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The superfluid transition in helium clusters
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We address cluster size effects on théemperature T,) for the rounded-off transition for the
Bose—Einstein condensation and for the onset of superfluidity*lite), clusters of radiusR,
=aN'® wherea=3.5 A is the constituent radius. The phenomenological Ginsburg—Pitaevskii—
Sobaynin theory for the order parameter of the second-order phase transition, in conjunction with
the free-surface boundary condition, results in a scaling law for the cluster size dependénce of
which is defined by the maximum of the specific heat and/or from the onset of the finite fraction of
the superfluid density. This size scaling laf’¢ T,)/ToxR, Y« N~% wherev (=0.67) is the
critical exponent for the superfluid fraction and for the correlation length for superfluidity in the
infinite bulk system, implies the depression of the finite sysigmelative to the bulk value ng.

The quantum path integral molecular dynamics simulations of Sindzingre, Ceperley, and Klein
[Phys. Rev. Lett63, 1601(1989] for N= 64, 128, together with experimental data for specific heat
of “He in porous gold and in other confined systdthsYoon and M. H. W. Chan, Phys. Rev. Lett.

78, 4801(1997; G. M. Zahssenhaus and J. D. Repiyd. 83, 4800(1999], are accounted for in
terms of the cluster size scaling theofY - T, )/ T =(mwé&o/a)¥N~Y2, where£&,=1.7+0.3 A is

the “critical” amplitude for the correlation length in the bulk. The phenomenological theory relates
T, for the finite system to the correlation lenggfiT) for superfluidity in the infinite bulk system,

with the shift (TS—TA) being determined by the ratiB,/&(T), in accord with the theory of
finite-size scaling. ©2003 American Institute of Physic§DOI: 10.1063/1.1622651

|. PROLOGUE matter. A striking example constitutes the dynamics of Cou-
lomb explosion, whose energetics is characterized by a di-
Cluster chemical physics focuses on the energy landvergent scaling size equatidn®
scapes, spatial structures and shapes, phase changes, energetNotable recent developments in the realm of low-
ics, nuclear-electronic level structure, spectroscopy, retemperature large, finite, quantum systems pertain to the ex-
sponse, dynamics, and chemical reactivity of large, finiteploration of homonuclear molecular clustéexgygregates or
systems.~3 Central issues in this broad, interdisciplinary, re- nanodroplets where the nuclear dynamics is dominated by
search area pertain to the bridging between the properties guantum effects and by permutational symmétry? Land-
molecular, surface, and condensed phase systems and tm@rk examples involve *He)y (N=2) and EHe)y (N
utilization of cluster size equations as scaling laws for the=25) quantum clusters, which exhibit large zero-point en-
nuclear-electronic response of nanostructréswhen is ~ €rgy motion, being the only clustef@nd bulk materials
such size-scaling partial and incomplete? Several exampléghich are ”qUilg algg4cgrrespond to floppy nonrigid structures
come to mind in the context of energetics, nuclear dynamics,fijown toT=0.1""19*"*These clusters manifest 7b?1§dm
and cooperative effects. First, specific cluster size effects. He) or fermion(for *He) permutational symmetfy=*°The
involving self-selection and existence of “magic numbers” WO most important properties for the finite bosofHe)y

for moderately sized clusters, manifest an irregular variatiorryStemswhich are well established in the corresponding ho-
of structure and energetics, which is not amenable to siz8'09€Ne0US db“|k %ﬁ’g%%ﬁr% SuDﬁrf_lcljJ,'d'ty and BOSE_
scaling. Second, structural characterization and specificatioﬁ"zjsrge(;nn?r:icegf::;s (‘)f the resuzre;rseulolg srig\:\tar:?svteon;[er?t of
of distinct phase-like forms, e.g., soligigid) and liquid tr?e sygtem’s boundaridds-48 vshile Bose_Einstein con-
(nonrigid), or solid (rigid) and solid (rigid) configurations, '

