum simulationsa

128 18.0 0.161 1.82 1.7 0.286 1.8

Porous gold
experimentb

4.033104 120 6.4531023 1.29 1.3 1.831022 2.8

Pores in vycor glass
experimentc

103 35 6.531022 2.06 1.8 531023 0.1

Polymer membranes
cylindrical channels
experimentd

¯ r 05400 3.731024
¯ 0.9i 1.531023 4.1

Nucleopore r 05150 2.93102360.531023
¯ 1.2360.13i

Filters ¯ r 05400 5.53102460.531024
¯ 1.0960.06i

Cylindrical channels r 05500 3.73102460.531024
¯ 1.0460.09i

Experimente r 051000 1.13102460.1531024
¯ 0.9060.08i

aReference 30.
bReference 52.
cReference 53.
dReferences 53 and 50.
eReference 50~b!.
fd5(DTl /Tl

0)N1/2, Eq. ~19!.
gj05adn/p, Eq. ~19!.
hdt determined by FWHM/2 ofC(T) in the regionT,Tl for (4He)N clusters andT.Tl for confined systems.
ij0 determined from Eq.~18!.
se
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(R0535– 120 Å) vary in the range of 1.3–1.8 Å, being clo
to the valuesj051.7– 1.9 Å obtained for the small cluste
(R0514– 18 Å). We have also included in Table I and Fig
the experimental specific heat data for4He in polymer mem-
branes and nucleopore filters50 with cylindrical channels
~with a radius ofr 05150– 1000 Å). Making use of Eq.~10!
for the analysis of the experimental data for4He in cylindri-

FIG. 2. Size scaling of the relative depressionDTl /Tl
0 of the l point of

(4He)N in finite and in confined systems, according to Eqs.~17! and ~18!.
~s! (4He)N clusters of radiusR0 ~Ref. 30!. ~h! 4He in vicor glass, pore
radius R0535 Å ~Ref. 52!. ~L! 4He in porous gold, pore radiusR0

5120 Å ~Ref. 53!. ~n! 4He in cylindrical pores~radiusr 05400 Å) in poly-
mer membrane~Ref. 52!. ~,! 4He in cylindrical pores ~radius r 0

5150– 1000 Å) in nucleopore filters@Ref. 50~b!#. The confining dimension
is L5R0 for spherical clusters or pores, orr 0 for cylindrical pores. The solid
line corresponds to the size scaling withj051.7 Å andn52/3.
Downloaded 28 Apr 2008 to 132.66.152.26. Redistribution subject to AIP
cal channels,50~b! we obtainedj0 values in the rangej0

51.2360.13 Å for r 05150 Å to j050.9060.08 Å for r 0

51000 Å. These values ofj0 for the cylindrical channels
exhibit a systematic variation of less than 12%, and are lo
by about 50% than the average value of 1.760.3 Å evalu-
ated for the experimental data for spherical finite syste
(R0514– 120 Å). When all these experimental specific h
data are taken together we infer thatj051.560.6 Å. This
value ofj0'1 – 2 Å obtained from the analysis of quantu
simulation data (R0514– 18 Å) and experimental data fo
4He spherical confined systems (R0535– 120 Å) in cylindri-
cal channels (r 05150– 1000 Å), is lower by a numerica
factor of ;1.5–3.0 than the value ofj053.1 Å estimated
from the Josephson relation, Eq.~12a!, for the bulk super-
fluid. We note in passing that a single value ofj0 was used in
the analysis of the specific heat data in finite systems. Thij0

value corresponds to the infinite fluid. In the experimen

papers for porous systems52,53 the values ofj̄058.4 and 17

Å are given for porous gold andj̄0593 Å for vicor. The

latter j̄0 data are based on the actual superfluid effect
densities in the confined systems. In our analysis~Fig. 2! we
use the bulk value forj0.

From the foregoing analysis~Fig. 2! of simulation and
experimental data we infer that the size scaling relat
DTl}L23/2 ~whereL.R0 for clusters and nearly spherica
confined spaces andL;r 0 for cylinders! is obeyed over a
wide size domain ofL.14– 400 Å ~i.e., N514– 43104 for
clusters and nearly spherical confined spaces!, and of L
.150– 1000 Å for cylindrical channels. This broad range
size domain with the proper criticaln.2/3 exponents, indi-
cates that it is unnecessary to replaceTl

0 by a size indepen-
dent reference temperature, as proposed51 to account for a
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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lower scaling component reported for (4He) confined in
polymer films over a narrow size domain.50

An important issue pertains to the broadening of the s
cific heat curveC(T) in finite systems~Fig. 1!. The region
dTl of the rounding-off of the specific heat curve was det
mined from the available simulation data30 and experimenta
data50–53by the 1

2 ~FWHM! of C(T) for the rangeT,Tl for
clusters andT.Tl for confined spaces~Table I!. Following
the Fisher theory7 ~Sec. I!, one expects that the rati
dTl /(DTl /Tl

0)5const, being size independent. Indeed, t
relation is reasonably well obeyed~within a numerical factor
of 3 over the rangeR0514– 400 Å) for the quantum simu
lations for small clusters, for porous gold and for the me
brane polymer. However, a marked~one order of magnitude!
deviation from this relation is exhibited for4He confined in
vicor glass~Table I!, which may be attributed to constraine
randomness effects,69,70 and which calls for further scrutiny

IV. FINITE SIZE SCALING

The relationDTl}R0
21/n obtained from the Ginzburg–

Pitaevskii–Sobaynin theory for a finite system is related
the theory of second-order phase transitions with the exp
mental critical parameter,n50.67, for the superfluid fraction
and for the correlation length scaling near the critical po
of infinite systems.69,71This theory implies that the intensiv
properties of a system of sizeL(5R0) depend on the ratio
L/j(T);Ltn, wherej(T)5j0(Tl

02T)2n is the bulk corre-
lation length.

