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Tunneling Time for Electron Transfer Reactions
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The tunneling time for nonadiabatic electron transfer reactions described within the superexchange model is
estimated using a Biiker type internal clock: the electron is taken to possess two internal spin states that
are weakly coupled on the bridge. By studying the transition probability between these channels during the
tunneling process the traversal time through the bridge can be estimated. LikéttikerBlLandauer result

itis linear in the bridge length, but its dependence on the barrier ehkygpproaches the Biiker—Landauer

form only in the limit of strong interstate coupling (broad band). In the “normal” superexchange (weak coupling)
limit it is inversely proportional to the barrier energy.

1. Introduction m__p (2)
T= o
Y 2(Ug — By

Nonadiabatic electron transfer via quantum mechanical tun-
nelingt is characteristic of processes ranging from photosyn-
thesig to conduction through molecular wiré§Vhile the factors
governing such electron transfer processes are well understoo
and their transfer rates can be estimated, little is known about
the tunneling process itself. The issue of how long the tunneling
particle actually spends in the classically forbidden region of
the potential is of particular interest. In tunneling systems the
concept of tunneling time is often invoked in order to get an
intuitive feeling about the course of the observed rate process.

for a particle of massn and energye, < Ug. A similar result
{s obtained by using other equivalent clocks, for example, a

arrier localized small coupling between two internal states of
the tunneling particl@.Note thatz increases linearly with the
barrier widthD, and that its dependence on the tunneling energy
Eo can be expressed by= D/v;, wherey, = [2(Ug — Eg)/m]12
is the absolute value of the (imaginary) velocity.

The interpretation ofr defined above as the characteristic
time for the tunneling process is debatable, and other candidates

Buittiker, Landauer, and co-workérd have suggested an for this title can be suggested. Still, disregarding semantics, this
estimate for the tunneling time based on imposing an internal time is relevant for an important practical reason: it is the time
clock on the tunneling system, for example, a sinusoidal that should be used to estimate the relative importance of
modulation of the barrier height. At modulation frequencies interactions that affect the tunneling particle while in the barrier.
much smaller than the inverse tunneling time the tunneling One aspect of this issue is often encountered in studies of
particle sees a static barrier which is lower or higher than the electron transfer in molecular systems. During electron transfer
unperturbed barrier depending on the phase of the modulation.the electron can interact with internal vibrational motions of
At frequencies much higher than the inverse tunneling time the the barrier molecule and with external solvent modes. If the
system sees an average perturbation and so no effective changéme during which the tunneling particle is actually in contact
in the barrier height, but inelastic tunneling can occur by With the barrier is known, then simplifying approximations can
absorption or emission of modulation quanta. The inverse of be made for the calculation of rates and transmission prob-
the crossover frequency separating these regimes is the estimateabilities. For example, interactions with vibrational modes

tunneling timez. For tunneling through the 1-dimensional Possessing periods much larger than the contact time could be
rectangular barrier treated adiabatically, while interactions with motions whose

periods are much smaller than the contact time could be replaced
by time-averaged interactions. As defined, the “tunneling time”
V(X) = { Ug, X, =X= Xz} 1) 7 is a measure of this contact time. The purpose of this letter is
0 otherwise to calculate the analogue of the result of eq 2 for the
superexchange model of bridge-mediated electron-transfer

and provided thaD = x, — x; is not too small and that the =~ PrOCesSes.

tunneling energ¥ is sufficiently belowUg, this analysis gives 2> Model and Method

. . - Figure 1 depicts a simple superexchange model for an electron
. ax,cig%f’;%(ﬂgg%ustho“ nizan@post.tau.ac.il. Phe8g2-3-6408904.  transfer between a donor state 0 and a quasi-continuous acceptor
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Figure 1. Simple superexchange model for an electron transfer
between a donor state 0 and a quasi-continuous acceptor majrifold
through a series of bridge levels 1, 2, N.,

donor vibronic states (including solvent nuclear states) and the
final expression for the transfer rate includes a thermal averaging
over this manifold. Similarly, the manifolfir} corresponds to
the manifold of acceptor vibronic states. When the molecular
bridge connects between two metal electrodes, these continuou
manifolds correspond to the metal electronic states but the mode
structure is unaltered. To calculate théttker—Landauer time

we will use an internal clock similar to that used bytiker:>

The electron is taken to possess two internal (spin) states,

o, that are coupled to each othenly on the bridgeln the
basis of local molecular statés,olJn =0, 1, 2, ...,N, {r}; o

