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In this paper we report the results of an experimental study of the optical properties in the en-
ergy range 0.65—3.80 eV of binary mixtures of Hg and Xe at 6 K over the concentration range
X =1.0—-0.47 atomic fraction Hg. A new optical criterion for the specification of the metal-
nonmetal transition (MNMT) is advanced which predicts that the real part of the low-frequency
dielectric function should decrease abruptly with increase of the metal concentration beyond the
MNMT. This prediction is borne out for the Hg-Xe system and was used to specify the concen-
tration X, =0.80 £0.02 for the MNMT. Subsequently, we have analyzed the frequency-
dependent conductivity of the Hg-Xe films in terms of the random-phase model, which was ex-
tended to handle a system with two overlapping bands. The theoretical results were used to fit
simultaneously the dc conductivity and the optical properties with a model density of states in
the concentration range 0.47 = X =0.88. The marked overestimate of the dc conductivity cal-
culated from the fit of the random-phase model for mercury concentrations X < 0.80 was in-
terpreted in terms of the termination of the strong-scattering metallic regime where the states at
the Fermi energy become localized. The composition Xy, =0.80 +0.02, making the MNMT ob-
tained from the onset of localization, is in excellent agreement with the independent estimate
based on an optical criterion and with the onset of a positive temperature coefficient of the dc
conductivity. Our analysis provides an unambiguous identification of the MNMT in this disor-
dered material and draws a distinction between the MNMT (X,;=0.80 +0.02) and the conduc-
tivity onset (X =0.69 £0.01) in these low-temperature binary mixtures. We propose that the
topological percolation threshold marks the conductivity transition and that in the composition
range X¢ < X < X,, thermally activated hopping prevails, while a Mott-Anderson MNMT is ex-

hibited at X = X,.

I. INTRODUCTION
Experimental studies!~'® of metal—rare-gas solid
mixtures (MRGSM) have provided useful informa-
tion regarding the metal-nonmetal transition!’
(MNMT) in compositionally and positionally disor-
dered materials. Electronic structure and transport in
MRGSM’s were interrogated by various physical
methods. The main effort was directed towards stud-
ies of the change of the electrical conductivity with
concentration.!”2 Also, optical properties,* & 7% 1315
the Méssbauer effect,’® microscopic structure'® and su-
perconductivity>'? of those mixtures over a wide con-
centration range have been investigated. The varia-
tion of the electrical conductivity, o, induced by
changes of the metal atomic fraction, X, in
MRGSM’s falls into two categories:

(1) Abrupt conductivity transition marked by an
abrupt drop of o at a certain value of X, where
do/dX is discontinuous. No conclusive experimental
evidence for such abrupt transition in disordered ma-
terials is available. The abrupt change of o at a cer-
tain value of X reported for Cu-Ar (Ref. 2) and for
Pb-Ar (Ref. 3) MRGSM’s may originate from spuri-
ous crystallization effects.

(2) Continuous conductivity transition, which is
characterized by a gradual decrease of o with de-
creasing X. Such a behavior was observed for a
variety of systems, e.g., Na-Ar,'! Cs-Xe,* Rb-Kr,*
Hg-Xe,!? and Fe-Xe,’ being exhibited at X =0.2-0.6
for monovalent metals and at X =0.4—0.8 for po-
lyvalent metals.

We have been careful to use the term ‘‘conductivi-
ty transition’” rather than MNMT. The onset of the
conductivity in MRGSM’s cannot be identified in
general with the MNMT, as contributions from ther-
mally activated hopping cannot be disregarded even
at low temperatures. To provide a meaningful inter-
pretation of the conductivity transition and to relate
the conductivity transition to the MNMT it is impera-
tive to have some information or to make some intel-
ligent guesses regarding the microscopic structure of
these materials. Two general classes of disordered
two-component materials can be distinguished:

(a) Microscopically inhomogeneous MRGSM’s
consisting of metallic and insulating regions. Here
two conditions have to be satisfied. First, the size of
the metallic regions has to be sufficiently large so
that the level spacing of the highly filled states is
small relative to the thermal energy'® and the parti-
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cles are locally metallic. Second, the correlation
length for the metallic regions has to be large relative
to the mean free path (or the coherence length) of
the conduction electrons in such metallic regions.
With these conditions satisfied, the material has the
characteristics of a granular metal. The electronic
structure and transport in such inhomogenous ma-
terials can be handled in terms of classical percolation
theory.!*~24

(b) Microscopically homogeneous MRGSM: In
such randomly substituted material, only statistical
clustering of the metal atoms exists. In such homo-
geneous material an abrupt conductivity transition or
a continuous conductivity transition can be exhibited.

Two central questions should be raised in relation
to the electronic structure and transport in
MRGSM’s. First, is the structure of these materials
microscopically inhomogeneous or homogeneous? In
the former case, these materials can be considered as
granular metals, which are reasonably well under-
stood,? while, in the latter case, the nature of the
MNMT requires further elucidation. Second, provid-
ed that the material is microscopically homogeneous,
what is the proper description of the continuous
MNMT? Two distinct physical pictures have recently
been advanced for the description of the continuous
MNMT in microscopically homogeneous MRGSM’s.
We have studied!® the conductivity transition in the
Hg-Xe MRGSM, where the MNMT essentially ori-
ginates from band-overlap effects.” We have pro-
posed!® that this material is microscopically homo-
geneous and that the continuous conductivity transi-
tion should be interpreted in terms of the Mott-
Anderson transition!” intermediated by low-
temperature thermally-activated hopping between
large-radius localized states. A different point of
view was advanced by Phelps, Avci, and Flynn,*’
who proposed that the conductivity onset in (micros-
copically homogeneous) MRGSM’s can be adequately
described in terms of an onset for classical percola-
tion. This proposal is incompatible with our observa-
tion of activated conductivity in Hg-Xe in the vicinity
of the conductivity transition.!® It is still an open
question whether the existence of an infinite connect-
ed structure of neighboring metal atoms in a well-
dispersed MRGSM provides a sufficient condition for
metallic conductivity to prevail in such disordered
material.