“ ” densation manifests off-diagonal long-range order, with the
and “smeared”(rounded-off phase changes between them . )
. . . occupation number of the ground state becoming propor-
in clusters and nanopatrticles, may differ from the corre

) : . .~ “~""“tional to the number density of the atorii¢/*®While the

+10
sponding feature in bulk m_attér. Third, nuclear adiabatic properties of superfluidity and of Bose—Einstein condensa-
dynamics of clusters manifests new collective excitations

. S tion are distinct, both phenomena manifest the implications
e.g., bulk compression mode8and exhibits novel fragmen- b P

' ey of boson permutation symmetry and are characterized by the
tation patterns, such as cluster fissfolf and Coulomb "o o temperat#63348 Some of the features of
explosion;>**which are unique for finite systems and do Not ;& finite ¢He)y, boson systent&*03349-55 e as follows.

have an analogue in the dynamics of the corresponding bulk (1) The onset of the superfluid transition in the finite
systemt’2%33This transition is referred to as thepoint in
3Electronic mail: jortner@chemsgl.tau.ac.il the bulk system. What is the analogy in a finite system? The
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T-T,%mK) of its maximum ({T,) to lower values, i.e. AT, >0. Alterna-

60'6 -I4 : |2 [ ? tively, the onset of the appearance of a finite fraction of the

jHe&NPOLYMER MEMBRANE | superfluid density can be taken as a measure of ttransi-
=008 tion in the finite system. From the available simulation data
for (*He)y (N=64,128) cluster€ the maximum of the spe-
cific heat is manifested at, =1.58 K for N=64, and afT,
=1.82 K forN=128, while the onsets of the superfluid den-
sity areT,=1.75+-0.10 K for N=64, andT,=2.0=0.10 K
= for N=128. Thus theT, values inferred from the maximum
— of the specific heat are nearlwithin numerical uncertainy
equal to the temperatures corresponding to the onset of the
superfluid density. The experimental data4de confined in
- porous gold® and vicor glas¥ also reveal an approximate
- coincidence of the temperatures corresponding to the maxi-
mum of the specific heat and to the onset of the superfluid

7]
=
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=
T
l

4He IN POROUS GOLD
- R,=1204

500 /

| 1 L
-40 30 20 -10 0 density. Both observables characterize the roundedioff
T-T,%(mK) transition in the finite system. Fisfiemas advanced the con-
6.0[ (Hey, CLUSTERS N=oo] 7] cept of finite size scaling in a confined system, relating the
% [ N lowering of T, to the smallest confining dimensidn by
S40F
.g 4.0_ AT)\ /TSN Lfl/v’ (1)
(-9 -
3 [ where v=0.67 is the characteristic exponent for the diver-
§ 200 gence of the correlation lengtA->3 Similarly, the region
z 6T, of the rounding off of the specific heat curve is expected
0.0} to be determined by the relatosT,~L ", whereupon

