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Abstract

Early events involving local collapse and helix formation manifested by the disulphide recombination of a de-novo
Ž .peptide, over the time scale from 1 ps to 10 ms, are shown to fit equally well to a stretched exponential as0.086"0.003

Ž .and by an asymptotic power-law decay bs0.331"0.004 . For inhomogeneous recombination kinetics each decay pattern
leads to a different distribution of relaxation times. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

w xThe current conceptual basis for protein folding 1,2 focuses on the description of its energy landscapes,
w xroughness and existence of funnels 1–5 . Some central issues in the structure-dynamics-function relation of

Ž . Ž .folding pertain to: 1 protein sequence dependence of folding efficiency, 2 time scales and hierarchy for
Ž .various processes and 3 static orrand dynamic spread of the rates for specific folding processes. Inhomoge-

neous kinetics, originating from static disorder, were documented for other processes in globular proteins, i.e.
w xlow-temperature O or CO recombination to myoglobin and hemoglobin 6 and in membrane proteins, i.e. the2

w xprimary charge separation in photosynthesis 7 . There is a quantitative difference between inhomogeneous
Žkinetics in globular and membrane proteins manifested in the spread of the kinetic parameters e.g. activation

.energies andror energy gaps , which is considerably larger in the former case. The sequence of events during
w xthe early steps of the folding of globular proteins involves 2,8,9

™Helix formation™Tertiary collapse™Molten globule™Native State .

The individual steps are characterized by a separation of time scales, with the native state being formed on the
time scale of seconds to minutes, the collective tertiary collapse and the molten globule formation occurring on
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the time scale of a few microseconds to milliseconds, while the local collapse involving non-native hydrophobic
w xcontacts and helix formation constitutes the fastest process 2,9 . Obligatory steps in the local collapse of

proteins, i.e. side chain packing and helix formation, where most of the real organization prevails, are fast on the
w xtime scale of the overall process 8,9 . It has recently been demonstrated that the overall process of folding and

w xunfolding of the secondary structural elements of proteins can occur on the time scale of nanoseconds 9–12 .
w xExperimental studies of Volk et al. 13 explored the early folding process involving local collapse and helix

Ž X.formation of de-novo peptides with a disulphide bond between two modified tyrosines Y linking the ends of a
XŽ . X Ž .17-amino-acid polypeptide chain Y AAAAK Y with A'alanine and K' lysine , constraining it to a3

Ž .non-native, more randomly coiled conformation. The ultrafast sub-picosecond process triggering the folding
constitutes the photodissociation of the disulphide S–S bond. These experiments provide information on the
kinetics of a-helix formation, which is interrogated by the recombination dynamics of the thiyl radical pair at

w xthe time scale from 1 ps to 10 ms. A significant novel result emerging from the studies of Volk et al. 13 is the
failure of conventional kinetic schemes for the description of this process. Over a time range of 7 orders of
magnitude the radical concentration exhibits an extremely non-exponential time dependence, which will be

w xdiscussed in this Letter. Volk et al. 13 analyzed their experimental observation of the time-dependent radical
Ž .concentration by a stretched exponential Fig. 1a

a
t

C t sC 0 exp y 1Ž . Ž . Ž .ž /t 0

² :with the parameters t s1.5"1.2 fs and as0.086"0.003 and the average decay time t s326 ns, where0

`

² :t s d tC t rC 0 .Ž . Ž .H
0

This phenomenological analysis implies that the recombination kinetics is characterized by a low value
as0.086 of the power of the stretched exponential. In spite of the ubiquity of kinetic processes amenable to

w xdescription in terms of a stretched exponential 14 , such a low a value is rare. This value of a is close to the
low value as0.1 obtained from the analysis of the kinetics of low-temperature CO–myoglobin recombination
w x w x Ž .6 in terms of a stretched exponential. This representation 15–18 of the experimental data in terms of Eq. 1