In this paper we present the results of an experi-
mental study of the optical properties of the Hg-Xe
system, which provides a typical example for a mi-
croscopically homogeneous MRGSM. We shall
demonstrate the implications of the information
stemming from the optical properties of this disor-
dered material for the following:

(A) Specification of the electronic structure over a
broad concentration range.

(B) Characterization of the MNMT.

(C) Gaining indirect evidence regarding the micro-
scopic structure of these materials.

The optical data for the Hg-Xe system, which were
already briefly reported by us,!* will be confronted
with the predictions of the two available descriptions
of the MNMT in MRGSM, i.e., the percolation pic-
ture and the Mott-Anderson picture. We shall show
that the optical data together with our previous dc
conductivity measurements'® for Hg-Xe cannot be in-
terpreted in terms of the percolation model. Subse-
quently, we shall analyze the optical data for the me-
tallic samples in terms of the strong-scattering pic-
ture. Strong-scattering transport properties were ac-
counted for in terms of the random-phase model
(RPM), which was extended to handle the situation
of band overlap in two band systems. We shall
demonstrate that the termination of the strong-
scattering metallic regime, as manifested by the
breakdown of the RPM at low frequencies marks the
MNMT in this disordered material. The MNMT in
the Hg-Xe MRGSM specifies the Mott-Anderson
“transition’’!” from the strong-scattering metallic re-
gime to the thermally activated hopping regime. This
analysis yields a self-consistent picture for the trans-
port properties in this disordered material and, in par-
ticular, it will provide a distinction between the con-
ductivity transition and the MNMT in MRGSM’s.

II. EXPERIMENTAL PROCEDURES
A. Sample preparation

The Hg-Xe samples were prepared and measured
in an ultrahigh vacuum system shown in Fig. 1,
where the partial pressure of the residual gases was
~1x 1071 Torr. Xe gas was admitted to the system
through a leak valve, while Hg was introduced
through a nozzle of an oven kept at 20—150°C. The
partial pressures of Xe and of Hg during deposition
were maintained at ~1075 Torr and continuously
monitored using a quadrupole mass spectrometer.
The gaseous mixtures were condensed on a sapphire
window mounted on a He flow cryostat at 6 K. The
absolute condensation rate of pure Xe was calibrated
by the measurements of the oscillations in the optical
transmission of Xe. The large number of oscillations
(about 25), which correspond to d =1.5 x 105 A film
thickness, prove the high quality of the film and the
uniformity of its thickness under our film deposition
methods. The condensation rate of Hg was deter-
mined by atomic absorption analysis of Hg deposited
on a gold foil, which was mounted on the cold (6 °K)
substrate. A detailed description of the apparatus and
the experimental procedures was provided by one of
us.?® The metal concentrations are believed to con-
tain no more than 5% systematic and 1% random
fractional uncertainties.
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FIG. 1. Schematic representation of the experimental sys-
tem: 1, ultrahigh vacuum vessel; 2, Xe leak valve; 3, Hg
oven, 4, quadrupole mass spectrometer; 5, liquid-He flow
cryostat; 6, light source; 7, optical detector; 8, transfer tube;
9, flange supporting the cryostat; 10, liquid-He container;
11, back baffle; 12, rough pumping system; 13, monochro-
mator.

B. Optical measurements

Optical transmittance studies were performed in the
energy range 0.65—3.80 eV (2000—326 nm), using a
xenon lamp and quartz-halogen lamp as lightosources.
The light was dispersed at low resolution (5 A) by a
—:—-m Ebert monochromator (Model 82-410, Jarrell-

Ash). At the exit slit of the monochromator the
light was chopped with an optical scanner, then fil-
tered with an appropriate optical filter, and finally
focused through a window onto the sample on the
substrate. The outcoming light was split to reach a
silicon photodiode and a PbS detector. The ac signal
of the detectors was fed into a lock-in amplifier
(Model 9502, Brookdeal) and its analog output was
recorded.

The transmittance data were experimentally deter-
mined as follows: The intensity, I;(w) of the light
transmitted through the substrate at the photon fre-
quencies o was recorded. Then, deposition of a film
with a known constant rate was initiated. Intensity
measurements throughout the deposition were per-
formed, monitoring the intensity I(w) transmitted
through the film. The transmittance of the film on

where T°(w) is the calculated transmittance of the
sapphire substrate according to the expression

2ns(w)

]*cmc — ,
) = )

(2.2)

in which n,;(w) is the refractive index of the sap-
phire substrate.?’” For each composition measure-
ments were carried out for several valugs of film
thickness d in the range d =300—5090 A. The lowest
film thickness utilized was d =300 A, to avoid sys-
tematic errors due to island structure and nonunifor-
mity of the film, which should have been exhibited
for lower d values.