the ratio 5TA/(ATX/T§’):const, being size independent.
FIG. 1. The temperature dependence of the specific hedHaf)( clusters ~ When these relations fakT, /Tg and 6T, were originally
(lower panel forN==64 andN=128) obtained from quantum simulations subjected to experimental scrutitfy/jt was found that the
(Ref. 30, and from experimental data féHe in' porous goldpore radiu_s specific heat data in polymers, films, and cylindésser a
Ro=120 A, upper par_1e|, Ref. _F)Zind for“He in cylindrical channels in small size domamobey the Fisher reIatioﬁEq. (1), how-
polymer membranécylinder radiusr,=400 A, upper panel, Ref. 32The .
bulk infinite system specific heaNE «) is presented in the lower panel. ever, the scaling exponent was loiethan the valuev
=0.67. A possible resolution of this finite size scaling prob-
lem was consideréd by replacingT? by a size-dependent
pioneering quantum path integral Monte Carlo simulation ofreference temperature. A more elaborate scrutiny of specific
Sindzingre, Ceperley, and Kléfhestablished the appearance heat and superfluid fraction data for finite systems over a
of a rounded-off(smearedl \ transition in finite (He)y, (N  larger size domain is called for.
=64 and 128 clusters, as manifested by a maximum in the  (2) Superfluidity in the finite systems. The quantum path
temperature dependence of the specific fEay. 1), which integral simulation® for the (*He)y (N=64,128) clusters
occurs at the temperatufg , with AszTg—TA>O, where indicate the onset of the superfluid fractign at T=T,,
TS=2.172 K is the temperature of the transition in the with a gradual increase ap, with decreasing temperature,
bulk,*® while experimental values af T, were recordetf>°  reaching a large finite valuep=0.9) atT=0. Even more
down toAT,=2x10 * K. Early experimental studiésof interesting is the use of molecular spectroscopic probes for
the heat capacity ofHe confined in microscopic bubbles superfluidity in large {He)y clusters N=10*~1) at 0.4 K
(cavities in Cu foils indicated the occurrence of the super-(where ¢, =1).38~%2 Another microscopic probe for super-
fluid transition with the lowering oT, in the confined space, fluidity in large (*He)y, clusters N=10°) at 0.4 K involves a
however, pressure effects and size effects on the superflutdansport probe, i.e., electron tunneling from the electron
transition cannot readily be separated. Relevant in this corbubble®®>” which provided evidence for vanishingly low
text of superfluidity in finite system& >°are several experi- viscosity of the superfluid finite system.
mental studies of the superfluid transition interrogated by the  (3) Elementary excitation in the superfluid clusters. The
density and specific heat &He in confined geometrie§;®>  existence of a roton-type collective excitation spectrum in
i.e., films> cylinders®®>?and pores?>3These confined ge- large (*He)y clusters N=10"-1C°) at 0.4 K was estab-
ometries involve polymer membranésucleopore filters  lished from electronic spectroscopy of large molecules, e.g.,
with films of 20—80 A thicknes¥ and cylindrical channels glyoxal
of 10°P—10° A diamete® (Fig. 1), porous gold with pore While the characteristics of superfluidity and of the el-
diameter of 240 A(Fig. 1),°? vicor glass involving a highly ementary excitations in the large, col@=£0.4 K) (*He)y
intercorrelated network of pores of average diameter of 7@lusters N=10"—~1F) were considered in analogy to the
A,®® and confinement between sheets of Myleseparated by properties of the corresponding bulk syst&mi656-5%the in-
4600 A and®He between Si wafer®. These specific heat teresting problem of size effects on the phenomena of Bose—
data manifest the rounding off of the transition and the shiftEinstein condensation and superfluidity in finite boson
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system&31:37:3850-535 not yet fully elucidated. The avail- rium condition for the homogeneous fluidf(®/a|y|?)p +

able information emerges from the path integral Monte Carlo=0 Ginzburg and Pitaevskfi®® established the relation
simulations of tHe)y (N=64,128) clusterS and experi- A+ B|#|2=0, which results in an explicit relation between
mental specific heat data ofHe in confined porous the homogeneous system superfluid densitand the coef-
systems?~53In this paper we address the issue of the sizdficients A and B, so thatp,= —A/B. At this stage the phe-
scaling of the\ point in finite (*He)y clusters. As a starting nomenological theory of Ginzburg and Sobaynin can be
point, we shall utilize the phenomenological theory of Ginz-adopted, representing the bulk order parameter and its super-
burg, Pitaevskii, and Sobaynifi>° for the \ transition with  fluid densityps in terms of a critical exponent

proper boundary conditions for free surfaces, to explore the pn =tV @)
cluster size dependence Bf in (*He)y clusters. The cluster PsiPx '
size scaling theory for superfluidity irfle)y clusters pro-  with
vides a satisfactory semiquantitative account of the results of t=(TO—T)/T0 )
the path integral Monte Carlo simulations restfltand ex- A '

perimental specific heat data 8fle confined in pore§~5®  where the critical exponent for the superfluid fraction is
for the lowering ofT, with decreasing the size of théHe)y,  »=0.6702% i.e., manifesting the “2/3 scaling law.T} is
clusters. The phenomenological theory relates the intensivéie A point temperature of the infinite system. Here the su-
property (T,) of the finite systemof sizeL) to the correla- perfluid effective density isp,=0.351gcm?3,%" while

