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Abstract

We present a kinetic–quantum model for the mechanisms of hole transport in DNA duplexes, which involves a

sequence of hole hopping processes between adjacent guanines (G) and/or hole hopping/trapping via GG or GGG, all

of which are separated by thymine (T)–adenine (A) bridges. Individual hole hopping processes between G sites fall into

two distinct parallel mechanisms, i.e., unistep superexchange mediated hopping via ‘short’ ðT–AÞn bridges and ther-

mally induced hopping (TIH) via ‘long’ ðT–AÞn (n > 3–4) bridges. The bridge specificity for TIH via ðAÞn chains

pertains to the energetics, with the GþA energy gap D ¼ 0:20� 0:05 eV being sufficiently low to warrant endothermic

hole excitation from Gþ to ðAÞn, and to the electronic couplings, with the nearest-neighbor A–A couplings being unique

in the sense that the intrastrand and interstrand couplings are close and large ðV ðA–AÞ ’ 0:30–0:060 eVÞ. Accordingly,

both effective intrastrand and interstrand (zigzagging) hole transport via ðAÞn chains will prevail, being nearly invariant

with respect to the nucleobases ordering within the ðT–AÞn duplex. We treated the ‘transition’ between the superex-

change and the TIH mechanism in 50-GþðT–AÞnG-30 duplexes to predict that the crossover occurs at nx ’ 3–4, with nx
exhibiting a moderate bridge specificity and energy gap dependence. nx is in accord with the experimental data of Giese

et al. [Nature 412, 318, 2001]. We assert that the kinetic–quantum mechanical model for the chemical yields and ele-

mentary rates cannot be reconciled with the experimental TIH data, with respect to the very weak bridge size de-

pendence of the relative chemical yields and the ratios of the rates. Configurational relaxation accompanying

endothermic hole injection from Gþ to ðAÞn may result in the gating (switching-off) of the backrecombination, pro-

viding a reasonable description of TIH dynamics and very long-range hole transport in long ðAÞn chains. � 2002

Published by Elsevier Science B.V.

1. Introduction

Molecular wires constitute nanostructures
whose spatial configuration, energetics, nuclear
and electron dynamics promote long-range charge
transport [1–10]. DNA based molecular electronic

devices are expected to utilize the unique features
of recognition, assembly and specific binding
properties of the nucleobases, with the DNA du-
plexes serving as building blocks or/and templates
for the assembly and function of electronically
active nanoelements [11–18]. The elucidation of
the role of DNA as a ‘molecular wire’ requires the
establishment of the dynamics and mechanism
of charge transport. Two limiting classes of
nanostructured ‘molecular wires’ should be
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distinguished on the basis of their charge transport
mechanism, i.e., ballistic band motion and charge
hopping between localized states [9,19]. Neat,
undoped DNA falls into the second category,
constituting a ‘vibronic molecular wire’ where
hopping transport prevails [20–27]. The charge
hopping mechanism in DNA is described in terms
of the quantum mechanical non-adiabatic electron
transfer theory [19], with the ingredients of elec-
tronic (direct exchange or superexchange) cou-
pling, and nuclear coupling with low-frequency
intermolecular and medium modes together with
high-frequency intramolecular modes. This ap-
proach can be considered as an extension of the
Holstein small polaron model [28] in the non-adi-
abatic limit, extended to account for the important
effects of intramolecular nuclear distortion (reor-
ganization) of the nucleobases. This model for
hopping transport in vibronic molecular wires may
be referred to as the ‘molecular polaron’.

The majority of the experimental information
on charge transport in DNA pertains to the posi-
tive charge (hole) migration, i.e., the propagation
of the radical cation along the duplex [29–40].
Energetic data and computational results [23,41–
44] show that G nucleobases act as ‘resting’, lowest
energy states for holes in DNA duplexes, while GG
and GGG doublets/triplets act as shallow hole
traps in DNA, in accord with the experimental data
[29–37]. The interrogation of individual elementary
steps of charge injection, trapping, hopping, and
recombination, and their lifetimes in (intercolated,
substituted or capped) DNA was accomplished by
utilizing the arsenal of the methods of nanosecond
to femtosecond time-resolved spectroscopy [33–
35,45,46]. Concurrently, information on hole
trapping was inferred from terminal/proximal
ðGGGÞþ=Gþ relative chemical yield data induced
by hole shift in GþðT–AÞnGGG (n ¼ 1–4; distance
scale 10–40 �AA) duplexes [36–38,43]. Experimental
evidence for long-range hole transport over dis-
tance scales of 40–200 �AA [29–32,36–40,47,48]
emerged from terminal/proximal guanine relative
chemical yield data, which are induced by photo-
chemical hole injection from an electronically ex-
cited donor (i.e., from Rhþ3 complexes [31,32],
from anthraquionone [29,39,40]), or from chemical
hole shift (from a sugar cation [30,36–38,47,48]).

The concept of (donor–bridge) energetic con-
trol [20] in DNA, advanced in 1998, provided a
unified description of the distinction between off-
resonance ðDE > 0Þ, superexchange induced,
short-range unistep charge transfer, and reso-
nance-coupled ðDE < 0Þ, long-range multistep
charge hopping transport. However, the concept
of energetic control is strictly valid only at suffi-
ciently low temperatures and for hole transfer
between guananine (G) nucleobases separated by
sufficiently short ðT–AÞn ðn6 4Þ bridges. Barton
and co-workers [32], Giese et al. [47,48] and Bixon
and Jortner [22,23,49] proposed that for off-reso-
nance donor–bridge coupling in DNA ðDE > 0Þ,
thermally activated charge injection from Gþ,
ðGGÞþ or ðGGGÞþ into some nucleobases of the
bridge (which are characterized by a higher oxi-
dation potential) followed by multistep hopping
among the bridge constituents, can occur at finite
temperatures. Most important, it was proposed
[32,47–49] that thermally induced hole injection
from Gþ to A followed by hopping between A
nucleobases will occur. The thermally induced
hopping (TIH) process occurs in parallel with the
unistep superexchange tunneling. Barton et al. [30]
and Giese et al. [47,48] provided strong experi-
mental evidence for TIH through long chain ad-
enine nucleobases (n ¼ 4–16 [47,48] and n ¼ 4–10
[30]) in DNA. The features of TIH are general,
being applicable not only for DNA but also for
charge migration in large chemical scale systems,
e.g., donor–acceptor pairs bound by polymers,
such as oligoproline donor–acceptor complexes
[41,50], as well as for the (sequential-superex-
change) primary charge separation in biological
systems [51,52], and in chemically and mutageni-
cally modified photosynthetic reaction centers
[53].

