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We explored the eigenvalue spectra of the kinetic matrix which defines the master equation for the complex
kinetics of the analogous polypeptides (linear Ala6, cyclic Ala6, and charged Ala6). For each system we
obtained the entire eigenvalue spectrum as well as the histograms of the weighted eigenvalue spectra, where each
relaxation mode is weighted by the overlap between the initial probability vector and the corresponding
eigenvector. It was found that the spectra of the weighted eigenvalues were significantly filtered in comparison
to those of the unweighted eigenvalues, indicating that the decay is described by a small number of eigenvalues.
The important eigenvalues which are extracted from the weighted eigenvalues spectra are in good agreement
with the characteristic lifetimes for the kinetics of each system, as found by the fitting of the energy relaxation
temporal profiles to multiexponential functions. Moreover, a partial correlation is found between the relative
heights of the contributions of the important eigenvalues and the preexponential factors obtained by the fitting.
In addition, we applied the spectra of the weighted eigenvalues to study the effect of the initial population
distribution on the dynamics and also to infer which minima provide the dominant contributions to a specific
relaxation mode. From the latter results one can infer whether the multiexponential relaxations represent
sequential or parallel processes. This analysis establishes the interrelationship between the topography and
topology of the energy landscapes and the hierarchy of the relaxation channels.

1. Introduction

The kinetics of complex systems such as clusters, peptides and
proteins, ranges from a simple exponential relaxation to
stretched exponential or asymptotic power-law relaxations.1–5

In other cases, a multiple exponential kinetics better describes
the kinetics of such systems.6,7 The distinct dynamics origi-
nates from the differences in topographies and topologies of
the energy landscapes of the systems.8–19 Various energetic
and entropic barriers, the different numbers and sizes of basins,
the existence of kinetic traps, and different degrees of land-
scape ruggedness may dictate distinct dynamics.20–25

The dynamics and kinetics of clusters12,13,26,27 and small
polypeptides13–17,28,29 were studied with the aid of the master
equations, based on a detailed characterization of their energy
landscapes. The power of the master equation approach is that
it can be used to study the kinetics on a timescale considerably
longer than that accessible through direct molecular dynamics
simulations. In addition, the master equation describes the
relaxation of an ensemble over a range of temperatures with-
out the need for explicit averaging over the separate trajec-
tories. The prerequisite for any master equation study is a
knowledge of the underlying energy landscape and of the tran-
sition rates between the minima. Recently, the master equation
was applied to the dynamics of three analogous hexapeptides,
linear hexaalanine (Ala6), cyclic hexaalanine (cyc-Ala6), and
charged hexaalanine (chrg-Ala6), which differ due to different
topographical and topological properties of their energy land-
scapes.15,16 The kinetics of the three molecular systems were
shown to be nonexponential in the temperature range 400–
600 K. The kinetics of each system was well characterized by

multiple exponential functions with fast and slow events. The
kinetics for the three systems differs with respect to the time-
scales and to the degrees of their hierarchy.
The purpose of this study is to present an alternative way to

interpret the solutions of the master equation and extract
information from them about the dynamics of complex sys-
tems. The ordinary use of the master equation follows the time
evolution of a specific property (e.g., the potential energy)
towards its equilibrium value. From the relaxation profiles
the timescales and the kinetic mechanisms can be studied.
We advance a simpler inspection method of the kinetic proper-
ties by analyzing the eigenvalue spectra and the eigenvectors of
the kinetic matrix, which define the master equation. While
total eigenvalue spectra of the master equation were already
presented for alkali halides and for rare gas clusters,26,27 the
present study of the weighted eigenvalue spectra provides a
wealth of dynamic information. We propose and demonstrate
that some central characteristics of the dynamics and the
kinetics of a complex system can be extracted from the
weighted eigenvalue spectra and from the eigenvectors of
the kinetics matrix prior to the time integration of the
master equation, without the need of fitting the relaxation
profile to various functions.