tion length&(T) for superfluidity in the corresponding bulk p(T,)=0.146 gcm is the experimental density al. The
system, with the shift T°—T,) depending on the ratio equilibrium condition results ify|?=—A/B, which from
L/&(T). This result of the phenomenological model for the Eq. (4) implies thatpg/p, = —A/Bx=t”. In the temperature
size dependent transition is related to the theory of finite range beIong, ie., (I'S—Tx)>0, the parameterA is
size scalind:®°-%*which is extensively used to interpret negative>®>’ The temperature dependence of the expansion
simulations of phase transitions, e.g., liquid—vapor criticalparameters is expressed in the form

poinf®? and Bose—Einstein condensation in liqdide and Az — 2 -0 6
in a hard sphere g&4%3% While the finite size scaling “ (a>0), ©
theory routinely allows one to deduce the transition point for B=gt". 7

the infinite system from simulations for finite-size
sample$6364gne can invert the argument using finite size
scaling for the estimate of the “smeareN’point in the finite
guantum boson system.

Equationg6) and(7) are consistent with the scaling relations
(4). All the terms in the expansio(B) exhibit the same
dependence, and the parametersand g8 are temperature
independent®5®

The free energy density(r) of the inhomogeneous finite
. PPENOMENOLOG'CAL THEORY OF Ty system with a local order parametgfr) was expresséd by
IN (*He)y CLUSTERS adding tof©, Eq. (3), an even expansion of the gradient

The Ginzburg—Pitaevskii thedty for bulk liquid “He  term, so that

near the\ point rests on Landau’s theory of second-order _ 2 2 2 4
phase transition® This theory was extended by Ginzburg H(r)=fot (R52m) [T ()| Al (D] (BI2)| y(r)]
and Sobayni®® for the treatment of tha transition in finite +eee (8
systems, e.g., thin films, narrow channels, confined space
and vortices, exploring size effects, and confinement on th
superfluid transition, which is pertinent for the analysis of
the onset of superfluidity in*He)y clusters. This phenom-
enological theors?*® rests on the introduction of a macro- —(h212m)V2h+ A+ B| %+ --=0. 9
scopic complex wave functiogy, which is used as an order
parameter for the superfluid transition. Te@@mplex order
parametery is related to the superfluid densipg, and is

he total free energlf = [d3r f(r) is minimized with respect
to the order parameter. The minimization with respeafto
results in the Schidinger-type equation

At this stage the correlation lengé{T) for superfluidity
in the bulk is introduced

normalized in the form &(T)=(h22mA)*?, (10)
ps=m| |2, (2)  which according to Eq(6) is
wherem is the mass of the helium-4 atom. The normal He  &(T)=¢&t™7, (11

fluid is considered to be at rest and the free energy densitynere
() (which depends on the pressyr@nd temperatur&) of , "
the homogeneous infinite fluid can be expanded in terms of o= (%*/2m[a])™™ (123

powers of|¢?, while the local free energy densifyr) for  The critical exponent for the correlation length, E11), is
an inhomogeneous finite system can be expressed in terms fentical to that for the superfluid fractid?°35857Eq. (4).

powers of|¢/(r)|*. Thus for a homogeneous system &, Eq. (129, is the “critical” amplitude for the correlation

fOP,T, ) =f,(P, T)+A| 4|2+ (B2)|y|*+---, (3 length. & can be related to the superfluid density by the
. _ . Josephson relatiGh
wheref, is the free energy density of nornfile, while the

coefficientsA andB depend onT andP.%® From the equilib- £o=ksTAm?/Hi%p, (12b
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wherep, is the superfluid effective densit{,Eq. (4). Equa- (TO—T)ITO=(atylro) Y, (18)
tion (12b) results in&,=3.1 A for bulk “He. Note that this _ _ _
short “critical” amplitude for the correlation length implies Wherea=2.405 is the first root of the Bessel function. Equa-

