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An excess electron bound to a (*He)y cluster (number of constituents N = 3 x 10° and
clusterradius R 2 R, = 149 A) exhibits a divergence of the first moment (r) of the charge
distribution near the localization threshold (R = R.), obeying the scaling law (r) o<
(R - Ry)™!. The asymptotic form of the electron-cluster potential has to be modified to
include Casimir-Spruch retardation effects, which provide a small repulsive contribu-
tion Oth/me)r .

1. INTRODUCTION

The advent of the Schrodinger equation in 1926 had a major impact on the
development of chemistry, with quantum mechanics being applied to the fundamental
problems of the separation of electronic and nuclear motion in molecules [1] and to
the structure and energetics of the few-electron molecules I-l'z" [2] and H, [3].
Subsequently, the relativistic equations have been introduced to one-electron [4] and
two-electron [5] systems. This work culminated in the seminal contributions of
Wtodzimierz Kotos and his school to the quantum chemistry of the hydrogen
molecule [6,7]. Another landmark in the development of the conceptual basis of
chemistry was provided in 1930 by the theory of intermolecular forces [8] where
Coulomb interaction between two neutral atoms results in the —r® van der Waals-
London long-range potential. It was pointed out by Wheeler [9] in 1941 that when
the spatial separation r between two interacting systems is such that the transit time
of a photon from one system to the other and back exceeds the characteristic period
P of the system, i.e., 2r/c 2 P (where c is the speed of light), the interaction cannot
be taken as an action-at-distance of the Coulomb interactions. The retarded interac-
tions between a pair of hydrogen atoms sets in at r > 137 a,, where the numerical
constant e?/fic = 1/137 is the fine structure constant. In 1948 Casimir and Polder [10]
derived the first example for a non-classical long-range electromagnetic force,
showing that the retarded atom-atom interaction is of the form Vep(r) = —(23/4m)hc
aD(l)aD(Z)r“7 where oiy(1) and 0ip(2) are the dipole polarizabilities of the two atoms.
The familiar van der Waals-London (-r%) potential is replaced by the Casimir-Polder
potential for r 2 137 aj. The broad interest in retarded atom-atom, atom-wall and
wall-wall interactions [11] stemmed from two directions. Firstly, the proportionality
to Planck’s constant h indicates that the retarded interaction constitutes a distinct
quantum mechanical phenomenon, in contrast to Coulomb interatomic forces, which

* Dedicated to the memory of Professor Wiodzimierz Kolos.
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have a classical analogue. Secondly, the speed of light enters the interaction, although
the particles are slowly moving. The retarded force originates from interactions with
zero-point photons of the electromagnetic field.

A major development in this fascinating field has been advanced by Kelsey and
Spruch [12-16] in 1978, who proposed the observation of long-range retarded
interactions through their effect on the fine structure of Rydberg states (n = 10) of
the He atom. They showed that a long-range (r >> 137 ag) electron-polarizable ion
interaction includes a repulsive potential Vg(r) = (11/47) (hfmc)czaD . However,
in contrast to the Casimir-Polder potential Vp(r), which constitutes the largest
long-range force acting between two neutral atoms, the Vig(r) potential constitutes
a small correction to the dominant long-range interaction to the ion-electron potential
V() = —e¥r + Vp(r) + Vks(r), with the dipole polarization potential being V4, =
—OtDezf(Zr“). V(r) is dominated by the Coulomb potential, which overwhelms the
V ¢p(r) and the Vi g(r) contributions. Atr =137 ag, where the Kelsey-Spruch potential
begins to hold, the contributions to V(r) are in the ratios ezi‘r:IVdpl:VKS =1:10"":107!"

We would like to advance a new system for the scrutiny of long-range retardation
forces, which involves an excess electron bound on the surface of He clusters
[17-21], i.e., (*He)y (N 2 3 x 10°) and (*He)y (N = 5.7 x 10°) [19,20]. In these large
systems the dominating long-range attractive interaction constitutes the cluster dipole
polarization, while the retarded interaction will provide the leading repulsive term
for the long-range potential.