The optical transmittance curves were analyzed us-
ing a classical-oscillator-fit method to extract the real
part €;(w) and the imaginary part €;(w) of the
dielectric constant. This method is based on the use
of a simple analytical form for the dielectric func-
tion,?® which consists of a sum of contributions from
damped oscillators:

Siwi2

N
elw)=¢(w)+tigv)=e+S—"TF" .
! ? ;.21 w}— =il ww;

(2.3)

Here s;, w;, and I'; are the strength, angular frequen-
cy, and width of the /th oscillator, respectively, €. is
the contribution of high-frequency excitations to the
dielectric function, and w is the light angular frequen-
cy. This model dielectric function satisfies the
Kramers-Kronig dispersion relation. It has been
shown by Verleur?® that a small number of oscillators
is sufficient to describe a dielectric function that ac-
counts for the experimental reflectance or transmit-
tance curves over a wide energy range.

The fitting procedure involves an optimization pro-
cess where the parameters of the oscillators are
chosen, optical properties (e.g., reflectance or
transmittance) are calculated and compared with the
experimental results. This procedure is repeated to
yield good correspondence between the calculated
and the experimental data. We have characterized
the dielectric function (2.3) in terms of four or five
oscillators. The difference between the calculated
and the measured values of the transmittance were
minimized simultaneously for several films of dif-
ferent thickness and fixed composition using a gen-
eral curve-fitting procedure.?” At the end of the fit-
ting procedure the relative difference between the
calculated and the measured values of the transmit-
tance was less than 5% over the entire energy range
and for all film thicknesses. The transmittance, 7, of
the film situated on the nonabsorbing thick substrate
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is given by

T =ala,exp(4mkd/\) + bycos(4mnd/\)

+¢ysin(4mnd/X) + frexp(—4mkd /N1,
(2.4)

where the coefficients a, a,, b,, c,, and f, are de-
fined® in terms of the optical constants #,, n, and k.
Here, ny is the reai refractive index of the substrate,
while 7 and k are the real and the imaginary parts of
the refractive index of the film, respectively, which
are related’! to €;(w) and to & (w).

C. Film thickness, density, and volume fraction

The film thickness d was evaluated from the exper-
imental mass deposition rate and the estimated densi-
ty of the samples. The density p of the mixed films
was evaluated by assuming that the material consists
of an amorphous alloy of hard spheres, characterized
by the packing fraction n=0.45.32 The hard-sphere
diameter of Xe was taken as oxe=4.32 A.3® The
hard-sphere diameter oy, of Hg was taken from new
experimental data** which reveal the dependence of
ayg On the density in expanded mercury. We in-
voked the assumption that oy, in the Hg-Xe system
depends on the effective mean density p(Hg) in the
two-component material in the same way as in the
one-component expanded Hg. The density was
determined from a graphical solution of the equation

p(Hg)=Yp ,
p={(Y/p:ff)+[(1""Y)/pXe] }—1 , 2.5)
p:ff=K/0'g{g ,

where Y is the mass fraction of Hg, and py. is the
density of pure amorphous xenon,’*® being
pxe=2.45 g cm™3, while piy is the effective density of
a hypothetical sample of pure Hg which is composed
of hard spheres with diameter oy, being appropriate
to the metal density o(Hg) in expanded mercury.’*
K is a constant chosen so that, according to this pro-
cedure, the density of pure Hg at X =1 is

p(Hg) =13.7 g cm™. Figure 2 describes the depen-
dence of the density p and of the metal density
p(Hg) on the metal concentration X, as deduced
from the solution of Eq. (2.5), using the oy, data of
Ref. 34.

For future discussion of the possibility that the
Hg-Xe MRGSM consists of a dispersion of metallic
grains in the solid rare gas, which will be presented in
Secs. IV and VIII, we shall require an estimate of
the metallic volume transition in a hypothetical mi-
croscopically inhomogeneous material. The volume
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FIG. 2. Dependence of the density p, the Hg density
p(Hg), the volume fraction C, and the atomic volume frac-
tion C,, in the Hg-Xe system as a function of the Hg atomic
fraction X.

fraction, C, of the metal in such a two-phase system
can be estimated assuming that each of the consti-
tuents in the inhomogeneous two-component system
retains its bulk properties. Accordingly, we take for
the local densities the values py,=13.7 g cm™ for
(amorphous) Hg and px.=2.45 g cm™ for (amor-
phous) xenon. Accordingly, the metallic volume
fraction is

C- Y/13.7
Y/137+(1-1)/2.45"

Another pertinent quantity which will be required
for the discussion of the transport properties and the
MNMT is the volume fraction, C,, of metal atoms in
a microscopically homogeneous MRGSM. C, is re-
lated to the metallic volume fraction C in the homo-
geneous material,

C,=nC C=p(Hg)/p¥: . Q.7

(2.6)

The composition dependence of C and C, is
presented in Fig. 2, together with the estimates of the
densities of the films. This modification of the den-
sity scale, compared to our original evaluation of p,'°
modifies somewhat (by less than 50%) the absolute
values of conductivity previously reported by us,
while temperature coefficient of the conductivity
remains unchanged. These modified conductivity
data are displayed in Fig. 3. The composition
Xc=0.69 £0.04, which marks the conductivity onset
in the Hg-Xe systems determined by us, is higher
than the recent observation of X¢c=0.55 £0.04 re-
ported by Goldman and colleagues!? for this system.
In view of the extreme care devoted by us to the ab-
solute calibration of the metal concentration, we be-
lieve that the concentration scale presented herein is
reliable.
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FIG. 3. Composition dependence of the conductivity (full
circles) and of the temperature coefficient of the conductivi-
ty (TCC) (open circles) in Hg-Xe mixtures at 6 K. Three
scales of mercury concentration are presented: X, the atom-
ic fraction of Hg; C, the volume fraction of Hg; and C,, the
atomic volume fraction of Hg.