that &, is comparable to the interatomic spacimg 3.5 A in  tons (178 and (18) provide explicit expressiongwith ap-

liquid “He. propriate numerical coefficienfsr=3.14 for spherical clus-
The application of Eq(9) for the order parameter in a ters,_Eq.(107), andai%}Al for cylinders, Eq(18)]) for the

finite system, e.g., clusters, requires the introduction of th&€lation (Tk—g'gl')\)ocL , whereL=R, orL=ry, in accord

appropriate boundary condition, with the vanishing of theWith Eq. (1).”

order parameter, i.eiy=0 at the boundaries of the cluster.

This bqundlary condition explicitly invoke; a stgp function |)|. S1ZE SCALING OF THE A POINT IN CLUSTERS

approximation for the cluster surface profile, while the real-aAND FINITE SYSTEMS

istic description of {He)y, clusters involves a broadened pro-

file with a full width at half maximum(FWHM) of 4.5 A% From the preceding analysis we infer that the depression
Introducing the reduced coordinates AT,=T}—T, of the \ point in (*He)y clusters, Eq(17),
size scales ad T, /TOxR, Y"~R, 2, and similarly in cy-
re =r/&(T) (13)  Jindrically confined systems, Eq(18) (of radius r)
and using Eqs(10) and (128, Eq. (9) is then expressed in AT\ /Tyerg "=~rg 2. For (*He)y clusters the dependence
the form of AT, on the number of constituents, E4.7b), is given in
, . the form AT, /T2xN"Y3~N~2 The relative depression
—Viu+[—1+(B/A)|¢*+---19=0, (14 of the \ point in clusters provides a proper cluster size equa-
whereV2 is the Laplacian in the reduced coordinates, Eqlon: I-€.,
(13). AT, /T)=6INY2 (199
Equation(14) was advanced by Ginzburg and Sobaynin o
for superfluidity in confined finite system$This theory will =¥/Ry", (19b)

be applied herein for the onset of superfluidity“sfe con- where 6= /a)¥2 and v= 32 \with AT.—0 for
fined in a sphere of radiuR,. Adopting the step function g NHOO_(Wgo ) y=(m&o) ™ VT

approximation, the boupdary condition for the order param- The scaling relation, Eq(19), with the proper critical
eter at the free surface is taken#Ro) =0. For low values o, 5onent ¢=2/3), will be utilized to establish the validity

of ¢ the first-order linear form of Eq9) is of this cluster size equation over a large range of finite

1 d , dy spherical {He)y systems Ry=14-400AN=64—1.5
RZ dR, R*H) +¢=0, (158 x10P) from isolated clustef to supported pores in
* metals>? and glassés (Table | and Fig. 2 Concurrently, the
where scaling relation, Eq(18), will be applied with the same criti-
R, =RI&(T) (15b) cal exponent = 2/3) to account for the depression of tke