The compound mechanism of long-range hole
transport in a duplex dG1ðT–AÞnG2 � � �GNt con-
taining N guanine nucleobases separated by
ðT–AÞn bridges between a donor (d) and acceptor
(trap) t, e.g., G, GG or GGG, involves several
steps: (i) hole injection from d to the proximal G1;
(ii) a sequence of hole hopping processes between
adjacent guanines, i.e., Gj and Gj�1 within the
bridge; and (iii) termination by hole trapping/de-
trapping between GN and t. The individual hole
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hopping processes (ii) between Gj and Gj�1 fall
into two categories:

1.1. Hopping mechanism A

Unistep superexchange mediated hopping [20–
27,31–38,47–49]. For moderately short ðT–AÞn
bridges ðn6 4Þ each hopping step is induced by
superexchange, off-resonance electronic coupling
between Gj and Gj�1 via the ðT–AÞn subbridges.
The hole states of the ðT–AÞn subbridge are virtual
and do not constitute a real chemical intermediate.
The kinetic scheme for the individual unistep su-
perexchange hopping rate is

GþðT–AÞnG !
ksuper

GðT–AÞnG
þ ð1Þ

This physical picture of unistep hole superex-
change between guanines separated by ‘short’
ðT–AÞnðn6 4) subbridges was proposed and anal-
ysed in detail [20–27,49] to account for the exper-
imental yield data of Giese et al. [30,36–38], Saito
et al. [54,55] and Barton and co-workers [56].
Regarding the compound hole transport mecha-
nism, the unification of G � � �G superexchange
mediation and G � � �G hopping accounts for mul-
tistep long-range hole transport, with each hop-
ping step involving superexchange via ‘short’
ðn6 4Þ subbridges.

1.2. Hopping mechanism B

Thermally induced hopping (TIH) [22,23,25,30,
47–49]. This mechanism prevails in ‘long’ ðT–AÞn
(nP 4) bridges, which separate between Gj and
Gj�1 nucleobases. Each bridge with its proximal/
terminal guanines will be denoted by GjðT–AÞð1Þ
ðT–AÞð2Þ � � � ðT–AÞðnÞGj�1. Hole transport via TIH
within the subbridge will occur via thermally in-
duced donor–bridge hole excitation from Gþ to A
in ðT–AÞð1Þþ (rate k1), followed by hole hopping
between nearest-neighbor A nucleobases (see Sec-
tion 2) within the bridge (hopping rates k) and
being terminated by hole trapping (rate kt). The
kinetic scheme also has to include hole deexcita-
tion (rate k
1Þ and hole detrapping (rate k
tÞ from/
to the adenines bridge. The kinetic scheme for the
hole TIH between Gj and Gj�1 is given by Eq. (2),

ksuper

GþðT–AÞð1ÞðT–AÞð2Þ � � � ðT–AÞðnÞG
k1 #" k
1
GðT–AþÞð1ÞðT–AÞð2Þ � � � ðT–AÞðnÞG
k #" k
GðT–AÞð1ÞðT–AþÞð2Þ � � � ðT–AÞðnÞG
..
.

k #" k
GðT–AÞð1ÞðT–AÞð2Þ � � � ðT–AþÞðnÞG
kt #" k
t
GðT–AÞð1ÞðT–AÞð2Þ � � � ðT–AÞðnÞGþ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð2Þ

Most important, the endothermically accessible
(via GþA! GAþ thermal excitation and
AþA! AAþ hopping) Aþ cations constitute
genuine chemical intermediates, which are ame-
nable to interrogation by magnetic or optical
spectroscopy. This compound hole transport
mechanism involves G � � �G charge transport via a
set of charge hopping steps through the A nucle-
obases, allowing for very long-range hole trans-
port via ‘long’ ðT–AÞn (n > 3) subbridges [47–49].
The TIH occurs in parallel with the unistep su-
perexchange tunneling (mechanism (A)) [22,47–
49].

The unistep superexchange mediated hopping
(mechanism (A)) was explored in considerable
detail [20–27,49] incorporating the effects of sub-
bridge length, of the sequence specificity of the
ðG–AÞn subbridge, of backtrapping and of side
reactions of Gþ with water. On the other hand, the
theoretical [47–49] information on TIH in DNA
(mechanism (B)) is still limited, and will be ex-
plored in the present paper.

2. Thermally induced hopping via adenine chains

and the crossing between superexchange and TIH in
DNA

2.1. The TIH mechanism

We shall now address the mechanistic issues of
hole TIH via ðAÞn chains in GþðT–AÞn G duplexes,
considering the characteristics of bridge specificity
and of the ‘critical’ ðT–AÞn bridge size for the onset
of the TIH mechanism. In the following treatment,
as well as in the kinetic–quantum mechanical
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analysis presented in Section 3, we consider a rigid
DNA structure, which is determined by the (av-
erage) nuclear equilibrium configuration. The nu-
clear configurational fluctuations of the DNA
duplex, of the sugars and phosphates, of water and
of alkali cations, may affect the energetics and the
electronic couplings. These effects of configura-
tional fluctuations, which are determined by the
relative time scales for the electronic processes and
of the fluctuations, will not be considered herein.
We shall also neglect any possible effects of con-
figurational relaxation accompanying charge in-
jection from Gþ to the ðAÞn chain or charge
trapping from the ðAÞþn chain by G.

In the context of bridge specificity, we have to
consider both the energetics and the electronic
couplings. Consider first the energetics of TIH. On
the basis of the hierarchy of the oxidation poten-
tials of the nucleobases ðG < A < C;TÞ [40–44],
the A nucleobases (with a moderately low energy
gap of D ¼ 0:20� 0:05 eV between GþA and
GAþ, as determined [49] from a kinetic analysis of
endothermic hole hopping [57] in DNA) constitute
hole carriers in TIH between the guanines (Fig. 1).
This conclusion is in accord with the TIH proposal
and experiments of Giese et al. [47,48] and our
theoretical modeling [49] of the energetics and ki-
netics of the TIH. The kinetic analysis of a simple
model for the TIH process, Eq. (2), which neglects
side reactions of Gþ with water (Section 3), implies
(see Eq. (A.16)) that the rate kTIH of hole transfer
from the proximal G is given by

kTIH ¼ k expð
D=kBTÞ=½ðk=k
1Þ þ ðk=ktÞ þ ðn
 1Þ�;
ð3Þ

where Dð> 0Þ is the energy gap between

GþðT–AÞð1Þ and GðT–AþÞð1Þ, while the elementary
hopping (k), trapping (kt) and deexcitation ðk
1Þ
rates are defined in Eq. (2). Eq. (3) holds for an
effective sink, i.e., kt=k
t � 1. When effective hole
recombination rates are fast, i.e., n > k=kt, k=k
1,
one gets

kTIH ¼ k expð
D=kBT Þ=ðn
 1Þ: ð3aÞ
The algebraic dependence kTIH / ðn
 1Þ
1 corre-
sponds to the rate of hole transfer from the
proximal G. For the rate of the appearance of the
hole at the terminal G, we get (Eq. (A.24))

kTIH / ðn=2Þ
2, as appropriate for a diffusion
process [20,49]. The hopping rate k between ad-
jacent adenines (which is taken to be equal for
both intrastrand and interstrand nearest-neighbor
A nucleobases, as discussed above) is given by
[19,20]

k ¼ 2p
�h
jV ðA–AÞj2F ð0Þ; ð4Þ

where F ð0Þ is the nuclear Franck–Condon factor
and V(A–A) is the nearest-neighbor electronic
coupling between A nucleobases.