III. EXPERIMENTAL RESULTS

The optical constants were extracted from the ex-
perimental transmittance data for the following com-
positions of the Hg-Xe mixtures: X =0.47, 0.55,
0.66, 0.73, 0.77, 0.80, 0.83, 0.88, 0.96, and 1.00. A
typical example of the transmittance data and the fit-
ted transmittance for the extraction of the optical
contants is displayed in Fig. 4. Figures 5 and 6 exhi-
bit the real part of the dielectric constant €;(E) and
the frequency-dependent conductivity o (E)
= €,( F) w/4m of Hg-Xe samples over the ener-
gy range 0.65—3.80 eV and over the metal composi-
tion range X =1.0—0.47. Here E(eV) is the energy
and w(sec™!) is the angular frequency. The dc con-
ductivity o(0) for each alloy was plotted on the verti-
cal axis of Fig. 6 and extrapolates quite smoothly to
the optical data for o(E) at 0.65 eV. The optical
data exhibit the following features:
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FIG. 4. Typical example for the fitting of a dielectric
function consisting of classical oscillators (full line) to the
experimental transmittance data of Hg-Xe mixtures (circles).
The metal concentration is X =0.96. Curves a—d corre-
spond to different values of the film thickness d.

(1) The optical conductivity of pure Hg deposited
at 6 K shows a low-energy Drude-type tail and a
broad maximum at 1.8 eV. These features are in
qualitative agreement with the optical data of solid
Hg,* the broad maximum at 1.8 eV being due to in-
traband transitions. The broadening and smearing of

20 T

Hg-Xe

|
9 [ 2 3 4

E(eV)

-30

FIG. 5. Real part of dielectric function €;(E) for Hg-Xe
mixtures at 6 K for different atomic fractions of mercury, X,
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FIG. 6. Optical conductivity o(E) of Hg-Xe mixtures at
6 K for different atomic fractions of mercury. Solid line,
experimental data from transmission measurements; broken
line, extrapolation to the dc conductivity values, which are
marked as dots.

the 1.8-eV peak in our samples relative to the 77 K
crystal data originates from the partially disordered
structure of pure Hg deposited at 6 K, which forms a
polycrystalline material.®® This conclusion concurs
with our analysis!® of the conductivity data of pure
Hg.

(2) There is an appreciable difference between the
optical data for pure mercury (X =1) and those for
the X =0.96 films. The maximum at 1.8 eV for pure
Hg moves to higher energies, peaking at 2.8 eV in
the X =0.96 sample. At the same time the dc con-
ductivity decreases from 4.5 x 10* (Q cm)~! to
1.3 x10* (Q cm)~!. The pure Hg films deposit in
the form of a polycrystalline material. On the other
hand, the X =0.96 sample is presumably amorphous.
The vanishing of the negative temperature coefficient
of the dc conductivity provides support for this asser-
tion. The difference between the properties of the
polycrystalline and the amorphous material is strongly
reflected by the appreciable change in the optical data
in the narrow composition range X =1-0.96.

(3) For the compositions X =0.88 and X =0.83 the
optical conductivity decreases at low energies, reveal-

ing a broad minimum about 1.2 eV, and subsequently
starts rising, reaching a very broad maximum at 2.8
eV.

(4) 1n the narrow concentration range between
X =0.83 and 0.77 a dramatic change in the charac-
teristics of €; are exhibited: €, at low energies (0.65
eV) changes its sign from a negative value at high X
to a positive value at the lower X value, as is ap-
parent from Fig. 4.3. The change of the sign of €; at
low E is accompanied by a qualitative change of the
slope of o(E) vs E curve in this energy range: the
slope, which is negative at X =0.88, becomes positive
at X =0.77.

(5) For X <0.77 the characteristics of € (E) and
of o(E) are those of an amorphous semiconductor,
exhibiting, essentially, contributions to the dielectric
function which originate from band-to-band transi-
tions.

IV. IS THE Hg-Xe SYSTEM MICROSCOPICALLY
INHOMOGENEOUS?

The electronic structure and transport as well as
the nature of the MNMT in disordered materials are
dominated by the microscopic structure of these sys-
tems. In the absence of structural data for the Hg-Xe
system, one cannot rule out the possibility that the
material is microscopically inhomogeneous, exhibiting
the electronic structure, transport, and optical proper-
ties of a low-temperature granular metal. We have
already pointed out'? that the composition depen-
dence of the conductivity and the temperature coeffi-
cient of the dc conductivity cannot be accounted for
in terms of thermally activated tunnelling between
metallic grains, providing evidence against the possi-
bility that the Hg-Xe films have the structure of
granular metals. We shall now provide additional
evidence, which is based on the analysis of the opti-
cal data, demonstrating that the optical properties
cannot be accounted for in terms of a structural
model corresponding to a microscopically inhomo-
geneous material.

We proceed to examine the optical properties of a
Hg-Xe two-phase mixture. A striking characteristic
of the optical properties of small metallic particles
dispersed in an insulator is the appearance of Mie
resonance below the percolation threshold, as is the
case for ganular metals.’”3® At low C such a Mie
resonance is expected to be exhibited at the energy
E, which satisfies the relationship €i8( Eyy;)
=—2¢€f*(Ey;), where €l® is the real part of the
dielectric function for pure Hg, while e*=1.7 is the
square of the refractive index for amorphous Xe.3®
Thus the Mie resonance is expected to occur at the
energy where el8(E) =-3.4. From the optical data
for pure Hg obtained by Choke et al.,** we estimate
the Mie resonance to be located at £y, =4.5 eV.
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This estimate of the position of the Mie resonance
concurs with the experimental data for the optical
properties of colloidal Hg particles.>® In our work on
the optical properties of insulating Hg-Xe films!’ we
could not observe a Mie resonance in the nonmetallic
region for X =0.01—-0.4 up to energies of 5.5 eV.
The estimate of Ej; presented above applies to low
metal concentrations. At higher metal concentrations
the position of the Mie resonance can be accounted
for in terms of the Maxwell-Garnett theory (MGT),*
which seems to be applicable for an inhomogeneous
system consisting of grains of one material, e.g., me-
tallic particles of type 4 embedded as isolated regions
within a host matrix of another component of type B.
We have shown that our experimental optical data
are incompatible with the predictions of the MGT.
This negative result—in particular, the absence of Mie
resonances in the experimental data—indicates that
the Hg-Xe system does not correspond to a disper-
sion of metallic grains in the rare-gas matrix.