2. The master equation

The master equation represents a fundamental statistical
mechanical approach to kinetic transitions among a multitude
of states. It is a loss–gain equation that describes the
time evolution of the probability Pi(t) for finding the system
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in a state i.30,31 In the description of the energy landscape, local
minima represent conformational states of the cluster or pep-
tide molecule, i, while the saddle points (which represent tran-
sition states) determine the state-to-state transition rates. The
basic form of the master equation, which provides a connec-
tion between the topography of the energy landscape and the
system’s kinetic behavior, is

dPiðtÞ
dt

¼
X
j

½WijPjðtÞ �WjiPiðtÞ� ð1Þ

where Wij is the transition probability from state j to state i.
This equation can be rewritten in matrix form P_(t) ¼ W~P(t),
where P(t) is the probability vector at time t, and its formal
solution is P(t) ¼ exp(tW~)P(0). In this formulation the transi-
tion matrix elements are defined as

~WWij ¼ Wij � dij
X
k

Wki

 !
ð2Þ

The properties of the W~ matrix are W~ijq 0 for i 6¼ j and the
sum over each column is zero; namely,

P
i W~ij ¼ 0 for all j.

Given the knowledge of the minima and the transition states
on the energy landscape it is possible to use the transition state
theory (TST) (among other methods) to evaluate the transition
matrix elements (rate constants kij), i.e.,

kij � ~WWij ¼
kT

h

Qz
ij

Qj
exp
�
� Ez

ij=kT
�

ð3Þ

where k is the Boltzmann constant, h the Planck constant, Qj

the partition function of the ‘ reactant ’ state, Qz
ij the partition

function of the transition state and Ez
ij is the barrier height

measured relative to state j.
To follow the time evolution of the population probability

at each minimum, Pi(t), it is necessary to solve the master
equation, eqn. (1). This can be done by expanding the prob-
ability vector P(t) in terms of the eigenvectors (Si), and the
eigenvalues (li) of the transition matrix W~. The time evolution
of the probability vector P(t) can be written as

PiðtÞ ¼
ffiffiffiffiffiffiffi
Peq
i

q Xn
k¼1

CkSk
i e

lkt ð4Þ

where

Ck ¼
Xn
j¼1

Sk
j

Pjð0Þffiffiffiffiffiffiffi
Peq
j

q ð5Þ

All lk< 0 for 2p kp n and l ¼ 0 for k ¼ 1. As t!1, only
the k ¼ 1 term in eqn. (4) survives, and P(t)!Peq, where
Peq is the probability vector at equilibrium. This limit defines
the baseline to which the remaining modes decay exponen-
tially. Thus, eqn. (4) can be rewritten as

PiðtÞ ¼ Peq
i þ

ffiffiffiffiffiffiffi
Peq
i

q Xn
k¼2

CkSk
i e

lkt ð6Þ

The term
ffiffiffiffiffiffiffi
Peq
i

p
CkSk

i is the contribution of mode k, with eigen-
value lk , to the evolution of the probability minimum i. The
size of this contribution depends on component i of eigenvec-
tor k, Sk

i , and on the coefficient Ck, which is a weighted overlap
between the initial probability vector, P(0), and eigenvector k,
Sk (eqn. (5)). The sign of the product of these two quantities
determines whether the mode makes an increasing or a
decreasing contribution with time.
The evolution of the probability vector towards Peq is

expressed macroscopically by the relaxation of an overall
property A to its equilibrium value Aeq. If this property has
a well defined value in the master equation for each state i,
the expectation value is a weighted average which can be

expressed as a function of time using eqn. (4):