= a,f3, the Hamiltonian takes the form

B B

H= E,Ino(ho| + Z(vovl|o,am1,o| +V, o 1,000,0)
ny o=o o=

N-1 g

+ Z z (Vonranolh + 10|14V, In + 1,000,0)
n=1lo=

o

B
Y (Vi INol 0 + V, lr,olIN,ol)

o=

2
N

+u ) (In,odm,S| + |n,s0m,ol)

n=

©)

In the first (diagonal) term, the sum ovén} corresponds to

all staten =0, 1, ..., N,{r}. In our application below we will
takeE, = Eg, same for all bridge levels= 1, ...,N and denote

the energy gajts — Eo by AE. The second and fourth terms
describe respectively the couplings between the donor level 0

Letters

can be identified as the transition probability from chanmel
to channels during the tunneling event. Since this transition
occurs only on the bridgeRs can measure the corresponding
traversal time. Note the significance of the limit taken in eq 5:
An ideal clock would induce a transition between chanmel
and channelg without affecting the overall transmission
probability, i.e., would satisf{P,(u) + Pg(u) = Py(0). This does
not happen for finitau because the induced splitting between
the two “spin” levels affects the energies of the diagonalized
bridge levels and therefore the effective barrier height and the
overall transmission probability.

To relate the ratidRs to the time spent on the barrier we
consider a system described by the time-dependent Hamiltonian

H, = lola + |SOB| + Ut (jadB] + |BH)

U(@) =ufor0 =<t < t; U(t) = 0 otherwise (6)

S . . .
Ithe implication being that is nonzero only when the electron

is on the bridge, therefore measures the time during the
tunneling event. If this system is in stateatt < 0, then,
provided thatur < 1, the probability that it crossed into state
B att = 7is (Ur/h)2 Comparing this to eq 5 yields

1/2
_hRy
T =
[ul

()

Equation 7 provides a convenient starting point to compute the
“tunneling time” t for our electron-transfer model. The result
should not depend ou, which can therefore be chosen small
enough for our purpose.

3. Steady State Calculation

The time-dependent wave function for the system described
by the Hamiltonian eq 1 is

B B
C,,(O)InoTH C,,()Iro0

(8)

and the equations of motion for the coefficie@are ¢ = 1 is
used throughout the derivation)

B N
W®=Z%ﬂmﬂHZ

o=

COa = —IE,Cy, — IV, Cy, ;o= 9

and the first bridge level 1, and between the last bridge level N

and the acceptor manifold}. The third term accounts for the
nearest neighbor coupling on the bridge. Without the last term
there is no coupling between the two internal states and
tunneling occurs independently in the two channels.

The last term in eq 3 corresponds to @f coupling that
occurs only when the electron occupies the bridge levels. This
coupling supplies the required internal clock. The electron starts
in state|0,adatt = 0, and the transition probabilities into the
final manifolds{ro} and{rp} are

Pa = ICo(t = o)
r

Py = ICx(t— o) 4

whereCy,(t), 0 = a,f are the amplitudes of the corresponding
states at timé. The ratio

Ry =P, P ©

C _iEnCna - iVn,n—lC(n—l)OL - iVn,n—i—lc(n—b—l)on -

iuCy, ;n=1,..,N (10)

no.

Cnﬁ = _iEnCnﬁ - iVn,n—lc(n—l)ﬁ - iVn,rrHC(nJrl)ﬁ -
iuC,, ;n=1,..,N (11)

no

CNa = —IE\Cyy = VN N-1CN-1)0 — izVNrCru - iUCNﬁ
r (12)

CNﬁ = —IE\Cng — Vyn-1Crn-1p — izVNrCrﬁ — iuCy,
r (13)

(14)

Cra _iErCra - inNCNa ;0 =Q, :3
For our purpose it is sufficient to follow a standard procedure,
integrating eq 14 and substituting the result in eqs 12 and 13,
to replace the terms containing sums avir the latter equations

by corresponding level shifts and widths, i.e.,
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izVNrCru — (Dy+TYCy, o=0a,B (15)
a
The level shiftDy and the widthl'y are given by
2
1 [Vinl
Dy— -l =Im ) ——— (16)
oo h "OZEO—Er+ir]