2. ELECTRON BINDING TO MICROSURFACES OF CLUSTERS

The interaction between an electron and a few-electron closed-shell atom or
molecule, e.g., He, Ne or Hy, is strongly short-range repulsive, with a weak long-
range attractive core polarization [22,23]. Accordingly, the conduction band energy
V in the corresponding macroscopic dense fluid [23] or in the large cluster [21] is
positive (Table 1). When an excess electron interacts with a sufficiently large (4He)N
cluster (which is liquid down to OK and which exhibits manifestations of Bose
statistics [24]), two types of bound (stable or metastable) excess electron states can
be realized. (i) The interior bubble state, with the electron residing in a cavity within
the cluster. The “critical” cluster size for the realization of the energetic stability of
the electron bubble is Ng > 6 x 103 [25]. These states are metastable with respect to
electron tunneling [25,26]. (ii) The exterior excess electron surface state with a
“critical” cluster size for excess electron binding in a stable state being Ng >3 X 10°
[19,20].

The structural, energetic and dynamic aspects of the binding of an excess electron
to the surface of He clusters pertains to some interesting phenomena of:

1) The cluster size effects on the onset of the excess electron localization [27].

2) The gradual “transition” from excess electron states on a cluster microsurface
to electrons bound to macrosurfaces [27,28] with increasing the cluster size.

3) The possible utilization of the excess electron as a probe for the interrogation
of elementary excitations, e.g., surface and compression modes of molecular clusters
[29-31], rotons in (*He)y [24] and fermion shell excitation in (*He)y clusters [32].
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Table 1. Dielectric constant (g), strength of repulsive potential (Vy), characteristics of flat surface excess
electron states (E; and ry), together with “critical” cluster radii (R,) and number of constituents
(N,) for the onset of ground state electron localization. (f) and (s) denote liquid and solid clusters.

System £ Vo (eV) rr(A) E;{meV) R.(A) N,
‘He()) 1.0588 1.28 74 0.695 149 3.0x10°
3Meh 1.0428 0.9 101 0.372 203 5.7%10°
Ne(h) 1.19 0.45 23.3 7.03 46.3 1.5x 10*
Ne(s) 1.24 0.60 19.8 9.76 39.3 1.I1x10%

Fruitful mutual stimulation between theory and experiment in this interesting
field prevails. Large (4He)N- (N ~ 105) clusters were experimentally observed
[33,34], which could manifest electron surface states. Recent experimental data for
(4Hc)N clusters (with N =2 xIOs, which is close to the value of Ng) do not provide
evidence for electron surface states and were assigned to metastable electron bubble
states [26,34,35]. Although not yet experimentally documented, surface excess
electron states on large clusters are interesting, as they constitute giant (effective)
one-electron states. These giant electron states on Helium (or Neon) clusters (char-
acterized by a radius R and a low-frequency dielectric constant €) are approximated
by the ground state (n = 1, /= 0) binding energy of an electron to a dielectric sphere

[19,20]

Ej0=-Ef®(r/R) M
and by the first moment of the charge disribution

(r) =riQ(r7/R) (2)
where

E= (¢*/2a0)Q” 3)
rr=ap/Q )
and

Q=€-DMAEe+1) %)

Er and rr represent the ground state binding energy and effective Bohr radius,
respectively, for electron binding to a macroscopic dielectric surface. The scaling
functions 0 S ¢(.) £ 1 and o= 2Q(.) 2 | change from ¢ =0* and Q = = at the localization
threshold, i.e., R = R¢, to ¢, =1 at the macrosurface when R —eo (Figures 1 and
2). The localization threshold is characterized by the cluster radius R = R, where [20]

Re =2.02(1 - Q)ry ©)

Ejpand(r), Eqs. (1) and (2), are specified by the scaling relations near the localization
threshold [ 19,20]
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Figure 1. The cluster size dependence of the ground state energy of an excess electron on (*He)y
clusters. Note the smooth “transition” from the localization threshold to the flat surface with
increasing the cluster size.
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Figure 2. The cluster size dependence of the first moment {r} of the charge distribution of an excess
electron on (*He)y clusters. Note the divergence of (r) = (R — R.)™! at the localization
threshold.
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where A is a numerical constant of the order of unity. From Eqgs. (2) and (8) and Figure
2 it is apparent that {r) spans the range of very large values near the localization
threshold, which exceeds the distance 137 ap for the onset of long-range retardation
forces. Accordingly, the excess electron — He cluster surface states can provide an
interesting system for the scrutiny of long-range retardation interactions.