hAðtÞi ¼
Xn
i¼1

AiPiðtÞ ¼
Xn
i¼1

Ai

ffiffiffiffiffiffiffi
Peq
i

q Xn
k¼1

CkSk
i e

lkt ð7Þ

3. Results and discussion

3.1 Characterization of the kinetic behavior

In this work we analyze the kinetics of the three polypeptide
systems, Ala6, chrg-Ala6, and cyc-Ala6, from their eigenvalue
spectra and the eigenvectors of the transition matrix W~. This
study proposes an alternative way to identify the macroscopic
kinetic behavior by analyzing the transition matrix, rather
than by following the propagation of a macroscopic property
(e.g., the average potential energy, hE(t)i), analyzing its relaxa-
tion, and then fitting it to different decay functions. This new
analysis will be compared with the results of a previous study,
where several discrete timescales specifying each relaxation
profile were detected by plotting d log(hE(t)i)/d log(t), hE(t)i
being the average potential energy function.16 Applying this
analysis to a hierarchical dynamic process results in logarith-
mic oscillations where each represents, in the course of time,
the contribution of yet another relaxation channel in the tem-
poral decay patterns. The existence of several timescales was
demonstrated by fitting the decays of the potential energy to
a multiexponential function.
The time evolution of the probability vector (eqn. (4)), as

well as of the average energy (eqn. (7)), displays multiexponen-
tial decays composed of n exponents where n is the number of
conformations of each system. Of course, the number of
important exponents characterizing the kinetics is reduced
from n to a smaller number since some exponents have very
small preexponential factors. Furthermore, some decay rates
are so high that they are of little physical interest at present,
e.g., greater than 1013 s�1 (0.01 fs�1). The timescale repre-
sented by exponent k is the inverse of the corresponding eigen-
value, i.e., lk

�1. We present an analysis which enables us to
find among the n possible timescales defined by the eigenvalues
of the transition matrix the important ones that characterize
the kinetics.
Each of the n relaxation modes contributes differently to the

evolution of the probability of the minimum i and is given by
the term

ffiffiffiffiffiffiffi
Peq
i

p
CkSk

i (eqn. (4)). These contributions can be
positive or negative and depend on the initial and current
population (eqn. (5)). A measure of the contribution of mode
k, with eigenvalue lk , to the probability evolution of all
minima (i.e., to the total probability) is denoted by CPk and
takes into account all the contributions of the relaxation mode
k to all n minima,

CPk ¼
X
i

ffiffiffiffiffiffiffi
Peq
i

q
CkSk

i

����
���� ð8Þ

Similarly, we define CEk to be the contribution of mode k to
the relaxation of the potential energy,

CEk ¼
X
i

ffiffiffiffiffiffiffi
Peq
i

q
EkSk

i

����
���� ð9Þ

The relative magnitudes of the CPk and CEk may indicate the
important (‘ relevant ’) modes (eigenvalues) for the propagation
of the probability and of the energy relaxation, respectively. In
general, we do not expect a strong correlation between the
modes responsible for the relaxations of the two different prop-
erties. If the relaxation profile is fitted by using a multiexpo-
nential function with different lifetimes ti , i.e.,

hEðtÞi � hEieq ¼
X
i

Aie
�t=ti
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Fig. 1 Eigenvalue spectra at 400–600 K for three hexapeptides. The unweighted eigenvalue spectra are shown at the bottom panel and the
spectra of the eigenvalues weighted by CEk and CPk factors are shown at the top and middle panels, respectively. The reciprocal eigenvalues
�lk

�1 ¼ tk are presented in units of ns. The dashed arrows indicate the decay lifetimes, tj , obtained from the optimal multiexponential fit of
the relaxation curves. The dashed regions contain unphysical eigenvalues that obey the relation lk

�1< 10�3 ns. (a) Eigenvalue spectra for Ala6.
(b) Eigenvalue spectra for chrg-Ala6. (c) Eigenvalues spectra for cyc-Ala6.
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then the pre-exponential factors, Ai , are CEk. Alternative cal-
culations of CPk and CEk were performed by taking the abso-
lute values of the sums of products in eqns. (8) and (9), instead
of using the sum of the absolute values. Strong cancellations
were manifested in the alternative scheme in the range of some
relevant eigenvalues, which appear in the multiexponential
time-dependent fit, and which lead to the disappearance
(shrinking) of these contributions. Accordingly, we choose
the presentation in terms of eqns. (8) and (9), which avoids
extreme cancellations.
Fig. 1(a) describes the histograms of the eigenvalues where