The nuclear Franck–Condon factor, which in-
corporates both medium and intramolecular vib-
rational modes, is given by [19,20]

F ðdEÞ ¼ ð4pkkBT Þ
1=2 expð
SÞ
X1
n¼0

Sn

n!

� exp½
ðdE þ kþ n�hxÞ2=4kkBT �; ð5Þ

Fig. 1. A kinetic–energetic scheme for the parallel superex-

change–TIH mechanism of hole transport in GþðT–AÞn GGG

duplexes. Horizontal lines depict energy levels of the hole states

(in the tight binding approximation). The initial/final levels

correspond to G/GGG, the adenine A levels are accessible by

TIH (for large n) and can also act as superexchange mediators

(for small n). The thymine T levels act as superexchange me-

diators. The energy gaps, D (for GþAÞ, DE (for Gþ � � � ðGGGÞÞ,
DEt (for Aþ(GGG)) and DE(G–T) (for GþT), are marked on

the figure. The arrows represent individual rates for endother-

mic charge injection (k1), recombination ðk
1Þ, hopping (k), and

trapping/detrapping (kt, k
t). ksuper denotes the unistep super-

exchange rate.
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where dE is the (free) energy gap (defined as
dE > 0 for endoergic processes), with dE ¼ 0 for
the symmetric charge transfer process in Eq. (4). k
is the medium reorganization energy involving the
contribution of the low-frequency medium modes,
while the high-frequency intramolecular vibra-
tional modes are characterized by the (mean) vib-
rational frequency �hx and coupling S. Eqs. (4) and
(5) for the hopping rate are derived on the basis of
the electron transfer theory [19]. A first guess for
the relevant nuclear parameters is taken from the
analysis of Lewis et al. [33–35] of their experi-
mental data for the (free) energy dependence of the
hole injection dynamics to DNA

k ¼ 0:25 eV; �hx ¼ 0:18 eV; S ¼ 5: ð6Þ
Next, we consider the electronic couplings V(A–

A) in Eq. (4) between nearest-neighbor A nucleo-
bases. Quantum mechanical calculations of the
electronic coupling matrix elements [58,59] reveal
(see Fig. 2) that the A–A couplings are unique in
the sense that the intrastrand and interstrand
couplings are close [58,59] and large, i.e., V(A–

A) ¼ 0.030–0.060 eV. This pattern of the elec-
tronic couplings for A–A is qualitatively different
for other nucleobases where the interstrand pair
coupling is considerably lower than the intrastrand
coupling [58,59]. We infer that effective zigzagging
[20], i.e., hole transport between nearest-neighbor
intrastrand and interstrand A nucleobases will
prevail. In particular, hole transport switching
between A nucleobases in the two strands in long
ðT–AÞn duplexes may occur. The overall TIH via
the ðAÞn chain is nearly invariant with respect to
the nucleobase ordering within the ðT–AÞn duplex.
As every Watson–Crick pair contains either a G or
an A nucleobase, a marked erosion of sequence
specificity for hole transport via TIH in large ðAÞn
chains is expected. To conclude this discussion of
the TIH rates, Eqs. (3)–(6) and Fig. 2, we note that
kTIH manifests a weak, algebraic ðAÞn chain length
(n) dependence.

2.2. The superexchange mechanism

We now consider the unistep superexchange
mechanism, which operates in parallel to the TIH,
Eq. (2). The superexchange rate is [19,20]

ksuper ¼
2p
�h
jVsuperj2F ðDEÞ; ð7Þ

where F ðDEÞ, Eq. (5), is the nuclear Franck–
Condon factor for superexchange (characterized
by an energy gap DE, with DE ¼ 0 for symmetric
Gþ � � �G hole shift and DE ¼ 
0:096 eV for hole
trapping in GþðTÞn GGG [23]). Vsuper is the su-
perexchange electronic coupling matrix element.
Unistep G � � �G superexchange occurs via parallel
coupling routes involving both intrastrand and
interstrand contributions, with the intrastrand
contribution usually being dominant (Fig. 2). The
G � � �G superexchange electronic coupling is

Vsuper ¼
X
routes

V ðG–Xð1ÞÞV ðXðnÞ–GÞ
DðG–Xð1ÞÞ

�
Yn
1
j¼1

V ðXðjÞ–Xðjþ1ÞÞ
DðG–XðjÞÞ

; ð8Þ

where V ðG–Xð1ÞÞ, V ðXðjÞ–Xðjþ1ÞÞ and V ðXðnÞ–GÞ are
the nearest-neighbor matrix elements in the duplex
GþXð1ÞXð2ÞXð3Þ � � �XðnÞG, which were calculated by

Fig. 2. Electronic coupling matrix elements (from references

[58,59]) in eV units, between nearest-neighbor nucleobases in

DNA duplexes. Both intrastrand and interstrand electronic

couplings are presented. Note that the A–A intrastrand and

interstrand electronic couplings are close and large. For other

pairs of nucleobases the intrastrand couplings are considerably

larger than the interstrand couplings. TIH proceeds via the A

nucleobases connected by solid lines. Some routes for super-

exchange are also marked.
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Voityuk et al. [58,59] (Fig. 2). The sum in Eq. (8) is
taken over all the coupling routes (Fig. 2), where
often a single contribution dominates [59]. The
energy gapsDðG–Xð1ÞÞwith Xð1Þ ¼ T orA are taken
as [20] DðG–TÞ ¼ 0:6 eV and DðG–AÞ � D ¼ 0:20
eV [49]. As expected, jVsuperj2 and ksuper exhibit an
exponential distance ðnÞ dependence (Fig. 3).

The unistep superexchange process in the du-
plex GþðTÞn GGG studied by Giese et al. [36–
38,48] is characterized by the rate ksuperðnÞ. The
dominant contribution to Vsuper, Eq. (8), originates
from the interstrand coupling, whereupon

VsuperðnÞ ¼
V ðG–TÞV ðT–GÞ

DðG–TÞ
V ðT–TÞ
DðG–TÞ

� �n
1
: ð8aÞ

The bridge size dependence of the superexchange
rate, Eq. (8a), is

ksuperðnÞ ¼ ksuperð1Þrn
1; ð9Þ
where the reduction factor of the rate, upon the
addition of a single T nucleobase, is

r ¼ V ðT–TÞ
DðG–TÞ

				
				
2

¼ expð
bR0Þ ð10Þ

r ¼ 0:07–0:10, being alternatively expressed by an

exponential with b ¼ 0:79–0:68 �AA

1

and R0 ¼
3:38 �AA is the interbase intrastrand (T–T) spacing.
ksuperð1Þ is the superexchange rate for n ¼ 1.

ksuperð1Þ ¼
2p
�h

V ðG–TÞV ðT–GÞ
DðG–TÞ

				
				
2

F ðDEÞ: ð11Þ

The nuclear Franck–Condon factor, F ðDEÞ, Eqs.
(5) and (6), depends on the energy gap DE between
GþðTÞn GGG and GðTÞnðGGGÞþ. From a previ-
ous analysis [23] for GþTGGG we take
DE ¼ 
0:096 eV, asserting that for charge shift DE
is independent of n.