At this stage finite-size scaling theory8,9 is applicable for
the description of the specific heat maximum and of the
set of the superfluid density~see Sec. I!, which characterize
the rounded-offl transition. The singular free energy de
sity, f, of the finite system~in the absence of external fields!
can be described in terms of a universal function (Y( )) in
the form9 f 5L2dY(KtL1/n), where K is a metric factor,
which contains all the system-dependent aspects of the c
cal behavior andd is the dimensionality. Defining the param
etery5KL1/nt, the free energyf 5L2dY(y) yields the spe-
cific heat C5T(]2f /]T2). Accordingly, C}Y(2)(y), being
determined by the second derivative,Y(2), of Y. The maxi-
mum of the specific heat (]C/]y50), which characterizes
the smeared-outl transition atTl , is located aty5ymax,
being manifested aty(3)(ymax)50, whereY(3) is the third
derivative ofY. Accordingly, the rounded offl transition is
exhibited fortmax5ymaxK

21L21/n, with tmax5(Tl
02Tl)/Tl

0, in
accord with the results of the order parameter analysis
Sec. III. The broadening of the specific heat curve, char
terized by the 1/2~FWHM! of C ~at T(1),Tl) is given by the
1/2~FWHM! of the Y(2)(y) function. These results in th
width of the specific heat curvedT5(T(1)2Tl)/Tl

0}L21/n,
with the same finite size scaling oftmax and of Dt, are in
accord with the analysis of Fisher,8 which was adopted in
Sec. IV.

The alternative description ofTl is given in terms of the
onset of the superfluid density. The superfluid fraction w
expressed as8,60–64 rs(t,L);L21Q(L1/nt), where the~un-
known! analytic functionQ( ) was linearized, i.e.,rs(t,L)
;L21(a1bL1/nt), with a and b being constant, finite pa
Downloaded 28 Apr 2008 to 132.66.152.26. Redistribution subject to AIP
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rameters. Thel transition in the finite system is characte
ized by rs(t,L)50 at t5(Tl

02Tl)/Tl
0, so that Tl

02Tl

;a/bL1/n, i.e., (Tl
02Tl)}L21/n, in accord with the phe-

nomenological theory.
The finite size scaling analysis resulted in the identi

finite size scalingL21/n for the maximum of the specific hea
and for the onset of the superfluid density. At the pres
stage we could only provide a proof that for both observab
Tl,Tl

0 in a finite system, with identicalDTl}L21/n scaling.
However, we could not demonstrate that the numerical va
of Tl characterizing the two observables is nearly identic
as empirically indicated by the simulation and experimen
data30,52,53 ~see Sec. I!. The size effects considered here
correspond to large values ofDTl /Tl ~0.3–0.15 K! for
the small clusters (R0514– 18 Å), while for larger pores
(R0535– 120 Å) the values ofDTl /Tl

0 are smaller
(631022– 631023). In any case, the bulk correlatio
length at the corresponding temperature is small compare
the characteristic cluster sizeL;R0 .

V. CONCLUDING REMARKS

All thermodynamic phase transitions in finite system
e.g., clusters, are rounded off.8,9,72 The present analysis
based on the Ginzburg–Pataevskii–Sobaynin theory,
tempted to elucidate some of the features of such round
off second-order phase transitions in clusters for the size
pendence ofTl , obtaining size equations which are
accord with the finite-size scaling theory. Several gene
issues regarding rounded-off second-order phase transi
in finite systems are of interest. For rounded-off first-ord
phase changes in finite systems the change of the therm
namic properties in the transition region is different for t
canonical and microcanonical ensemble,73 as the thermody-
namic limit is, of course, not realized in finite systems. Wh
the present analysis is conducted for the canonical ensem
it is interesting to establish the ensemble dependence
second-order transitions in finite systems. Another surpris
result emerging from the simulations30 and the present analy
sis is the clear manifestation of second-order phase tra
tions for rather small clusters (N564, R0514 Å). An open,
interesting, question pertains to the lower system’s size li
for the exhibition of second-order phase transitions, such
the l transition in4He clusters. A simple-minded argume
will imply that the minimal cluster sizeR0

min for the realiza-
tion of superfluidity transition isR0

min.j0. Making use of Eq.
~19b!, a lower limit for R0

min will be manifested forTl→0,
whereupon (g/R0

min)3/2;1 andR0
min;pj0. Taking the short

correlation lengthj0.2 Å, R0
min;6 Å, so that the smalles

4He cluster will consist of a central atom and the first co
dination layer.
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