for the linear hexapeptide, Ala6, eigenvalue k is weighted by
CEk (top panel), and by CPk (middle panel), and the entire
eigenvalue spectra of the kinetic matrix with a weight of unity
(bottom panel) are presented. The eigenvalues of the kinetic
matrix (bottom panel) are all positive or zero. Figs. 1(b) and
1(c) are similar to Fig. 1(a) but for chrg-Ala6 and cyc-Ala6,
respectively. The histograms of the entire eigenvalue spectra
(the bottom panels of Figs. 1(a–c)) are very broad and include
eigenvalues that represent both slow (few ms) and fast (few fs)
events. The dynamics of all the systems includes processes
described by large eigenvalues (small ln(lk

�1) values) which
correspond to fast processes, with no physical meaning for
the dynamics of the systems at hand. In the present analysis
we consider any eigenvalue as having physical meaning if its
inverse is larger then 10�3 ns (1 ps). The lower temporal limit
of tl ¼ 1 ps corresponds to a classical (harmonic) vibration fre-
quency of 1/Ctl ¼ 30 cm�1, marking low-frequency intermole-
cular modes of the polypeptides. The ‘ irrelevant ’ region of the
large eigenvalues, which obey the relation lk

�1< 10�3 ns, is
marked by diagonal lines. The spectra of the eigenvalues
weighted by CEk factors for Ala6 (top panel of Fig. 1(a)) are
considerably narrower than the total eigenvalue spectra, and
almost all the unphysical timescales have no importance for
the dynamics. For chrg-Ala6 and cyc-Ala6 the spectra of the
eigenvalues weighted by CEk factors indicate that several fast
modes have a contribution larger than zero.
The spectra for the three systems (Figs. 1(a)–(c)) are drasti-

cally filtered, indicating that not all the n eigenvalues have
equal significance in the energy relaxation; rather, the decay
can be described by a smaller set of eigenvalues. Arrows were
added to the spectra to indicate the characteristic lifetimes as
obtained by fitting the energy relaxations to multiexponential
functions.16 The number of arrows (characteristic times) were
determined by the number of logarithmic oscillations found
by the logarithmic derivative of the potential energy relaxation
relative to time.16 Tables 1 and 2 present the characteristic

times of the multiexponential kinetics of each system at tem-
peratures of 400, 500, and 600 K, as well as their preexponen-
tial factors. For cyc-Ala6 and chrg-Ala6, which are
characterized by hierarchical dynamics, there is good agree-
ment between the timescales found by fitting to a multiple
exponential function and the eigenvalues with the largest
contributions. Moreover, there is also a partial correlation
between the relative heights of the contributions of the impor-
tant eigenvalues and the preexponential factors found by the
fitting. However, in some cases the CEk factors of each eigen-
value fail to estimate the total contributions, since two similar
sub-contributions with opposite signs may cancel each other
out and thus decrease the total contribution. In addition, it
is possible that the logarithmic oscillations fail to detect all
the characteristic lifetimes involved in the decay and thus addi-
tional lifetimes, as suggested by the present analysis (for exam-
ple the eigenvalue spectrum of chrg-Ala6 at 600 K), may result
in improvement of the fitting properties.
With increasing the temperature there is an expected shift of

the spectra of the eigenvalues to smaller values of �lk
�1, indi-

cating shorter timescales. For Ala6 and cyc-Ala6 the shifts of
the spectra, due to increasing the temperature, result in more
unphysical time-scales and consequently fewer eigenvalues
are involved in the dynamics. The observation that almost
no temperature effect on the eigenvalue spectrum is detected
for chrg-Ala6 suggests that the temperatures in this range
(400–600 K) are not sufficient to enable escape from the trap-
ping state. This behavior was previously observed for this sys-
tem by projecting the probability distribution onto its energy
landscape.16 It was shown that at these temperatures the pep-
tide is trapped in the native state. It should be mentioned that
for Ala6 and cyc-Ala6 increasing the temperature results in
populating different states beside the native one. The existence
of a temperature effect on the kinetics can initially be reflected
by the eigenvalue spectra.
The eigenvalue spectra of the three hexapeptides indicate

that only for chrg-Ala6 and cyc-Ala6 (Figs. 1(b) and 1(c),
respectively) the smallest eigenvalues at the three tempera-
tures (the largest ln(�lk