Fig. 1. Analysis of the experimental results of Volk et al. for the early events of local collapse and folding in the de-novo peptides studied
w x Ž .by the time dependence of the absorption due to the transient absorption of the thiyl radicals 13 . The kinetic data are analysed by: a

Ž Ž .. Ž . Ž Ž ..fitting by a stretched exponential Eq. 1 ; b fitting by an asymptotic power law Eq. 3 . The fitting parameters are given in the text.
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Ž .can be expressed by a time-dependent recombination rate coefficient k t , which is defined by assuming the
first-order reaction equation

dC tŽ .
syk t C t , 2aŽ . Ž . Ž .

d t

with

atya
0

k t s . 2bŽ . Ž .1yat

Ž . Ž .Rewriting the stretched exponential in terms of Eqs. 2a and 2b does not imply, of course, any specific
w xrecombination mechanism. Klafter and Shlesinger 14 have demonstrated that the stretched exponential can be

obtained by several models which correspond to different physical realizations and mechanisms. The unifying
feature of the models is the generation of a scale invariant distribution of relaxation times.

An alternative description of the kinetics of the experimental results for the disulphide recombination in the
de-novo polypeptide can be given in the functional form of an asymptotic power law

y1bC t tŽ .
s 1q . 3Ž .Xž /C 0 tŽ . 0

Ž .This power-law Eq. 3 does not necessarily imply second-order kinetics for equal concentrations, which was
w x Ž . w xpreviously analyzed 16–19 . The functional form in Eq. 3 is also referred to as an asymptotic fractal 20 . A

Ž .related fitting function with b01 was already proposed in 1910 for the case of O dissociation from2
w xhemoglobin 21 . Here again, a time-dependent recombination rate coefficient can be defined as

by1X X
brt trtŽ . Ž .0 0

k t s . 4Ž . Ž .
bX1q trtŽ .0

Ž . Ž . XOver a broad time domain the kinetic data can be well fitted by Eq. 3 Fig. 1b with the parameters t s7"10

ps and bs0.331"0.004. t
X is about three orders of magnitude larger than t . Note also that t for the0 0 0

stretched exponential is not within the data set, but far off towards the origin. The value of the power b for the
Ž . Ž Ž ..fit, according to Eq. 3 , is considerably larger than the value of a for the stretched exponential case Eq. 1

indicating different distribution functions of relaxation times. The phenomenological description of the kinetics,
Ž . Ž .which is characterized either by Eq. 1 or Eq. 3 , is not sufficient to determine a particular mechanism for the

folding reaction. In general, two classes of mechanisms, i.e. inhomogeneous or homogeneous kinetics, can lead
to such non-exponential long-tailed time dependence. Here we focus mainly on the inhomogeneous kinetics.

2. Inhomogeneous mechanism

ŽEach peptide molecule recombines exponentially in time, with a characteristic time-independent rate a
.Debye process , but each molecule is characterized by a different rate. Such a distribution of rates may originate

w xfrom an inhomogeneous distribution of initial structures 22 . The total time evolution in the inhomogeneous
system is then given as a superposition of the simple individual decays with a distribution function of the

Ž .lifetimes f t , with js1 and js2 for the stretched exponential and the power law, respectively. Thej
Ž Ž ..stretched exponential description Eq. 1 is then given in terms of the Laplace transform

a
`t

yt rtexp y s dt f t e , 5Ž . Ž .H 1ž /t 00
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and in a similar way
y1b

`t
yt rt1q s dt f t e . 6Ž . Ž .HX 2ž /t 00

Ž . Ž . Ž .Let g trt sC t rC 0 be the relaxation function. Its decomposition into single Debye processes of rates t0

is given as follows:

`t
yt rtg s dt f t e . 7Ž . Ž .Hž /t 00

Introducing the substitution ps1rt , i.e. dtsypy2 d p, one finds:

`t f 1rp f 1rpŽ . Ž .
yp tg s d p e 'L ; t , 8Ž .H 2 2½ 5ž /t p p00

Ž . y2 Ž . Ž .i.e. g trt is the Laplace transform of p f 1rp . Thus we obtain f t via:0

t
2 y1f 1rp sp L g ; p 9Ž . Ž .½ 5ž /t 0

and

f t s f 1rp™t . 10Ž . Ž . Ž .
Ž . w xIntroducing the Fox function representations see Appendix A 23–25 , the inverse transform can be

calculated as a closed form solution. The Fox functions are

1 t 1
ayŽ trt . 1,00g t se s H 0, 11Ž . Ž .1 0,1 ž /a t a0

and

1 1 t
0,1rbŽ .1,1g t s s H 12Ž . Ž .X2 1,1bX b t 0,1rbŽ .1q trtŽ . 00

for our two relaxation functions, respectively. Applying the inverse Laplace transform, we obtain, after some
w xsteps, the closed form solution 23–25

t 1 t
1,0 Ž .0,1f s H 13Ž .1 1,1ž /t at t 0,1raŽ .0 0

and
X

t 1 t 0 1,1rbŽ .1,1f s H . 14Ž .2 1,2ž /t bt t Ž .1,1rb , 1 ,1Ž .0

w xAsymptotically one finds for t4t 250

2 ay1
a aa2y2 at 1 a t t2y2 a 1ya1yaf ; exp y 1ya a , 15Ž . Ž .1 ž / ž / ž /½ 5' 't at trt t tŽ . 2p 1ya0 0 0 0 0

w xwhich differs from the expression in Refs. 16,17 by the prefector, and
y1yb

t 1 t
f ; . 16Ž .X X2 ž / ž /t t G b tŽ .0 0 0
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Ž .Eq. 16 displays a power-law distribution of relaxation times which is often referred to as a temporal fractal, or
w x Ž . Ž . Ž .Levy distribution 26–30 . From the numerical data for f t and f t Fig. 2 , calculated for the a and b´ 1 2

Ž . Ž .values from the fit of the kinetic data, it is apparent that the distributions of the rates for both f t and f t1 2

are broad.
A model can be constructed, although somewhat oversimplified for the complex protein dynamics, which

leads to a stretched exponential or to a power-law recombination depending on the competition between
energetic and entropic trends. The model is based on recent calculations of first passage times in the presence of
an energy funnel, which directs the recombination reaction and competes with a random walk process which

w xtends to explore the configuration space 4,5,31 . Assume that upon cleavage of the S–S bond each peptide
starts recombining from a ‘distance’ L of an unrecombined configuration. L is defined in some space of

Ž .possible configurations. The typical recombination time starting from L is t L which depends on the nature of
the search for the recombined state

`C tŽ .
yt rt Ž L.s d L f L e , 17Ž . Ž .H

C 0Ž . 0

Ž . w xwhere f L is the distribution of distances. Following Palmer et al. 32 we assume

f L s f lyL s f exp yL lnl . 18Ž . Ž . Ž .0 0

If the first passage time for recombination behaves as
t L st exp aL , 19Ž . Ž . Ž .0

w xwhich results from an exponential increase in the number of accessible configurations 4,5,30 , or more
generally from biasing the random walk away from the recombined configuration, then

C t ; tyln lr a . 20Ž . Ž .
The constants l and a are independent of L and t.

Ž .On the other hand, if t L scales with L, as we expect, for instance in the simple diffusive case, or when an
energy funnel directs the motion towards recombination,

t L st Lh 21Ž . Ž .0

Ž . Ž . Ž .Eqs. 17 , 18 and 21 result in
1r1qhC t ;exp y Kt 22Ž . Ž . Ž .

where K is independent of l. Note that in the diffusive case hs2. From this analysis we infer that the
Ž . Ž .exponential increase of t L according to Eq. 19 results in the asymptotic power law, while the scaled case

Ž .Eq. 21 results in the stretched exponential behavior.