2.3. The ‘transition’

Considering parallel superexchange and TIH,
we introduce a characteristic ðT–AÞn bridge size,
nx, for the ‘transition’ between the two mecha-
nisms. The superexchange dominates ðksuperðnÞ >
kTIHðnÞÞ at n < nx, a crossover between the two
mechanisms [49] will occur at n ¼ nx, where

ksuperðnxÞ ¼ kTIHðnxÞ ð12Þ
and the TIH mechanism will dominate ksuperðnÞ
< kTIHðnÞ for n > nx. Making use of Eqs. (3a),(4),
(7),(8) and (12) we assert that the condition for the
crossover is

Vsuper
		 		2F ðDEÞ
¼ jV ðA–AÞj2½expð
D=kBT Þ=ðn
 1Þ�F ð0Þ: ð13Þ

For symmetric hole transfer the nuclear Franck–
Condon factors for ksuper and kTIH are approximately
identical (both corresponding to DE ¼ 0), the
crossover condition will be determined by the elec-
tronic couplings, being determined by the equation

nx ¼ 1
 D
kBT ln r

þ ln½jV ðA–AÞj2=jVsuperð1Þj2�
ln r


 lnðnx 
 1Þ
ln r

: ð14Þ

For hole trapping by GGG, a correction factor for
the nuclear Franck–Condon factors with F ð0Þ=
F ðDEtÞ, Eqs. (5) and (6), has to be incorporated.

In Fig. 3 we present calculations for the super-
exchange–TIH crossover in 50-GþðTÞnG-30 and
50-GþðAÞnG-30 duplexes, where we portray the
distance dependence of the electronic couplings for
kTIH and ksuper and the superexchange TIH cross-
over (using the calculated pair matrix elements
[58,59] and D ¼ 0:20� 0:05 eV [49]). The contri-
bution to TIH (in both cases via the ðAÞn chain) is

Fig. 3. A quantum mechanical description of the crossover

from superexchange to TIH in GþðT–AÞn G duplexes with in-

creasing the bridge size. The solid lines with closed circles and

triangles (–�– and –N–) represent jVsuperj2 for the two duplexes

marked on the figure. The dashed line with open squares (–�–)

represents jV TIH
eff j

2 ¼ jV ðA–AÞj2 expð
D=kBT Þ=ðn
 1Þ, with

D ¼ 0:22 eV. The ‘critical’ size values, nx, are marked by vertical

arrows.
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nearly invariant for the different duplexes, but
some bridge specificity is manifested due to dif-
ferent contributions to jVsuperj2 (Fig. 3). The ex-
ponential distance ðnÞ dependence for ksuper and the
algebraic distance dependence of kTIH are exhib-
ited. A superexchange–TIH crossover is mani-
fested at nx � 3–4 (with the nx values marked in
Fig. 3). nx exhibits a bridge specificity, being lower
by �15% (Table 1) for the

Gþ

C

T

A


 �
n

G

C

duplex relative to the

Gþ

C

A

T


 �
n

G

C

duplex. The dependence of nx on the energy gap D
(in the uncertainty range inferred from previous
analyses [49]) is portrayed in Table 1, with nx
somewhat decreasing with lowering D in the ap-
propriate energy region. This quantum mechani-
cal–kinetic analysis for DNA infers that for ‘short’
GþðT–AÞnG or ðGÞþa ðT–AÞnðGÞb ða;b ¼ 1–3Þ du-
plexes (n < nx; nx ¼ 3–4) the superexchange mech-
anism dominates, with a nearly exponential
distance dependence of the rates and chemical
yields (see Section 3), while for long duplexes
ðn > nx > 4Þ the TIH mechanism takes over, with a
weak distance dependence of the rates and chemical
yields (further considered in Section 3). The results
of this analysis, which gives nxðtheoryÞ �3–4, are in
reasonable agreement with the experimental results

for the superexchange–TIH crossover reported by
Giese et al. (nxðexperimentÞ ’ 3–4) [48]. As the
available experimental information for long range
(via superexchange) and very long range (via TIH)
hole transport in DNA stems from chemical yield
data, a more complete analysis of chemical yields
will be desirable for the confrontation of our the-
oretical quantum mechanical–kinetic scheme with
experimental reality.

3. A kinetic analysis of chemical yields

Giese and his colleagues [48] studied hole
transfer in the duplexes 1

Table 1

The ‘critical’ bridge size, nx, in GþðT–AÞnG duplexes for the ‘transition’ from superexchange ðn < nxÞ to TIH ðn > nxÞ

Duplex Model and observable D (eV) nx

G
C

T
A


 �
n

G
C

Kinetic–quantum mechanical model for rates (calculated) 0.22 4.0

0.17 3.3

G
C

A
T


 �
n

G
C

Kinetic–quantum mechanical model for rates (calculated) 0.22 4.4

0.17 3.7

G
C

T
A


 �
n

G
C

Kinetic–quantum mechanical model in kinetic limit for chemical yields (calculated) 0.22 (4.8)

0.17 (3.9)

G
C

T
A


 �
n

G
C

Configurational relaxation accompanying hole injection for chemical yields (calculated) 0.17 3.1–3.6

G
C

T
A


 �
n

G
C

Experiment for chemical yieldsa – 3–4

aRef. [48].

1 The experimental chemical yield data reported by Giese et al.

[48] for their ‘new’ assay (assay II) at pH ¼ 5 (Fig. 4) are

considerably higher than their yield data (i.e., Rð1Þ ¼ 30,

Rð2Þ ¼ 3:2, Rð3Þ ¼ 0:44, Rð4Þ ¼ 0:03) previously reported for

their ‘old’ assay (assay I) at pH ¼ 7 [36–38], where the hole

injection process from the sugar cation is also different. The

difference between assays I and II is attributed to the retarda-

tion of the reactions of Gþ and of ðGGGÞþ with water (B.

Giese, private communication). In our analysis we shall assume

that the hole energetics (i.e., the energy difference between

GþT � � �TðGGGÞ and GT � � �TðGGGÞþÞ and transfer kinetics

is invariant in assay II with respect to assay I (analyzed in Refs.

[21–23]), while the reaction rates of Gþ with water (kr) and of

ðGGGÞþ with water (krt) are different for the two assays.