In particular,

=21y Vl? 0(Ey = E) = 21(IVin*oRe ¢, (17)
r

wherepr is the density of states in tHe} continuum. Equations
9—13 can then be solved for the initial conditioBg,(t = 0)
= 1 andC;,(0) = O for all otherj ando. A simpler route is

provided by a steady state formalism similar to that used in ref

8. A steady state is imposed on eqs1®8 by replacing eq 9
with the conditionCoq(t) = Co eXp(—iEct) (Where G, is some

constant amplitude) and by taking the time dependence of all

other amplitudes to be given Iy,(t) = CJe %, This leads to
the following equations for the steady states amplituds

AEC, + V,Coq + Vi.Co + qu =0 (18)
AEGCSS + V,,C55 + UGS = 0 (19)

AECSS + Vn n—1 ?:—1)a + Vn,n+1 (n+1)a + u@w 0
n=2,.,N—1 (20)

AE n?f + Vn,n—1c(sr?—1)ﬁ + Vn,n+lcfr?+1)ﬁ +uC, =0
n=2,..N—1 (21)
(AE —iT\/2)Cy, + VN,I\Fl N-1) T UQW 0 (22)
(AE — iT\/2)C; + Vyn-1Cineays T UG, =0 (23)
whereAE = E, — Eg; n=1, ...,N, and whereAE = AE + Dy.

Consider first the case whewe= 0, i.e., there is no coupling
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which is the usual superexchange result for this model. Note
that in this weak bridge-coupling limiE = Eg — Eyis a good
approximation for the barrier energyU = Ug — Ep, where
Ug is determined by the lowest energy eigenvalue of the bridge
Hamiltonian.

Whenu = 0 (egs 18-23) can be rearranged in the form

MC\ = _\7N,N71CN71 (29)
IvlCn = _vn,n—lcn—l - \7n,n+1Cn+l
n=N—-1,N-2,..1 (30)
where
_(ray -_ u
M= (a 1) U=AE (31)
- Vin-1(1 0
= Z"E (o 1) n=N,N-1,..,1 (32)
CSS
Co=| ] n=N,N—-1,..,1 (33)
ng
S
co=(G%) &

and where we have again disregarded [@y2)elative toAE.
To the lowest order iV/AE these equations lead to
nn—1 (M—l)N(ng

Ca|_
(Nﬁ) v —iFN/Z\rD AE 0

and to the lowest order in, assuming alstNu < 1

(2w 9] oo

VN,Nfl (Nflvv ,

) (35)

Using eq 36 in eq 35 yields

N Vn,n—l
IChal’ =1 A—|2|Cm|2 (37)

n=

on the bridge between the “spin” states. In this case the equations

for Cp;, do not couple to those fdE33(for anyn) and take the
form

(AE —iTy2)CR, + Viyn-1CN-1)0 = O (24)
AEQT}. + Vn,rrl (n Lo + Vn n+1C(n+1)a 0
n=2,..,.N—1 (25)
AEC + V,Coo + V1 .Con =0 (26)
To the lowest order iV/AE this yields
Vin-r N2V
= (1" —Ca (@)

AE—iry2d AE

The steady statelectron-transfer flux can be written either as

KICoal? Wherek is the electron-transfer rate, or &|Cpy, |2
DlsregardlngFN2/4 relative toAE?, this leads to

NV,
k=T,

n=

(28)

and

(38)

ICrgl’ —|[| ( )| Coul®

As before, the fluxes into the corresponding acceptor channels
{r,a} and{r,} areI“NlCﬁfal2 and I'y|Cy;/% respectively, and
the ratioRg (cf. eq 5) is

_ (N2
Ri=ag) (39)
and the traversal time on the bridge is (cf. eq 7)
_ AN
T=AE (40)

We emphasize again that in the weak coupling limit considered
above, the zero-order energy gk, provides a good estimate
for the actual barrier energy.

The result can be derived also by noting that wiver 0O
states|oJand |a[could be transformed to a representation in
which u is diagonal,
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|+D=i2(|am+ B |—C=—(lol- 18D (41)

V2 V2

with a corresponding splitting in barrier energied + u. For
the incident particle in the state

1
0= —(|++ |-
loc ﬁ(l =0

the transmitted wave function is (witdi(E) denoting the
transmission amplitude)

(42)

1
V2

The relative probability to be transmitted in stgf#1= (1/
V2)(+O+ |-Dis

_ By dF _
R = A

2TAU U = FTAUFUP w0 251 T(AU)
AU

Y, =——[T(AU — u)|++ T(AU + u)|—-0  (43)