3. ELECTRON-CLUSTER POTENTIAL

The electron — He cluster interaction was treated [21] in terms of a mean-field
potential, which incorporates a realistic description of the cluster surface profile. In
what follows we shall account for the Coulomb interactions in terms of a model
potential [19,20] (Section 2), which will provide the essential ingredients of the
problem. The model potential for the e-(He)y interaction is expressed in the form
[19,20]

Vip)= Vo, psl (9
V(p) =—2QE*R)U(p); p=1 (10)

where p = 1/R is the reduced distance, r is the distance from the cluster center, Q is
given by Eq. (5) and U(p) is the distance dependent part of the electron-cluster
polarization image potential

2 -1 S (b ) a2
Ue) = (p* - 1) —Z[Hb}a (11)
L=0
with
e 12
T l+e (12)

What is of interest for the present discussion is the asymptotic behavior of this image
potential (p >> 1) when Eq. (11) takes the form U(p) = (1 + b)_lp_4 +2(2+ b)"p'ﬁ
and the long-range attractive potential, Eq. ( 10), is

A B
Vi) = -— - — 13
476 (13)
The cluster dipole polariability term is A = «ae?/2 with the effective cluster

polarizability o, = [(€ — 1)/(e + 2)]R®. The cluster quadrupole polarizability term is
B = B.e%2 with B = 2[(e — 1)/(2 + 3)]R%.

Tbe asymptotic Coulomb long-range potential has to be supplemented by the
retarded potential. In analogy to the Kelsey and Spruch electron-ion potential [12-14]
the electron-cluster retarded potential adds to the electrostatic potential, Eq. (13).

Following the general arguments [9-11] the onset of retardation effects will
prevail at r-R > 137 ay. To provide a semiquantitative analysis of the retarded
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electron-cluster potential, we utilize the approach of Spruch [15,16] for the electro-
magnetic interaction between two polarizable systems

Ve (1) s(hfcsr)T 0c(©) () d e (14)
0

The frequency dependent polarizability o.() of the cluster is approximated in the
Drude form

oe(@) = eX(m(e§ - o) + iyw) (15)

with characteristic frequency wo and (small) damping width v. Since the range of ®
in Eq. (14) is 0...c/r and r >> c/wy for the retarded interactions, we can take the
zero-frequency cluster polarizability o (®) = ezs’mu)g = 0 (0). For the frequency
dependent polarizability 0.(w) of the free electron one sets wg = 0, whereupon 0(®)
= e%/mw?. Eq. (14) then results in the retarded interaction

Ve _ o) = Ce*hoe(0)/mer’; r>> 137 ag, (16)

where the numerical constant is of the order of unity being accurately given by C =
11/4w [15,16]. This heuristic argument was presented to emphasize the appearance
of the zero frequency cluster polarizability in the retarded interaction.

4. CONCLUDING REMARKS

Retardation effects for two-polarizable systems modify the asymptotic electron-
cluster potential in an analogous way to electron-ion or electron-atom interactions
[10-16]. The asymptotic electron-Helium cluster potential, including retardation, is
given from Eqs. (13) and ( 16) in the form

D_B.
6‘

V(r) :—é+—5 - (r-=R)>>137ay 17
r

o
where the coefficient of the retarded interaction is D = (1 l;‘4n)e2’hfxcr‘mc. In view of
the large spatial extension of the excess electron charge distribution just above the
localization threshold at R > R, where (r) obeys the scaling laws, Eqs. (2) and (8),
the condition (r-R) >> 137 ag for the onset of retarded interactions is well satisfied,
modifying the electron-cluster potential. The retarded interaction in V(r), Eq. (16),
provides the leading repulsive interaction in the long-range potential. Nevertheless,
the contribution of the retardation term is small. A cursory examination of the first
two terms in Eq. (17) reveals that the electron-cluster potential is modified to include
a small correction term. The rallo of the retardation and the dipole polarization terms
inV(r),Eq. (17),ism = (DfA)r , being = (h/me)r! = (137 t/ag)~". At the relevant
distance, where retardation effects setin, r = (137 ap + R), this ratio assumes the value
of 1 ~ 107, Nevertheless, this novel facet of retardation cffects for giant excess
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electron states on clusters is of interest.
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