Indeed, the analysis in Section 2.1 shows that the value of

ksuperð1Þ=kr obtained herein for assay II is higher by a numerical

factor of 3–10 than that previously obtained [21–23,36–38] for

assay I, indicating the slowing down of the water reaction in

assay II, as proposed by Giese et al. [48].
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Gþ

C

T

A


 �
n

GGG

CCC
ðn ¼ 1–16Þ; ðIÞ

providing strong evidence for the ‘transition’ be-
tween superexchange (for n ¼ 3) to TIH (for
n ¼ 4–16) and a weak bridge size (n) dependence
for TIH. The relative chemical yield ratios RðnÞ for
a bridge length n, which are given by

RðnÞ ¼ Y ðGGG terminalÞ=Y ðG proximalÞ;
exhibit the following features (Fig. 4) [48]:

(A) The superexchange region is characterized
by an exponential n dependence, (Fig. 4).
(B) The ‘transition’ between superexchange and
TIH is exhibited at nx ffi 3–4 (Fig. 4) is in accord
with our kinetic–quantum mechanical analysis,
which predicts nx ¼ 34 (Section 2).
(C) The TIH process exhibits a very weak n de-
pendence, (Fig. 4), with RðnÞ ¼ 2:5� 0:5 for
n ¼ 5–16.
We now proceed to explore the elementary rates

and chemical yields in the kinetic scheme (Fig. 1)
for the parallel superexchange–TIH mechanisms.
This constitutes the extension of scheme (2) to
incorporate the reaction with water.

3.1. Chemical yields for superexchange

The relative chemical yield for the superex-
change mechanism is [23]

RsuperðnÞ ¼ ½ksuperðnÞ=kr�½1þ ðksuperðnÞ=krtÞ
� expð
DE=kBT Þ�
1; ð15Þ

where ksuperðnÞ, Eqs. (9)–(11), is the Gþ � � �GGG
superexchange rate in duplex (I), DE is the
Gþ � � �GGG energy gap and the rates kr and krt for
the water reactions of Gþ and ðGGGÞþ, respec-
tively, are defined in Eq. (A.1). The bridge length
dependence of RsuperðnÞ is of the form arn
1=
½1þ crn
1�, with a ¼ ksuperð1Þ=kr and c ¼ ksuperð1Þ
expð
DE=kBT Þ=krt, exhibiting an exponential n
dependence for large n, which may be flattened-off
at low (n ¼ 1–2) values due to the contribution of
the crn
1 term. From the experimental results of
Giese et al. [48] we can infer that ksuperð1Þ=kr ’ 300
and r ¼ 0:1 (Fig. 4). The value of r (or b), Eq. (10),
for this experiment is close to the value
r ¼ 0:07–0:1 and b ¼ 0:7� 0:1 �AA


1
inferred from

theoretical calculations [59] from the analysis of
the yield data for Giese’s assay I [23,36–38] and
from other experimental data by Lewis et al. [33–
35,45] and by Zewail and co-workers [45]. Finally,
the available experimental data do not show a
deviation from exponential n dependence of Rsuper

(n) for n ¼ 1. Accordingly, we assert on the basis
of Eq. (15) that

ðksuperð1Þ=krtÞ expð
DE=kBT Þ < 0:3:

As DE ffi 0:096 eV we can assert that ksuperð1Þ=
krt < 50. From the estimates for ksuperð1Þ=kr and for
ksuperð1Þ=krt, we infer that krt=kr > 5. This estimated
ratio of the reaction rates of ðGGGÞþ and of Gþ

with water (for assay II) is (however not appre-
ciably) higher than the ratio krt=kr ¼ 1:8 [47] and
3.6 [23] inferred from the previous analysis of the
kinetic data for superexchange in Giese’s assay I
[36–38]. 1

3.2. Relative yields and rates for thermally induced
hopping

The kinetic model for TIH (Fig. 1) is analyzed
in Appendix A and results in the following com-
pact expression for the relative chemical yield

RTIH ¼
ðkrtk1kt=krÞ

k
tk
1 þ krtkt þ krtk
1 þ ðkrtktk
1=kÞðn
 1Þ :

ð16Þ

Fig. 4. The analysis of the experimental data (�) of Giese et al.

[48] for the relative chemical yields in duplex (I) according to

the modified kinetic–quantum mechanical model, Eqs. (23) and

(24). The nx value, Eq. (25), is marked by a vertical arrow.

400 M. Bixon, J. Jortner / Chemical Physics 281 (2002) 393–408



Making use of the detailed balance relations k1 ¼
k
1 expð
DE1=kBT Þ and k
t ¼ kt expð
DGt=kBT Þ,
together with DEt ¼ DE þ DE1, this expression can
be recast in the alternative form

RTIH ¼
ð1=krÞ expð
D=kBT Þ

ð1=krtÞ expð
DEt=kBT Þ þ ½1=k
1 þ 1=kt þ ð1=kÞðn
 1Þ� ;

ð16aÞ

where D is the GþA–GAþ energy gap, while DEt is
the trapping energy gap between AþGGG and
AðGGGÞþ (Fig. 1) and the elementary rates are
defined in Fig. 1. Eq. (16) exhibits two limits:

(1) The limit of equilibrium distribution. When
hole injection, trapping and hopping is extremely
fast on the time scale of the water reaction

krt
k
1
þ krt

kt
þ krt

k
ðn
 1Þ � expð
DEt=kBT Þ ð17Þ

with some of the following rate ratios being very
large, i.e.,

k
1=krt; kt=krt; k=krtðn
 1Þ � expðDEt=kBT Þ
ð17aÞ

the equilibrium distribution is achieved. The rela-
tive chemical yields ratio in this case, Req, is given
from Eq. (16) by

Req ¼ ðkrt=krÞ expðDE=kBT Þ; ð18Þ
where DE ¼ DEt 
 D is the energy gap between Gþ

and ðGGGÞþ (Fig. 1). The equilibrium distribu-
tion, Eq. (18), is independent of the bridge size n,
as expected.

(2) Kinetic limits. When Eq. (17) is violated, Eq.
(16a) holds. Of considerable interest is the kinetic
limit when

k
1=krt; kt=krt; kðn
 1Þ=krt < expðDEt=kBT Þ:
ð19Þ

Eq. (16) then results in

RTIH ¼
ð1=krÞ expð
D=kBT Þ

1=k
1 þ 1=kt þ 1=kðn
 1Þ : ð20Þ

The relative chemical yield in the kinetic limit, Eq.
(20), manifests an algebraic bridge length (n) de-
pendence of the form RTIH / ½aþ bðn
 1Þ�
1,
where the numerical constants are a ¼ ðk
1Þ
1þ

ðktÞ
1 and b ¼ k
1. A weak n dependence is ex-
pected to be manifested when a� bðn
 1Þ, i.e.,
ðn
 1Þ � k=k
1 þ k=kt: ð20aÞ
It is instructive to relate the relative chemical yield
in the kinetic limit, Eq. (20), to the hole residence
time s1 in the initial state GþðAÞn GGG. In Ap-
pendix A we show that in the absence of irre-
versible processes (e.g., the water reaction of Gþ)
this hole residence time is