AU — w2 + TAU + u)?) b9
(44)
From eq 7 we therefore obtain the general résult
1 9T(AU)
=h 45
TNy eAU | (45)

and using (cf. eq 27 WithE = AU) T ~ AE™N leads again to

Letters

with the corresponding energidsgk) = Eg + 2V coska).
Consider now a tunneling process in which a free particle of
energyEq = h%k%2m is incident from the left on this bridge.
Forx < 0, the wave function is exp@x) + R exp(—ikox). For

X > D itis T exp(kox). For Eq < Eg — 2V the wave function

in the interior of the bridge region takes the form

Px) = Z(Ae*””a+ B&"%)|n0 (49)

wherexk corresponds to the imaginary momentum and satisfies
2V[cosha) — 1] =Ez — 2V — E,;= AU (50)

Note that the energy gappU is now related to the distance
between the incident energy and the bottom of the conduction
band. The coefficient®, T, A, andB can be determined from
the four continuity relations for the wave function and its
derivative at positiong = 0,D. To write the explicit forms of
these relations we need an explicit form ipfx) in the bridge
nearx = 0,D. For our purpose, however, its is sufficient to use
the fact that these relations are linear:

1+R=1A+1,B
ik(1—R) =1,A+1,B
T=r,AeN+r,Be™

ik, T = ryAe M+ r,Be™ (51)

where thel and ther coefficients are constants. Solving the
last two equations foA andB in terms ofT yields A = ¢c;eNaT

the result. More generally, we expect the transmission amplitude @ndB = ce™NT with other constants, andc,. EliminatingR

to satisfy an expression of the form

T(AU) = y[x(AU)]e “(AU)" (46)
so that
_ di(AU)
T=1,+ hN—d o) 47)

4. Relation to the Landauer—Buttiker Result

from the first two equations yields a linear relationship between
A andB of the formL;A + L,B = 1, with yet other constants
L; andL,. Together these relations therefore give

Cle*KNa

- —kNa
Tt e ®
2

(52)

Using eqgs 47, 50, and 52 and disregarding the possible energy
dependence dt; (this will yield an N independent term in eq
53 below) now yields the traversal time for tunneling in the

The “tunneling time"z, eq 40, has been derived here for the form

standard superexchange model of electron transfer using the
same reasoning that led to the result of eq 2 obtained by Bulttiker

and Landauer for tunneling through a rectangular batriefhe

result associates the tunneling time with the uncertainty time

h/AE and with the bridge lengthl in a way that is intuitively

o AZN AU\2 ®3)
Ny v (W)

clear and could be anticipated. It is less obvious why this result N the weak coupling limitAU >V, this givesz = AN/AU

for 7 is independent of the bridge coupling parameys: 1.

and noting that in this imiAU=AE we recover the result (eq

Moreover, the dependencies on the tunneling barrier seen in40)- In the opposite limit, eq 53 becomes

egs 2 and 40 are qualitatively different. In this section we

consider the correspondence between these results.

First, to facilitate this comparison between eqs 2 and 40,

suppose that the bridge lengthDs= Na and that the bridge

functions|nCthat define the representation of the Hamiltonian

(eq 3) are localized about sites at positions= (n — 1/2)a, n
=1, ..., N, along the bridge axig. We focus on the bridge
Hamiltonian, disregarding the internal (spin) states

Hg = EBz|n| + VZ(|n + 1| + |n+ 10m|)) (48)
n n

For an infinite chain, the eigenfunctions of this 1-dimensional

tight binding Hamiltonian are Bloch wavegk = 3 ,k"3n]

.= AN
2vVAU
which is equivalent to the ButtikerLandauer result (eq 2). In

fact, eq 54 leads to eq 2 if we expraéss terms of the effective
mass for the band motiom = h%/2Va.

(54)

4, Conclusion

The “tunneling timer has been derived here has having the
same significance as originally discussed by Landauer and
Buttiker: It measures the relative importance of processes that
may occur on the barrier, or the bridge, during the tunneling
event. For these processes to be efficient their characteristic time
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has to be of the same order as this measure of duration for thethe time spent on a single bridge site during the tunneling

tunneling event. process. This will be an analogue of the local tunneling times
The result (eq 40) associates the tunneling time with the considered in generalizations of the Buttikérandauer prob-
uncertainty timeh/AE and with the bridge lengtiN. It is lems?

interesting to note that a result of exactly the same form is
obtained for the time associated with resonance transmission
through allowed band states, where in that cABeis half the
bandwidth? We have found that this form, withE representing
the energy barrier, measures the time scale associated wit
electron transmission in superexchange processes, where th
intersite coupling on the bridge is assumed to be small relative
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