�1)) are associated with the slowest
decay channel (longest lifetime), while for Ala6 (Fig. 1(a))
the lifetime of the slowest decay channel is not described by
the smallest eigenvalue. Recalling that the kinetics of chrg-
Ala6 and cyc-Ala6 are more hierarchical than the kinetics of
Ala6, it is suggested that for hierarchical kinetics the smallest
eigenvalue characterizes the rate-determining step of the
relaxation process. We conjecture that this observation is
related to a structural constraint that exists in both

Table 1 The decay lifetimes, tj (in ns), obtained from the optimal multiexponential fit of the relaxation curves of each polypeptide at 400, 500, and

600 K. The number of exponents involved in each fit was determined by the behavior of the logarithmic oscillations

Ala6 chrg-Ala6 Cyc-Ala6

t1 t2 t3 t1 t2 t3 t4 t1 t2 t3

400 K 0.024 0.12 2.83 0.0031 0.39 82 2110 0.0053 0.057 31.4

500 K 0.0071 0.026 0.18 0.0026 0.43 62 430 — 0.0051 1.51

600 K 0.0037 0.011 — 0.0017 0.31 26 — — 0.0018 0.18

Table 2 The preexponential decay factors, Aj (in kcal mol�1), obtained from the optimal multiexponential fit of the relaxation curves of each

polypeptide at 400, 500, and 600 K

Ala6 chrg-Ala6 cyc-Ala6

A1 A2 A3 A1 A2 A3 A4 A1 A2 A3

400 K 14.1 6.2 0.32 7.5 10.1 10.2 2.7 4.8 3.9 2.2

500 K 11.0 3.3 2.2 7.4 12.6 8.5 2.2 — 7.9 2.1

600 K 7.3 2.5 — 7.1 13.0 11.1 — — 6.1 1.6
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chrg-Ala6 and cyc-Ala6 (i.e., electrostatic interaction and
cyclization, respectively).
The spectra of the eigenvalues weighted by CPk factors

(middle panel in Figs. 1(a)–(c)) are similar to the spectra of
the CEk weighted eigenvalues. These spectra are much nar-
rower and more filtered than the non-weighted spectra. Some
of the eigenvalues found to be essential for the relaxation of
the potential energy are also important in the evolution of
the probability distribution.

3.2 The effect of the initial probability population

The effect of the initial population distribution on the
dynamics obtained by solving the master equation is of interest
and requires elucidation. One expects that populating different
regions of the energy landscapes, as different initial conditions
of the master equation, may result in different dynamics. We
now address the question of the initial population by observing
their effect on the (weighted) eigenvalue spectra. The evolving
population distribution vector necessarily reflects the effect of
the initial probability population on the dynamics, since the
initial probability is introduced in the weights calculated by
the Ck parameters, eqn. (5), and thus may make the evolution
process sensitive to them. In order to examine the effect of the
initial population on the characteristic dynamics and kinetics
characteristic lifetimes we constructed the weighted eigenvalue
spectra for different initial probability populations. Fig. 2
shows several CPk weighted eigenvalue spectra for the three
systems at 500 K. For Ala6, spectrum A was obtained for
the initial population probability where only the highest energy
state was populated and the spectrum F was obtained for equal
populations of all the 280 states. Spectra B–E were obtained
for equally populating the 10, 20, 50, 140 highest energy states
of the Ala6 energy landscapes. It can be seen that the general
properties of the spectra are very similar for all these initial
populations with differences in the relative heights of the
important eigenvalues. However, when the system has an
initial population in the 50 lowest states (spectrum G), we
see the spectrum quite differently: some additional small eigen-
values (slow processes) appear. The weighted eigenvalue spec-
trum can thus serve as a validation tool to examine the initial
probability population. It should be mentioned that very simi-
lar characteristic times were obtained for the relaxation decays
for Ala6 using initial probabilities A, B, and C.16