1=s1 ’
expð
D=kBT Þ

2 =k
1 þ ðn
 1Þ=k ; ð21Þ

1=s1 ¼
1

2 =k1 þ ððn
 1Þ=kÞ expðD=kBT Þ
; ð21aÞ

where 2 ¼ 1–2 is a numerical constant depending
on the relation between the rates k
1 and kt (Ap-
pendix A). Considering for the moment ex-
tremely effective hole trapping ð1=kt ! 0Þ, then the
relative chemical yield in the kinetic limit assumes
the form

RTIH ffi ð1=s1Þ=kr: ð22Þ
Eq. (22) provides a relation between relative
chemical yields and residence lifetimes. Our result
for RTIH, Eqs. (21) and (22), can be expressed
by the alternative relation, Eq. (21a), so that
the hopping time 1=k (in the denominator) is
multiplied by the reciprocal Boltzmann factor
expðD1=kBT Þ ’ 7� 103. Segal et al. [60] (SNDWR)
presented an important theoretical analysis for
the initial state residence time sSNDWR in a sym-
metric donor–bridge–acceptor system, where the
individual states are described in terms of
one-level systems with dephasing. SNDWR ob-
tained the following relation [60] for the resi-
dence time 1=sSNDWR ¼ 1=kup þ ð1=kdiffÞn. We
can relate the rates of SNDWR to our rates in
terms of 1=sSNDWR � 1=s1, kup � k1 and kdiff ¼
k expð
E=kBT Þ. The present kinetic analysis con-
curs with the original model results of SNDWR
[60].

We now proceed to the analysis of the TIH
experimental data of Giese et al. [48] in duplex (II)
(n ¼ 4–16) in terms of the foregoing analysis, Eqs.
(16)–(20). The first issue we address is whether
these experimental results correspond to the limit
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of equilibrium distribution or to the kinetic
limit. The thermodynamic equilibrium limit is ex-
pected to be realized for –k=krt � expðDEt=kBT Þ
with DEt ’ 0:30 eV (where –k ¼ k
1, kt, k=ðn
 1Þ).
Making use of the relation krt=kr ’ 5 derived in
Section 3.1, we require that –k=kr � 8� 106. From
a quantum mechanical analysis of the elementary
rates given below (Table 2), we conclude that the
elementary rates –k, together with ksuper(1), fall
within the range of one-order-of-magnitude. Thus
an order-of-magnitude estimate for the realization
of the equilibrium distribution limit implies that
ksuperð1Þ=kr � 107, while the analysis of the su-
perexchange data (Section 2.1) results in
ksuperð1Þ=kr ’ 300. This 3–4 orders of magnitude
discrepancy between the estimate of ksuperð1Þ=kr
and the onset of the thermodynamic limit, pre-
cludes the possibility of this equilibrium limit,
whereupon the kinetic limit, Eq. (20), should be
considered.

The analysis of the experimental data of Giese
et al. [48] for the superexchange (for n < 3) and
TIH (for n ¼ 4–16) mechanisms leads us to a
contradiction. We assert that our kinetic model, in
conjunction with a quantum mechanical analysis
of the elementary rates, infers that these experi-
mental results [48] cannot be reconciled with the
experimental TIH data. The fit of the experimental
data [48] to Eq. (20) requires the fulfillment of two
conditions.

(1) A weak n dependence of R. To account for
the experimental observation (point (C) above),
we have to utilize Eq. (20a), which implies that
(for n ¼ 4–16) ðn
 1Þ � ðk=kt þ k=k
1Þ, imply-
ing that the rate determining steps should in-
volve hole trapping processes.
(2) A proper description of the ratios of relevant
elementary rates. The experimental TIH yield is
R ¼ 2:5� 0:5 (for n ¼ 4–16), whereupon, ac-
cording to Eq. (20), ðkr=k
1Þ þ ðkr=ktÞ ¼ 0:4
expð
D=kBT Þ. These rate ratios are exponen-
tially dependent on the energy gap D, i.e., for
D ¼ 0.22 eV ðkr=k
1Þ þ ðkr=ktÞ ’ 6� 10
5,
while for a somewhat lower value of D ¼ 0:17
eV (which is still within the uncertainty range
of D) ðkr=k
1Þ þ ðkr=ktÞ ’ 4� 10
4.
These two conclusions for TIH have to be

confronted with the results of the superexchange T
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analysis (Section 3.1), together with the (admit-
tedly approximate) estimates of the six elementary
rates ksuperð1Þ, k
1, k1, kt, k
t and k involved in the
hole superexchange and TIH in duplex (I). Disre-
garding the explicit effects of static and dynamic
configurational relaxations on the charge transfer
dynamics, non-adiabatic electron transfer theory
[19] can be applied. The superexchange rate ksuper
(1) is estimated from Eqs. (7)–(12), with the elec-
tronic matrix elements taken from previous work
[58,59] and the nuclear Franck–Condon factors
taken from Eqs. (5) and (6). The hopping rates
were estimated from Eqs. (4)–(6). The thermal
excitation/deexcitation rates from/to GðAÞn were
taken as k1 ¼ ð2p=�hÞjV ðG=AÞj2F ðDÞ expð
D=kBT Þ
and k
1 ¼ k1 expðD=kBT Þ, where V(G/A) is the in-
terstrand G–A matrix element in duplex (I), while
F(D) is given by Eqs. (5) and (6) with dE ¼ D.
Finally, the trapping/detrapping rates from/
to ðAÞn/(GGG) are given by kt ¼ ð2p=�hÞjV ðAn
GÞj2 F ðDEtÞ and k
t ¼ kt expð
DEt=kBT Þ, where
V(AnG) is the interstrand A–(GGG) matrix ele-
ment in duplex (I), while the nuclear Franck–
Condon factor is again given by Eqs. (5) and (6)
with dE ¼ DEt. The relative elementary rates
estimated from the electron transfer theory (nor-
malized to k ¼ 1) are presented in Table 2. For
the analysis of chemical yields, expressed in
terms of rate ratios, only relative yields are re-
quired and will be used. We also present in Table 2
estimates of absolute values of the elementary
rates inferred from the data of Lewis et al. [34] for
hole hopping in GþAG. From this analysis we
infer that:

(1) The relevant (relative) elementary rates are
kt ’ 0:8, k ’ 1, k
1 ’ 6:0 and ksuperð1Þ ’ 2:5,
i.e., varying over a range of one order of magni-
tude.
(2) A failure to account for the weak n depen-
dence of R by these elementary rates. In the ex-
perimental TIH range (n ¼ 4–16), we shall make
use of Eq. (20a) and the data of Table 2, which
result in ðk=kt þ k=k
1Þ ¼ 1:41, while ðn
 1Þ ¼
3–15. Accordingly, ðn
 1Þ > ðk=kt þ k=k
1Þ
and Eq. (20a) is violated, resulting in a marked
algebraic n dependence of R / 1=ð1:4þ ðn
 1ÞÞ,
in contrast with the experimental observation
(point (C) above).