Ž . Ž . Ž . Ž . Ž .Fig. 2. The lifetimes distribution functions f t with as0.086, t s 1.5"1.2 fs dashed curve and f t solid curve with bs0.331,1 0 2
X Ž . Ž . y1 0 10t s 7"1 ps for the description of the inhomogeneous kinetics. a The distribution functions over the broad range trnss10 y100

X Ž .with the values of t and t being marked. Note the different asymptotic behavior. b The distribution functions over the range0 0

trnss1y108, where they coincide except for their asymptotic behavior.
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3. Homogeneous mechanism

The experimental result cannot rule out, however, homogeneous relaxation kinetics. Namely, here all proteins
are dynamically identical, with the time evolution within each protein being non-exponential. An example of a
homogeneous, sequential, mechanism characterized by a non-exponential decay, is the hierarchically con-

w xstrained dynamics proposed by Palmer et al. 32 . This sequential mechanism can lead to either a stretched
exponential or to a power-law behavior, depending on the scaling properties of the internal relaxation times
w x14,32 .

The available experimental data do not allow one to distinguish between the inhomogeneous and the
homogeneous mechanisms, which give rise to multiple time scales. The distinction between the inhomogeneous
and homogeneous mechanisms can and should be obtained by kinetic hole burning, i.e. the interrogation of the
disulphide recombination kinetics under repeated illumination. This technique was applied to CO–myoglobin

w xrecombination 33 , establishing that for this process the kinetics is inhomogeneous, originating from static
disorder.

We have shown that the relaxation time distributions can be expressed in closed forms via Fox functions. For
w xthe asymptotic power-law fit this distribution has a power-law tail and thus follows Levy statistics 29,30,34 .´

To speak of Levy flights in the process of protein local collapse and helix formation is still of a speculative´
nature. The observed dynamics is surely influenced by both, the folding dynamics and the motion of the chain

Ž .ends sulphur contacts which has a random feature, but is not totally independent of the intra-chain dynamics.
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Appendix A

w xFox functions are defined via a generalized Mellin–Barnes integral 22,25

1Ža , A , a , A , . . . , a , AŽ . Ž .m ,n s1 1 2 2 p pH x s H d sx s x A1Ž . Ž .p ,q L2p iŽb , B , b , B , . . . , b , BŽ . Ž .1 1 2 2 q q

with

m n

G b yB s G 1ya yA sŽ . Ž .Ł Łj j j j
1 1

x s s . A2Ž . Ž .q p

G 1yb qB s G a yA sŽ . Ž .Ł Łj j j j
mq1 nq1

Ž .They comprise a rich class of functions, Maitland’s generalised hypergeometric or Bessel functions, confluent
hypergeometric functions, or Lommel functions amongst them. If a Fox function H m ,n has ns0, it will decayp,q

exponentially for large arguments. On the other hand, if n)0, the decrease will be a power law. Fox functions
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w x w xwere introduced into physics by Schneider 35 as exact representations of Levy stable distributions 34 . They´
occur often as solutions of fractional differential equations. The asymptotic expansions are as follows:

n an`° y1 tŽ .
t<tÝ 0ž /n !G yan tŽ . 0ns1t 1 ~ 2 ay1f ; A3Ž .1 a až / at at 2y2 a0 a t t2y2 a 1ya1yaexp y 1ya a t4tŽ . 0ž / ž /½ 5' '¢ t t2p 1ya 0 0

and

X bs`° t t0 Xres x s ; t<tŽ .Ý X 0ž / ž /t 1 t t< ssybn 0Õs1~f ; A4Ž .2 Xž / bt bt b t0 0 X
t4t 0¢ ž /G b tŽ .

This means for the stretched exponential, the distribution function is also of stretched exponential shape. For as
Ž . Ž .small a stretched exponential parameter as af0.09, the parameter ar 1ya of the distribution function A3

becomes 0.1, which is still small. On the other hand, the long tail of the distribution function f scales as a2
Ž .power of y 1qb fy1.33.
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