point for *He confined in cylindrical channels of polymer
with the lowest solutiony(R,)=sinR,/R,. The free- membrane¥ and nucleopore filter8 (Table | and Fig. 2
surface boundary conditiof((Ry/§) =0 results inRy/&(T)  Spherical geometry was taken for the isolated clustefst
=, so thatRy=m&et™ " with t is given by Eq.(5). This  pores in metaf and in glasses’ while cylindrical geometry
result implies that the order parameter in the finite systenyas taken for the polymerS:>? From this analysis an esti-
vanishes at the boundary, marking the onset of the superfluighate of the “critical” amplitude&, for the bulk correlation
transition in the cluster at the temperatdig when length will emerge. The fit of the qug(?tum simulations re-
0_ 0_ 1 sults of Sindzingre, Ceperley, and KIginTable | and Fig.
(T TOIM= (o /Ro) ™. (16 2) to Eq. (19) results in6=2.17 andé,=1.9 A for N=64
Equation(16) implies that the lowering of th& temperature  and §=1.82 andé,=1.7 A for N=128. Thus the finite size
T, in the finite clusters is given by scaling law provides a semiquantitativegoaccount of the quan-
0 0_ Uprs1lv tum simulation data for smafHe clusters® The cluster size
(=TI =(mg) /R (173 dependence ai T, /T?, according to Eq(19), was extended
SettingRo=aN3 whereN is the number of the He atoms over a considerably larger size domain of spherical cavities,
anda (=[m/p(T,)*?)) is the constituent radiughe average whose size was obtained from structural d&tayith the
interatomic distanca=3.5 A), results in analysis of the experimental specific h%zgt datable | and
0 0_ T Fig. 2) for “He in porous gold Ry= 120 A)>? and vicor glass
(=TT = (méo /)TN (170 (Ro=35 A).>® The analysis for these porous spherical sys-
Equationg(173 and(17b), together withv=2/3, provide the tems and, in particular, for the vicor glass, implies complete
size scaling of the. point in clusters. pore filling>®® The values ofs, Eq. (198, obtained for all
In the original Ginzburg—Sobaynihanalysis of'He su-  the finite spherical systems, are nearly constant within a nu-
perfluidity in confined spaces, thetransition in a cylinder merical spread of 30%Table | and Fig. 2 providing evi-
of radiusry and lengthf (¢>r) was considered making use dence for the validity of the cluster size equation, E4S)
of Eq. (14) together with the appropriate boundary condi-and(19). The values of the “critical” amplitude, inferred
tions ¢(ro) =0 and dy/dr), =0. This treatment resultsih  from this analysigTable | and Fig. 2for sphericalHe pores
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TABLE I. Specific heat of tHe)y finite systems.
Ro St(AT, /TY)
System N (A) AT, T} s & (A9 St (K)" (K)
Isolated cluster 64 14.3 0.271 2.17 1.9 0.372 1.4
quantum simulatioris
Isolated cluster 128 18.0 0.161 1.82 1.7 0.286 1.8
quantum simulatioris
Porous gold 4.03< 10 120 6.45¢10°° 1.29 1.3 1.&10°2 2.8
experimertt
Pores in vycor glass 10° 35 6.5<10 2 2.06 1.8 5¢10 3 0.1
experimerft
Polymer membranes ro=400 3.7x10°*4 0.9 1.5x10°% 4.1
cylindrical channels
experimertt
Nucleopore ro=150 2.9<10°3+0.5x10°° 1.23+0.13
Filters ro=400 5.5¢10 4+0.5x1074 1.09+0.08
Cylindrical channels ro=500 3.7 10 %+0.5x10°* 1.04+0.09
Experimerit ro=1000 1.X10°4+0.15x 1074 0.90+0.08

aReference 30.
PReference 52.
‘Reference 53.
dReferences 53 and 50.
*Reference 5M).

fo= (AT, /ITONY2 Eq.(19).
9,=as"lm, Eq.(19).

hst determined by FWHM/2 of£(T) in the regionT<T, for (*“He)y clusters andr>T, for confined systems.

i&, determined from Eq(19).

(Ro=35-120 A) vary in the range of 1.3-1.8 A, being close
to the valuest,=1.7—1.9 A obtained for the small clusters
(Ro=14-18 A). We have also included in Table | and Fig. 2
the experimental specific heat data fete in polymer mem-
branes and nucleopore filtéfswith cylindrical channels
(with a radius ofr =150—1000 A). Making use of E¢10)