(3) Inconsistency between the ratios of elemen-
tary rates for superexchange and for TIH,
which are inferred from the kinetic model and
from the quantum mechanical electron transfer
theory. The ratios of the rates ðkr=k
1 þ kr=ktÞ ’
6� 10
5–4� 10
4 obtained above from the
analysis of the experimental TIH data, together
with the ratio for superexchange ksuperð1Þ=kr
(Section 3.1), imply that ksuperð1Þ=k
1 þ ksuper
ð1Þ=kt ’ 0:02–0:012. This estimate is lower by
about two-orders of magnitude than the esti-
mates based on the calculations of Table 2,
which imply that ksuperð1Þ=k
1 þ ksuperð1Þ=
kt ’ 3:5. Accordingly, there is a marked discrep-
ancy between the elementary rates inferred from
the kinetic analysis and from the quantum me-
chanical model.
We thus conclude that the kinetic–quantum

mechanical model does not account for two cen-
tral quantitative features of the experimental data.
First, the weak size (n) dependence of R and, sec-
ond, the ratio of the elementary rates for super-
exchange and for TIH. The first issue reflects solely
on the TIH mechanism. The second issue pertains
to the description of both TIH and of superex-
change. However, extensive previous analyses of
superexchange mediated hopping and trapping via
‘short’ ðT–AÞn ðn6 4Þ bridges [20–27] provide
compelling support for the quantum mechanical
model for superexchange, whereupon the second
issue also presumably solely reflects on the failure
of the description of the TIH.

4. Concluding remarks

So we arrived at a moment of truth, when a
rather detailed analysis of chemical yield data for
superexchange and TIH, although exhibiting a
‘reasonable’ estimate of the ‘critical’ bridge size nx
for the superexchange–TIH ‘transition’ (Table 1),
reflects on the failure of the kinetic–quantum me-
chanical model. We note in passing that sometimes
negative results are more interesting and stimu-
lating than many-parameter fits of experimental
data. One can and should attribute this failure of
the kinetic–quantum mechanical model to the
breakdown of the ‘hidden’ assumptions inherent in
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our treatment of the TIH, which may include
(among others): (i) The description of the hole
hopping in the ðAÞn chain. (ii) The effects of dy-
namic disorder [61–63]. (iii) The effects of static
disorder in the ðAÞn chain [19]. (iv) Configura-
tional relaxation accompanying thermal hole in-
jection from the Gþ to the ðAÞn chain.

Consider first the mechanism and dynamics of
hole transport in the interconnected ðAÞn chain
(point (i)). One can argue in this context that the
very weak n dependence of R reflects an ultrafast
hole transport in the ðAÞn chain due to a band-type
motion, with a mean free path considerably ex-
ceeding the nearest-neighbor A–A spacing. Such a
proposal, although being of considerable interest
(and which cannot be excluded on the basis of the
present yield data), will account for the weak n
dependence of R, but cannot account for the in-
consistency of the ratios of the rates of the other
elementary reactions. A proper resolution of the
conflict between experimental reality and the ki-
netic–quantum mechanical model for TIH requires
the simultaneous resolution of the two issues.

Next, we address the possible effects of dynamic
and static disorder in the ðAÞn chain. Regarding
dynamic disorder (point (ii)) the effects of dynamic
nuclear configurational fluctuations in DNA [61–
63] on the rates of elementary processes of hole
thermal injection, trapping/detrapping and hop-
ping, may be of considerable importance. This
may be due to the effects of dynamic fluctuations
on the electronic couplings [62], energetics [63] and
nuclear Franck–Condon factors. This interesting
problem, which is intimately related to dynamic
solvent effects [19] and to the role of fluctuations
on the electronic coupling [62,64] in the theory of
electron transfer, requires further exploration.
Regarding the effects of static disorder in the ðAÞn
chain, these may be due to aggregation and clus-
tering of the adenine nucleobases [32], which are
either inherently present in the ‘long’ chain or are
induced by hole injection. Further structural in-
formation (from NMR data) will be of consider-
able interest regarding inherent structural disorder
in these duplexes.

The possibility of ‘static’ configurational chan-
ges in the ðAÞn chain induced by hole injection to
the ðAÞn chain in duplex (I) (mechanism (iv)) may

result in some interesting modifications of the TIH
dynamics. It can be readily demonstrated that,
provided that the hole backrecombination from
ðAÞþn to G is switched off, a proper description of
TIH in duplex (I) can be readily provided. There is
a distinct possibility that (fast) configurational
relaxation accompanying thermally activated hole
injection from Gþ to the ðAÞn chain may result in
the gating (switching-off) of the GðAÞþn ! GþðAÞn
backrecombination. Such a gating mechanism may
be due to the drastic reduction of the G–A elec-
tronic coupling [58,59,62], or to hole trapping via
proton transfer [65] in the Aþ–T Watson–Crick
pair. As a phenomenological description of the
gating mechanism we set k
1 ¼ 0. Eq. (16) now
results in the relation

R ¼ k1=kr: ð23Þ
This simple analysis implies that R is independent
of n and algebraic n dependence is not expected to
set in even for very long bridges. Concurrently, the
modified kinetic–quantum mechanical model is
now applicable. Eq. (23), together with observa-
tion (C), results in k1=kr ffi 2:5 (for n ¼ 4–16)
which, together with the superexchange data
ksuperð1Þ=kr ’ 300 (Section 3.1), results in
k1=ksuperð1Þ < 8� 10
3. This result is in reasonable
agreement with the ratio of the quantum me-
chanical elementary rates (Table 2), which give
k1=ksuperð1Þ ’ 3� 10
3 (for D ¼ 0:17 eV).

The experimental chemical yield data (Fig. 4)
can be well accounted for in terms of the relations

R ¼
ksuperð1Þrn
1=kr; n < nx;

k1=kr; n > nx;

�
ð24Þ

where ksuperð1Þ=kr ¼ 300, r ¼ 0:1 and k1=kr ¼ 2:5.
Eq. (24) constitutes the physical parameters de-
termining the parallel superexchange/TIH mecha-
nism, where the ‘transition’ bridge size is
determined from the relation

nx ¼ 1þ ½lnðk1=ksuperð1ÞÞ= ln r�; ð25Þ

where the ratio of the elementary rates
k1=ksuperð1Þ ¼ 8� 10
3 from the kinetic analysis
and k1=ksuperð1Þ ¼ 3� 10
3 from the quantum
mechanical model, Eq. (25) and Table 2, results in
nx ¼ 3:1–3:5, in accord with the experimental value
[48] nx ¼ 3–4 (Table 1). We note in passing that the
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value of nx estimated herein for chemical yield data
is close to the corresponding value estimated in
Section 2 (Table 1) for the quantum mechanical
rates for kTIH and ksuper. We conclude that config-
urational relaxation in the GþðAÞn GGG duplex,
induced by endothermic charge injection, provides
a reasonable description of the dynamics of hole
TIH in ‘long’ ðAÞn chains. The kinetic–quantum
mechanical model, replacing Eq. (2), is now

GþðT–AÞð1ÞðT–AÞð2Þ � � � ðT–AÞðnÞG

# k1

GðT–AþÞð1ÞðT–AÞð2Þ � � � ðT–AÞðnÞG

# krelaxation

GfðT–AþÞð1ÞðT–AÞð2Þ � � � ðT–AÞðnÞGg

k #" k

GfðT–AÞð1ÞðT–AþÞð2Þ � � � ðT–AÞðnÞGg

..