An alternative description of the optical properties
of an inhomogeneous material rests on the effective-
medium theory (EMT), which treats the two com-
ponents on an equal footing in terms of an effective-
field theory. The dielectric function
e(w) =¢€(w) +ie(w) for the two-component system
is obtained from the EMT equation?~2*

e*(w) —e(w) _ oy €w) —e(w) _
(w) +2e(w) +1-0) B(w) +2e(w) 0

(4.1

It is convenient to write explicit solutions to Eq. (4.2)
in the form

e(w) =e'(w) f(CX(w)) , (4.2a)
F(CX (o) =a(w) t{la()P+5X ()},

(4.2b)
a(@)=H{GC-D-X ()] +5X(w)]} , 420
X(w)=e'(w)/é(w) . (4.2d)

The sign of the square root is chosen to give a solu-
tion with €;(w) =Ime(w) =0.

We have used the EMT to calculate the optical
properties of a microscopically inhomogeneous Hg-Xe
system in the energies £ =0.65—3.8 eV over the en-
tire metal concentration range. It has been shown by
Webman et al.2%2* that a necessary condition for the
validity of the EMT is 0.02 < X (w) <50. This con-
dition is satisfied for our system in the range of opti-
cal energies which we are interested in. The follow-
ing input data were required for the EMT calculations
C, e4(w), and ez(w). These were chosen in the fol-
lowing way:

(a) The C scale calculated using the bulk properties
of the two components (see Fig. 2).

(b) The dielectric constant for Xe, which was speci-
fied by ef*=1.7 and ef*=0, with €® corresponding
to the square of the refractive index of amorphous
Xe.

(¢) The dielectric function for Hg was chosen in
three alternative ways: (c.1) Hg was characterized in
terms of a Drude metal with a plasma energy
kw,=11 eV and a relaxation rate #/T =1.5 eV. (c.2)
Our experimental optical data for pure Hg deposited
at 6 K were taken to represent €?(w). (c.3) Our ex-
perimental data for the 95% Hg sample were taken to
represent €(w).

In Figs. 7 and 8 we present the results of EMT
model calculations for the optical properties of the
Hg-Xe system. The EMT calculation of o (E) for the
Drude-metal—xenon system reveals no resemblance
to the experimental data, indicating that this model is
definitely too crude to describe the metallic regions.
The situation is not improved by the use of the
dielectric function for pure Hg [Fig. 7(b)], where in
the EMT calculations the 1.8-eV peak of pure Hg
survives over a broad concentration range down to
C =0.5 (X —0.8) in contrast with experimental
o (E) data, which in the concentration range
0.76 < X < 0.95 exhibit a broad peak at 2.8 eV. The
use of the optical data of pure polycrystalline Hg for
the EMT calculations of amorphous two-phase sys-
tems is questionable as one may argue that the metal-
lic regions are amorphous. Therefore, we have also
utilized the optical data of 95% Hg-Xe to represent
€%(w) of the amorphous metallic regions (Fig. 8).
Now the 2.8-eV peak in o (E) observed in the metal-
lic regions is qualitatively reproduced by the EMT
data. However, the following serious deviations
between the results of the simulations [Fig. 8(b)] and
the experimental data are exhibited. First, in the me-
tallic regior: the heights of the 2.8-eV peaks of o (E)
are considerably lower than predicted by the EMT
[Fig. 8(b)]. Second, in the concentration range
0.70 <X =<0.80 (C =0.5-0.4), where the material
is nonmetallic, the EMT results of Fig. 8(b) do not
reproduce the experimental positive slope of o(E) vs
E, but rather retain the metallic character. Third, the
negative sign of €; persists in the EMT calculations
[Fig. 7(a)] over a broad range down to C =0.4
(X =0.7), in contrast with the experimental data
which exhibit a sign inversion at a higher metal con-
centration. The EMT predicts that in an inhomo-
geneous two-component system consisting of metallic
and insulating regions the change of the electronic
structure and the transport properties will be gradual,
occurring over a broad concentration range. This ex-
pectation is not borne out by the experimental optical
data, which cannot be accounted for in terms of the
EMT. This failure of the EMT to account for the op-
tical data supports the notion that the Hg-Xe films do
not correspond to a two-phase MRGSM.