The effect of the initial probability distribution on the
dynamics and on the master equation solution was also studied
using the eigenvalue spectra for chrg-Ala6 and cyc-Ala6. For
these two systems it appears again that if the higher states
are populated then the spectra are very similar in a pattern
analogous to the case of Ala6. However, when only low energy
states are populated (the bottom of the energy landscape, spec-
tra G and H of chrg-Ala6, and spectrum G of cyc-Ala6) then
the spectra look very different. This is due to the exclusion of
fast transitions from higher energy states to other lower states,
since the top of the energy landscape is not populated and the
dynamics, which in this case prevails, is among the low energy
states and yields towards the global minimum.

3.3 Relaxation pathways and the energy landscape

An important question regarding the dynamics on a complex
energy landscape is whether the temporal relaxation patterns
represent sequential or parallel processes. In the case of
sequential processes, each decay channel corresponds to a dif-
ferent region of the energy landscape. Here, the topography
and topology of the energy landscape dictate the hierarchy
of the relaxation channels. A cursory examination of sequen-
tial dynamics may suggest that fast processes originate from
transitions at the upper part of the energy landscape and that
slow processes are associated with transitions at the bottom

regions of the energy landscape towards the global minimum.
On the other hand, in the case of parallel processes, we may
expect only a weak dependence on the energy with different
decay channels and it is likely that several pathways will be
simultaneously populated with different probabilities.
To address this question the contribution of each relaxation

mode (eigenvalue) to the time evolution of the energy relaxa-
tion of each minimum on the energy landscape was tested. This
approach enables correlating the eigenvalues with the minima
constituting the energy landscape. The contribution of the kth
eigenvalue, lk , to the energy evolution of the minimum (state)
i is given by

Gk
i ¼

ffiffiffiffiffiffiffi
Peq
i

q
EiC

kSk
i ð10Þ

Fig. 2 Spectra of the CPk weighted eigenvalues at 500 K for Ala6 (a),
chrg-Ala6 (b), cyc-Ala6 (c). The seven spectra (A–G) for each of the
three hexapeptides differ in the initial probability distributions. In all
cases spectrum A was obtained for the initial population probability
where only the highest energy state was populated, and spectrum F
was obtained for equal populations of all the states that define the
energy landscape (280, 86, and 148, for Ala6, chrg-Ala6, and cyc-
Ala6, respectively). Spectra B–E were obtained for intermediate popu-
lations of the states, starting from the top of the energy landscape. For
Ala6 spectra B–E were obtained for equally populating the 10, 20, 50,
and 140 highest energy states. Spectra G and H were obtained by initi-
ally populating the 20 and 10 states with the lowest energies.
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Thus the components of each CEk (eqn. (9)) are analyzed and
determine which minima are involved in the relaxation channel
characterized by the kth eigenvalue. Fig. 3 shows the contribu-
tions Gk

i for the three molecular systems in the temperature
range 400–600 K, where magnitudes of the contributions are
represented by gray scaled colors. In these figures only the
eigenvalues with physical timescales (>1 ps) are presented.
Accordingly, for Ala6 142 (T ¼ 400 K), 69 (T ¼ 500 K), and
41 (T ¼ 600) eigenvalues out of its 280 eigenvalues are pre-
sented, for chrg-Ala6 82 (T ¼ 400 K), 82 (T ¼ 500 K), and
80 (T ¼ 600 K) eigenvalues out of the 85 eigenvalues are
included and for cyc-Ala6 66 (T ¼ 400 K), 28 (T ¼ 500 K),
and 13 (T ¼ 600 K) eigenvalues out of its 148 eigenvalues
are shown. Irrespective of the molecular system, it is shown
that among the eigenvalues on the physical relevant timescale,
there are only a few eigenvalues which contribute to the energy
relaxation dynamics of any minimum. This pattern again
demonstrates the filtering effect of the eigenvalues, as discussed
before.
The relaxation dynamics which involves the filtering effect