for the analysis of the experimental data féte in cylindri-

4+10¢ N

|
yTfA
120 " 00
i T

64128 10°
1 T

14.31

8.0
1 T T

35
I

1000
I

SIZE EFFECT
ON THE A TEMPERATURE
(T,) OF “He IN FINITE SYSTEMS

O FREE CLUSTERS
O VYCOR GLASS
F < POROUS GOLD
A POLYMER MEMBRANES
V NUCLEOPORE FILTERS
— v=2/3,&,~1.84

10+

102
LA

10 103

FIG. 2. Size scaling of the relative depressitii, /Tg of the \ point of
(*He)y in finite and in confined systems, according to E4S) and (18).
(O) (*He)y clusters of radiuRR, (Ref. 30. () *He in vicor glass, pore
radius Ry=35A (Ref. 52. (¢) *He in porous gold, pore radiuR,
=120 A (Ref. 53. (A) *He in cylindrical poregradiusr,=400 A) in poly-
mer membrane(Ref. 52. (V) “He in cylindrical pores (radius rg
=150-1000 A) in nucleopore filtefRef. 5qb)]. The confining dimension
is L =R, for spherical clusters or pores, iy for cylindrical pores. The solid
line corresponds to the size scaling with=1.7 A andv=2/3.
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cal channel$®® we obtainedé, values in the range,
=1.23+0.13 A forry=150 A to £,=0.90+0.08 A forr,
=1000 A. These values of, for the cylindrical channels
exhibit a systematic variation of less than 12%, and are lower
by about 50% than the average value of A3 A evalu-
ated for the experimental data for spherical finite systems
(Ro=14-120 A). When all these experimental specific heat
data are taken together we infer thgt=1.5+0.6 A. This
value of é,~1-2 A obtained from the analysis of quantum
simulation data R,=14—18 A) and experimental data for
“He spherical confined systemRq=35-120 A) in cylindri-

cal channels r,=150—1000 A), is lower by a numerical
factor of ~1.5-3.0 than the value of,=3.1 A estimated
from the Josephson relation, E{.23, for the bulk super-
fluid. We note in passing that a single valueégfwas used in
the analysis of the specific heat data in finite systems. dhis
value corresponds to the infinite fluid. In the experimental
papers for porous systefis® the values ofé,=8.4 and 17

A are given for porous gold and,=93 A for vicor. The
latter £, data are based on the actual superfluid effective
densities in the confined systems. In our analysig. 2) we

use the bulk value fog,.

From the foregoing analysig-ig. 2) of simulation and
experimental data we infer that the size scaling relation
AT,xL %2 (whereL=R, for clusters and nearly spherical
confined spaces and~r for cylinderg is obeyed over a
wide size domain of. =14—400 A (i.e., N=14—4x 10" for
clusters and nearly spherical confined spgcesd of L
=150-1000 A for cylindrical channels. This broad range of
size domain with the proper critical=2/3 exponents, indi-
cates that it is unnecessary to repldceby a size indepen-
dent reference temperature, as proposéad account for a
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lower scaling component reported fofHe) confined in rameters. Thex transition in the finite system is character-
polymer films over a narrow size domaih. ized by py(t,L)=0 at t=(T}—T,)/T}, so thatT—T,

An important issue pertains to the broadening of the spe=~a/bLY”, i.e., (Ty—T,)=L ™", in accord with the phe-
cific heat curveC(T) in finite systemgFig. 1). The region nomenological theory.
8T, of the rounding-off of the specific heat curve was deter- ~ The finite size scaling analysis resulted in the identical
mined from the available simulation datand experimental finite size scaling.~** for the maximum of the specific heat
datg®-3py the i (FWHM) of C(T) for the rangeT<T, for ~ and for the onset of the superfluid density. At the present
clusters andr>T, for confined space€Table ). Following  stage we could only provide a proof that for both observables
the Fisher theory (Sec. ), one expects that the ratio T\<T, in a finite system, with identical T, =L~ scaling.
ST\ /(AT /Tg)=const, being size independent. Indeed, thisHowever, we could not demonstrate that the numerical value
relation is reasonably well obeyédithin a numerical factor of T, characterizing the two observables is nearly identical,
of 3 over the rang&R,=14-400 A) for the quantum simu- as empirically indicated by the simulation and experimental
lations for small clusters, for porous gold and for the mem-data®>>** (see Sec.)l The size effects considered herein
brane polymer. However, a markéshe order of magnitude correspond to large values T, /T, (0.3-0.15 K for
deviation from this relation is exhibited féHe confined in  the small clusters Ry=14-18 A), while for larger pores
vicor glass(Table ), which may be attributed to constrained (Ro=35-120A) the values ofAT,/T} are smaller
randomness effecf;’®and which calls for further scrutiny. (6X10 ?-6x103). In any case, the bulk correlation