In addition, optical studies of Hg-Xe films in the
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FIG. 7. (a) Real part of the dielectric function, €;(E), as
calculated from the effective-medium theory for hypothetical
Hg-Xe inhomogeneous mixtures. The metal clusters are
characterized by the dielectric function extracted from our
pure mercury data. Xenon is assumed to be amorphous
with the real part of the dielectric function being 1.7 while
the imaginary part equals zero. The numbers near each
curve represent the volume fraction, C, of Hg. The ap-
propriate atomic fraction of Hg can be obtained from Fig. 2.
(b) Optical conductivity function o(E) as calculated from
the effective-medium theory for hypothetical Hg-Xe inho-
mogeneous mixtures. The metal clusters are characterized
by the dielectric function extracted from our mercury data.
Xenon is assumed to be amorphous with the real part of the
dielectric function being 1.7 while the imaginary part equals
zero. The numbers near each curve represent the volume
fraction, C, of Hg. The appropriate atomic fraction of Hg
can be obtained from Fig. 2.
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FIG. 8. (a) Real part of the dielectric function, €;(E), as
calculated from the effective-medium theory for hypothetical
Hg-Xe inhomogeneous mixtures. The metal clusters are
characterized by the dielectric function extracted from our
95% mercury data. Xenon is assumed to be amorphous with
the real part of the dielectric function being 1.7 while the
imaginary part equals zero. The numbers near each curve
represent the volume fraction, C, of Hg. The appropriate
atomic fraction of Hg can be obtained from Fig. 2. (b) Opti-
cal conductivity function, o(E), as calculated from the
effective-medium theory for hypothetical Hg-Xe inhomo-
geneous mixtures. The metal clusters are characterized by
the dielectric function extracted from our 95% mercury data.
Xenon is assumed to be amorphous with the real part of the
dielectric function being 1.7 while the imaginary part equals
zero. The numbers near each curve represent the volume
fraction, C, of Hg. The appropriate atomic fraction of Hg
can be obtained from Fig. 2.
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concentration range X =0.01—0.40 (Ref. 15) reveal
that the growth of the Hg monomer and the Hg di-
mer absorption bands obey the statistical rules for a
random statistical distribution. This behavior drasti-
cally differs from the optical properties of granular
metals, providing additional evidence against micro-
scopic inhomogeneities in this material. We conclude
that the Hg-Xe MRGM is microscopically homogene-
ous.

V. CHARACTERIZATION OF THE MNMT BY
OPTICAL DATA

A central subject of the present work is the charac-
terization of the MNMT in disordered materials by
the optical data. The experimental data exhibit a
simultaneous change in the behavior of € (E) and of
a(E) at low energies (0.65 eV) in the concentration
range X =0.83—0.77, where €; changes its sign from
a negative to a positive value, while o(E) changes its
slope from a negative to a positive value with de-
creasing X. This pattern of the low-energy optical
data and, in particular, the abrupt change of €; at low
frequencies provides an optical criterion for the iden-
tification of the MNMT in the two-component sys-
tem. The simultaneous change of the low-energy op-
tical data can be rationalized in terms of the
Kramers-Kronig dispersion relations,*! which for our
purpose can be presented in terms of an explicit ex-
pression for the real part of the dielectric function at
a finite energy E (E =fw),

@(E)=1+8P f%y—)—‘il
)

=1+8Pf[a'(y)2—0'(?)]dy .1)
Yy —w
where P stands for taking the principal value of the
integral and o (y) =ye,(y)/4m is the ac conductivity
at the angular frequency y. We proceed to discuss
the composition dependence of €;(E) at moderately
low optical energies in the vicinity of the MNMT for
microscopically homogeneous materials. In what fol-
lows we shall be concerned with the behavior of
€ (E) at low but finite energies, so that the diver-
gence of €, (E =0) originating from the polarization
catastrophe at the MNMT*>#* will be smoothed out.
Consider the MNMT induced by Anderson-Mott
localization originating from band crossing or from
the merging of Hubbard bands in a disordered ma-
terial. We shall first discuss electronic structure and
transport in the nonmetallic region below the
MNMT. There is a range of energies bounded by the
mobility edges Ec and EZ below and above the Fer-
mi energy Er, respectively, in which all electronic

states are localized. The energetic parameters
£*=|E* ~ Ef| (5.2)

are the characteristic energy spreads of the localized
states. In the following discussion we shall assume
that £* < £, an extension to the other case being
straightforward. The ac conductivity at 7 =0 is given
by the Kubo-Greenwood formula
E

o =K [, | dE|PePN(EIN(E +8p)]y  (5.3)
FY
with K being a numerical constant, | P;z| is the
momentum operator between initial and final states
and N (E) is the density of states. The initial and fi-
nal states can be localized or extended, i.e., bound or
continuum states.

For bound-bound (BB) transitions between weakly
localized states near the mobility edge the frequency-
dependent conductivity obeys the w? law*

ops(y) =Aa™™? , (5.4

where A is a constant, the inverse localization length
« is given by Mott and Davis® as a « £¢2°, while
n=4-5. Accordingly, for BB transitions

oY) =AM, By <&, (5.5)

where £ =min(£*+ ¢7) and is the upper limit for the
energy range where only BB transitions contribute to
the conductivity.

For bound-continuum (BC) and continuum-
continuum (CC) transitions the momentum operator
elements will be taken to vary slowly with energy, so
that

|Pirl?=D, ky > ¢ . (5.6)

Thus at energies higher than ¢ the contribution of
BC transition to the optical conductivity will acquire
the form

Ep

ogc(y) =KD dEN(E)N(E +#y)/y , (5.1

Ey > € .