of the eigenvalues can result in narrow ‘ islands ’ of minima
(states) with similar energies, or, alternatively, a broad distri-
bution of minima (states) corresponding to a few eigenvalues.
Fig. 3 clearly demonstrates that the sparsely spread eigenvalues
participating in the relaxation kinetics contribute to a broad
spread of minima with different potential energies. Accord-
ingly, each significant eigenvalue (or, alternatively, a group
of eigenvalues with similar lifetimes) is uncorrelated with a

small region on the energy landscape but describes a channel
that may span the entire range of the potential energy on the
energy landscape. Though similar minima can be involved in
two parallel pathways with different timescales the population
probability of each minimum in these two pathways is differ-
ent. Especially for chrg-Ala6, it is worth noting that, while
many minima with a broad range of potential energies partici-
pate in the relaxation channel, there are some minima that are
excluded from these pathways. This is due to the topological
and multidimensional features of the polypeptide energy land-
scapes. Two minima with similar energies can have different
connectivities and consequently may be involved in different
relaxation channels.
In the context of parallel relaxation dynamics, we note that

the energy relaxation of the three hexapeptides onto their
underlying multidimensional energy landscapes is character-
ized by multiple pathways, where each relaxation channel
has a specific characteristic lifetime and spans a large range
of minima. The existence of parallel pathways in the folding
of ‘‘ small ’’ systems, such as peptides, reflects the multidimen-
sionality of their underlying energy landscapes and that pro-
tein folding should not be described by a single pathway
onto a two dimensional surface. The pathways do not only dif-
fer in the dimensions in which they take place and in their
timescales, but also in the probability populations of each of
the minima that construct them, and consequently each path-
way is characterized by a different weight, as reflected by its
pre-exponential factor.

Fig. 3 The Gk
i contribution [the contribution of the kth eigenvalue, lk (in units of ns�1), to the energy evolution of the minimum i, eqn. (10)] for

the three hexapeptides at 400–600 K. Only the eigenvalues with physical timescales (>1 ps) are presented. Accordingly, for Ala6 142 (T ¼ 400 K),
69 (T ¼ 500 K), and 41 (T ¼ 600) eigenvalues out of its 280 eigenvalues are presented, for chrg-Ala6 82 (T ¼ 400 K), 82 (T ¼ 500 K), and 80
(T ¼ 600 K) eigenvalues out of the 85 eigenvalues are included and for cyc-Ala6 66 (T ¼ 400 K), 28 (T ¼ 500 K), and 13 (T ¼ 600 K) eigenvalues
out of its 148 eigenvalues are shown. The eigenvalues are ordered according to their values starting with the smallest lk (fastest process). The
minima are ordered by their potential energy, starting with the global minimum as index 1.
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To conclude, an alternative way was presented to interpret
the solutions of the master equation and to extract detailed
information about the dynamics of complex systems. This
method was used here to filter the important relaxation modes
out of hundreds of nonphysical modes and to characterize the
multiexponential kinetics previously found for the studied hex-
apeptide systems. The relaxation modes (i.e., characteristic
timescales) and their contributions (i.e., preexponential fac-
tors) to the kinetics, as found by this method, are in good
agreement with those found by following the propagation of
the energy relaxation and fitting them to decay functions. This
method provides a relatively simple way to explore the
dynamics of complex systems from the eigenvalues and eigen-
vectors obtained from the solution of the master equation,
without the need of considering the time evolution of observa-
bles. One may expect that different filtering effects will be mani-
fested for eigenvalues corresponding to multiexponential,
stretched exponential, and power-law kinetics. The method
was found to be useful to correlate each relaxation pathway
with the minima constituting the energy landscape and to
explore the effects of temperature and the initial population
distribution on the dynamics.
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