length at the corresponding temperature is small compared to

the characteristic cluster size~R;.
IV. FINITE SIZE SCALING

The relationAT, xR, obtained from the Ginzburg—
Pitaevskii—Sobaynin theory for a finite system is related to/- CONCLUDING REMARKS

the theory of second-order phase transitions with the experi- 5 thermodynamic phase transitions in finite systems,
mental critical parameter,=0.67, for the superfluid fraction e.g., clusters, are rounded 8ft72 The present analysis,
and for the correlation length scaling near the critical pointyaceq on the Ginzburg—Pataevskii—Sobaynin theory, at-
of infinite systems® " This theory implies that the intensive tempted to elucidate some of the features of such rounded-
properties of a system of sid&(=Ro) depend on the ratio ot second-order phase transitions in clusters for the size de-
L/E(T)~Lt", whereg(T)=&(Ty—T) " is the bulk corre-  hendence ofT,, obtaining size equations which are in
lation length. _ _ _ accord with the finite-size scaling theory. Several general
At this stage finite-size scaling the88is applicable for  isques regarding rounded-off second-order phase transitions
the description of the specific heat maximum and of the 0Ny, finjte systems are of interest. For rounded-off first-order
set of the superfluid densiisee Sec.)| which characterize  phase changes in finite systems the change of the thermody-
the rounded-ofi transition. The singular free energy den- namic properties in the transition region is different for the
sity, f, of the finite systeniin the absence of external fields  canonical and microcanonical ensemBlas the thermody-
can be descr|b?g In terms of a umversal funct@( §) I namic limit is, of course, not realized in finite systems. While
the forn? f=L""Y(KIL™), whereK is a metric factor, e present analysis is conducted for the canonical ensemble,
which contains all the system-dependent aspects of the criff; is jnteresting to establish the ensemble dependence for
cal behawci/r andl is the dlmen5|ona_ll('§y. Defining the param- gacond-order transitions in finite systems. Another surprising
etery=KL™1, thg: free>2 energy =L Y (y) ylvglds the spe-  result emerging from the simulaticisnd the present analy-
cific heatC=T(d"1/9T"). Acco_rdln_gly,ZCocY( (% being s is the clear manifestation of second-order phase transi-
determined by the second derivative?, of Y. The maxi-  {ions for rather small clusters\(= 64, R,=14 A). An open,
mum of the specific heatC/dy=0), which characterizes jnteresting, question pertains to the lower system’s size limit
the smeared-ouk transition atT,, is Iocatgd.atyzyma}x, for the exhibition of second-order phase transitions, such as
being manifested ay' _)(ymax)zoi where Y®) is the third  {he ) transition in“He clusters. A simple-minded argument
derivative ofY. Accordingly, the rounded ofk transition is i imply that the minimal cluster siz&]™ for the realiza-

o _ 1 =1y g _ ; :
exhibited fortya,=Ymad "L, with tma= (o= T/TL, N tion of superfluidity transition iR]""™>&,. Making use of Eq.
accord with the results of the order parameter analysis °(19b) a lower limit for R™" will be manifested fofT, — 0

Sec. lll. The broadening of the specific heat curve, characWher’eupon Q/Romin)3/2~ 1Oand Rominwﬂ_go_ Taking the sho,rt
terized by the 1/FWHM) of C (at T<T,) is given by the ¢ elation lengtht,=2 A, RJ™~6 A, so that the smallest

1/2FWHM) of the Y®(y) function. These results in the 40 cjuster will consist of a central atom and the first coor-
width of the specific heat curvaT=(TM—T,)/ToecL ™Y,y oo layer
with the same finite size scaling of,,, and of At, are in '
accord with the analysis of Fish&mvhich was adopted in
Sec. IV. _ » o ACKNOWLEDGMENT
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