EF—ﬁ'y+£

As we are interested in the value of o(y) over a nar-
row energy range around £, we can assume the densi-
ty of states to vary slowly with energy, so that

apc(y) =KD < N(E)N(Ep+ky) > (ky—¢)/y

Ey>¢ . (58)

At energies higher than ¢ =max(¢Y, £€7) an addition-
al similar expression will account for continuum-
bound transitions (CB). At energies higher than

&' = ¢t + ¢ the BB transition will terminate while the
CC transition sets in. When the energy spacing from
the mobility edges decreases the character of the lo-
calized states approaches gradually that of the extend-
ed states. Thus, in the intermediate energy region
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where BB, and BC transitions coexist Eqs. (5.5) and
(5.8) will combine to yield a smooth optical conduc-
tivity function. The form of o(y) as a function of
increasing metal concentration (i.e., decreasing £) is
sketched in Fig. 9, where curve D denotes the
highest concentration just above the MNMT concen-
tration. Let us now consider a fixed energy E at
which ¢;(E) is measured. We shall start with a sys-
tem where £ > E, as represented by curve 4 in Fig. 9.
It is apparent from Eq. (5.1) that € (E) >0, as is ex-
pected in a nonmetallic system for energies within
the mobility gap. Subsequently, we shall keep E
fixed and decrease the range ¢ of localized states,
e.g., by increasing the metal concentration in a two-
component system. When ¢ approaches E from
above (curve B, Fig. 9) the contribution to the in-
tegral in Eq. (5.1) increases as the positive contribu-
tions to the integral (at Zy > E) increase faster than
the negative contributions (at #y < E). Consequent-
ly, €,(E) will increase. This trend of increasing
€:(E) with decreasing ¢ is expected to continue when
£ crosses E, as described in curve C of Fig. 9. The
further increase of £,(E) with decreasing ¢ for ¢ < E
can readily be understood by noting that d o (y)/dy
decreases with decreasing y and the positive contribu-
tions to the integral in Eq. (5.1) dominates. A fur-
ther decrease of ¢ in the range ¢ < E may result in a
decrease of £;(E). When this situation is reached,
further decrease of ¢ will result, in principle, in a
monotonic decrease of ¢,(E) in the nonmetallic re-
gion. However, for the physical systems which are of
interest to us the optical energy E can be chosen so
that the density of states varies weakly with energy in

o (y)

| (E)

€
o

Metal Concentration

FIG. 9. Concentration dependence of the optical conduc-
tivity o(») and the real part of the dielectric function e, (E)
at a fixed low energy E, as an expanded metal approaches
the MNMT due to Anderson delocalization. The letters A
to D denote increasing metal concentration. The broken
lines represent the contributions of the bound-continuum
transitions to the optical conductivity.

the range Er—E to Er+E, i.e.,

dN (Er)
dE

We recall that the Mott-Anderson delocalization oc-
curs with increasing metal concentration. In the en-
ergy range Er to Er + E, where the density of states
is relatively flat, according to condition (5.7), a small
increase in the metal concentration will result in the
delocalization of electronic states over this entire re-
gion. We thus expect that ¢ decreases fast with in-
creasing X. Under these circumstances, the composi-
tion range in which €,(E) decreases with decreasing ¢
in the nonmetallic region below the MNMT is ex-
pected to be very narrow. When the MNMT is
reached, o(y) abruptly assumes a finite value of

O min, Which corresponds to the minimum metallic
conductivity over the range iy =0 to £y = E (Curve
D, Fig. 9). Consequently, €, (E) will exhibit an
abrupt decrease at the composition marking the
MNMT. In real life, when €, (E) is investigated at
the optical energy E, which is sufficiently low accord-
ing to condition (5.7), it will exhibit a sharp decrease
over a narrow composition range near the MNMT
composition. Figure 9 portrays the general features
of € (E) in the vicinity of the MNMT, where €,(E)
decreases fast at the composition marking the
MNMT. Finally, we shall consider the characteristics
of €;(E) in the metallic region at a sufficiently low
optical energy located within the pseudogap. Now
o(0) increases faster than o () at finite frequencies
with the increase of the composition X. Consequent-
ly, according to Eq. (5.1), €;(E) is expected to de-
crease with increasing the metal composition in the
metallic region.

The abrupt change of €,(E), at a relatively low op-
tical energy E, at the MNMT constitutes an optical
criterion for the identification of the onset of delocal-
ization, in microscopically homogeneous materials.
This optical criterion for the identification of the
MNMT provides a practical extension of an exact cri-
terion for the characterization of the MNMT in terms
of a discontinuous change in the real part of the stat-
ic dielectric constant €;(0). The characteristics of
€:(0) in the vicinity of the MNMT are discussed else-
where* and are related to the problem of the dielec-
tric catastrophe.

We have analyzed the composition dependence of
the €;(E) data at £ =0.65 eV in terms of the optical
criterion for the identification of the MNMT in Hg-
Xe films. The optical energy £ =0.65 eV, corre-
sponding to the lowest energy studied by us is ade-
quate for the application of the optical criterion as, on
the basis of theoretical calculations of expanded Hg,*
as well as according to the numerical simulations of
the density of states reported in Sec. VII, we assert
that the density of states in the vicinity of the Fermi
energy for the composition range X =0.66 varies

[N(EP]™ . (5.9)
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FIG. 10. Real part of the dielectric function, €, at the en-
ergy 0.65 eV in Hg-Xe mixtures as a function of Hg concen-
tration X.

weakly with energy over the energy range Er to
Er+E, so that condition (5.7) is obeyed in accor-
dance with the estimate of Mott.*¢ In Fig. 10, we
show the concentration dependence of €, (E) at

E =0.65 eV, the lowest energy studied by us. In the
concentration range X < 0.77, €,(0.65 eV) is positive
and increases with increasing X, whereupon this com-
position range corresponds to the nonmetallic region,
where localization occurred. In the concentration
range X > 0.80, ¢;(0.65 eV) is negative and the ma-
terial is metallic. In the concentration range

0.77 < X =<0.80, €,(0.65 eV) exhibits a discontinu-
ous change and we assert that the change of sign of
this quantity at the composition X, =0.80 £0.02
marks the MNMT in the Hg-Xe system.