.

k #" k

GfðT–AÞð1ÞðT–AÞð2Þ � � � ðT–AþÞðnÞGg

kt #" k
t

GfðT–AÞð1ÞðT–AÞð2Þ � � � ðT–AÞðnÞGþg

ð26Þ

where { } denotes a configurationally relaxed ðAÞn
chain, from which back hole transfer to the pri-
mary donor is precluded. krelaxation is the configu-
rational relaxation rate, which should be fast on
the time scale of back charge transfer, i.e.,
krelaxation > k
1. On the basis of an approximate
estimate of the absolute values of the elementary
rates ksuperð1Þ and k
1 (Table 2), we infer that
ksuperð1Þ ’ 108 s
1 and k
1 ’ 3� 108 s
1, with
lifetimes for the relevant elementary processes of
superexchange and backrecombination in the ns
range. Thus, a configurational relaxation rate
krelaxation P 1010 s
1 with a lifetime in the 100 ps (or
shorter) time domain will be efficient to switch-off
the back hole recombination. This proposed
mechanism of gating of the backrecombination
from the bridge to the donor is of considerable
interest in the context of the enhancement of
charge transport via ‘vibronic’ molecular wires.
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Appendix A. A kinetic model

A.1. Relative yields

The kinetic model is given by the scheme

 kr d�
k1

k
1
B1 �

k

k
B2 �

k

k
B3 �

k

k
� � � �k

k
Bn �

kt

k
t
t!krt ; ðA:1Þ

where d � G, t � GGG and Bj � A. The time
evolution is governed by the equation for the time
dependent concentration vector CðtÞ.

_CCðtÞ ¼ HCðtÞ: ðA:2Þ

The kinetic matrix of the rate constants, H,

H ¼


ðk1 þ krÞ k
1

k1 
ðk þ k
1Þ k

k 
2k k

� � �

k 
2k k

k 
ðk þ ktÞ k
t

kt 
ðk
t þ krtÞ

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

ðA:3Þ

is of order nþ 2 where n is the bridge length.
The formal solution of the rate equation is

CðtÞ ¼ expfHtgCð0Þ; C1ð0Þ ¼ 1; Cj6¼1ð0Þ ¼ 0:

ðA:4Þ
The yield of the irreversible processes at the initial
oxidized nucleotide is obtained as

Yd ¼ kr

Z 1

0

C1ðtÞdt ¼ 
kr H
1
h i

1;1
: ðA:5Þ

Similarly, the yield of the products from the nu-
cleotide t is

Yt ¼ krt

Z 1

0

Cnþ2ðtÞdt ¼ 
krt H
1
h i

nþ2;1
: ðA:6Þ
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The relative chemical yield is given by

R¼ Yt
Yd
¼ krt

kr

k1kt
k
tk
1þ ktkrtþ krtk
1þ krtktk
1ðn
1Þ=k :

ðA:7Þ
An equilibrium distribution is achieved when ir-
reversible processes are relatively very small. The
relative yield in such a situation is given by

Req ¼
krt
kr

k1kt
k
tk
1

; ðA:8Þ

Eq. (A.7) can now be written as

R ¼ Req

1þ ðkrt=k
tÞ½1þ ðkt=k
1Þ þ ktðn
 1Þ=k� :

ðA:9Þ

A.2. Effective rates

The residence time t1 in the initial state, in the
absence of irreversible processes at the initially
oxidized nucleotide d, is evaluated as

s1 ¼
Z 1

0

C1ðtÞdt; ðA:10Þ

where C1ðtÞ is the time dependent concentration of
the initial state (C1ð0Þ ¼ 1). The dynamics of the
system is governed by the kinetic equation

_CCðtÞ ¼ H 0CðtÞ: ðA:11Þ

The rate constants matrix is given by

H 0¼


k1 k
1

k1 
ðkþk
1Þ k

k 
2k k
� � �

k
2k k

k 
ðkþktÞ k
t

kt 
ðk
tþkrtÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

ðA:12Þ

Here there is no water reaction at the initial site
and therefore kr ¼ 0. The formal solution of the
kinetic equation is

CðtÞ ¼ expfH 0tgCð0Þ; C1ð0Þ ¼ 1: ðA:13Þ

So we get

s1 ¼
Z 1

0

C1ðtÞdt ¼ 
 H
1
� �

1;1

¼ kktkrt þ ðn
 1Þk
1ktkrt þ kk
1k
t þ kk
1krt
kktk1krt

:

ðA:14Þ
Several limiting cases are of interest:
1. A fast irreversible process (krt � k
1):

s1 �
kkt þ ðn
 1Þk
1kt þ kk
1

kktk1
: ðA:15Þ

The effective rate constant is

k1;eff ¼
1

s1
¼ k1

k
1

k
ðk=k
1Þ þ ðk=ktÞ þ ðn
 1Þ :

ðA:16Þ
2. In the symmetric case kt ¼ k
1:

s1 �
ðn
 1Þk
1 þ 2k

kk1
: ðA:17Þ

The effective rate constant is

k1;eff ¼
k1
k
1

k
2ðk=k
1Þ þ ðn
 1Þ : ðA:18Þ

3. The asymmetric case kt � k
1

s1 �
ðn
 1Þk
1 þ k

kk1
; ðA:19Þ

k1;eff ¼
k1
k
1

k
ðk=k
1Þ þ ðn
 1Þ : ðA:20Þ

The final state accumulation time is given by

st ¼
Z 1

0

ð1
 Cnþ3ðtÞÞdt

¼
Z 1

0

1




 krt

Z t

0

Cnþ2ðsÞds
�
dt

¼
Z 1

0

1




 krt H 0½ �
1ðexpfH 0tg

h

 1Þ�nþ2;1

�
dt:

ðA:21Þ
Using the result ½H 0�
1

h i
nþ2;1
¼ 
1=krt we obtain

st ¼ krt

Z 1

0

½H 0�
1 expfH 0tgð Þ
h i

nþ2;1
dt ¼ krt ½H 0�
2

h i
nþ2;1

:

ðA:22Þ
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In the limit of large krtðkrt � k
tÞ one obtains

st ¼
kkt þ kk
1 þ ðn
 1Þk
1kt

kk1kt
þ n
kt
þ nðn
 1Þ

2k
:

ðA:23Þ
If also kt is very large then

st ¼
k þ ðn
 1Þk
1

kk1
þ nðn
 1Þ

2k
: ðA:24Þ
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