It is important to emphasize that the application of
the optical criterion to the MNMT in Hg-Xe films
yields a value of the metal concentration X, charac-
terizing the MNMT that is distinct from the concen-
tration X¢c which marks the conductivity transition.
The composition X¢ =0.69 marks the conductivity
transition, while in the range X =0.69—0.77, where
the system is conducting at 6 K (see Fig. 3) the posi-
tive values of €(0.65 eV) and its X dependence
clearly indicates that the system is nonmetallic. The
identification of X3;=0.80 £0.02 for the MNMT in
Hg-Xe, on the basis of the optical criterion, is in ex-
cellent agreement with our analysis of the dc conduc-
tivity data for this system,!® where the onset of the
negative temperature coefficient of the conductivity
sets in at X =0.79, a composition which we have
identified as the onset of localization. It is gratifying
that the dc conductivity and the optical data provide
an unambiguous identification of localization in a
disordered material which exhibits an apparently con-
tinuous MNMT.

VI. RANDOM-PHASE MODEL FOR
A TWO-BAND SYSTEM

On the basis of the optical criterion for the
MNMT, we assert that the Hg-Xe system is metallic

at X =0.80. In the composition range

0.88 = X =0.80 the dc conductivity varies in the
range o =3000—600 (Q cm)~!. This conductivity
range in the one-component expanded Hg was as-
signed to the strong-scattering transport regime. We
propose that the composition range 0.80 < X <0.88
in Hg-Xe corresponds to the strong-scattering,
diffusive-metallic-transport regime. According to
Cohen,*” Mott,*® Hindley,* and Friedman®® the
strong-scattering situation is not limited to metallic
systems, being applicable to the general case of ex-
tended states in any strongly disordered systems.
Thus, one can apply the strong-scattering picture for
the dc conductivity and the optical properties of some
metallic systems, where all electronic states are ex-
tended, as well as the optical properties of nonmetal-
lic systems for the energies where the contribution
from continuum-continuum transition dominates.

The strong-scattering model has been utilized pre-
viously in an attempt to account for the dc transport
properties of metallic expanded Hg in the density
range 11.0-9.0 g cm™.>! We shall attempt to apply
this model for the dc conductivity and optical proper-
ties in the metallic strong-scattering regime
X =0.88-0.80, and for the optical properties over the
nonmetallic composition region X =0.80—0.47 in
Hg-Xe. However, the RPM as developed for a single
s band is not directly applicable for the Hg-Xe sys-
tem, where the effects of s-p—band overlap prevail.
While the dc conductivity in the strong-scattering me-
tallic regime can be analyzed, at least semiquantita-
tively, in terms of the single-band RPM, a coherent
description of the optical properties requires an ex-
tension of the RPM to account for a two-band situa-
tion.

In what follows, we shall apply an extended version
of the RPM to analyze the optical data over the com-
position range X =0.88-0.45, as well as the dc con-
ductivity data in the metallic strong-scattering regime.
There are two major goals for this analysis. Firstly,
we shall demonstrate that the RPM is adequate to
describe the high-frequency £ =0.65—3.8 eV optical
data over a broad composition range, which spans
both the strong-scattering metallic regime as well as
the nonmetallic regime, where the states in the pseu-
dogap are localized. Secondly, we shall demonstrate
that the analysis of the dc conductivity data in terms
of the RPM combined with model density of states
functions can be utilized to characterize the MNMT.
We shall show that the termination of the strong-
scattering metallic regime, which is manifested by the
breakdown of the RPM at low frequencies, marks the
MNMT in Hg-Xe. Our analysis will proceed in three
stages: Firstly, we shall derive a generalization of the
RPM for the frequency-dependent conductivity in a
two-band system. We shall show that the transport
properties within the RPM can be recast in terms of a
convolution integral modified by an energy-
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dependent transition moment, which accounts for the
two-hand features of the problem. Secondly, in Sec.
VII we shall advance semiempirical models for the
density of states in the Hg-Xe system, which will be
utilized for the analysis of the optical data. Thirdly,
we shall examine the dc conductivity data demon-

J

strating that the breakdown of the RPM at low fre-
quencies marks the MNMT in this system.

In Appendix A we extend the RPM for a two-band
system, considering explicitly the s and p bands in the
Hg-Xe system. The frequency-dependent conductivi-
ty is given by

. |
olw)=4 |1 LFF_de[N,(E)N,,(E +5w) + Ny(E)N,(E +£0) —2N,y(E) Ny (E +w)]

E
+2ZK EF:wdE[N(E)N(E +iw) +2N (E)Ny(E +10) + 2N (E)N (E +w) +4Ny(E) Ny (E +50)]1|

where

A=ne® N 'Q/m?*=me’/m?n(Hg) , (6.1a)

with n (Hg) being the number density of Hg. I is the
one-center integral [Eq. (A8)]; K is the two-center
integral [Eq. (A10)]; N,(E) and N,(E) denote the s
and p densities of states, respectively [Eqgs. (A13)];
Ny, (E) corresponds to the hybrid density of states
[Eq. (A16)]; and N (E) is the total density of states -
[Eq. (A15)]. The RPM result for the frequency-
dependent conductivity of a two-band system pro-

J

6.1)

]

vides a generalization of the results of Hindley*® and
of Friedman.*® The following features of the
frequency-dependent conductivity should be noted:

(1) The optical conductivity for the two-band sys-
tem is determined both by an intrasite one-center
contribution and by intersite two-center contribu-
tions. This situation differs from the one-band case,
in which only two-center contributions appear.

(2) The frequency-dependent conductivity [Eq.
(A18)] can be expressed in terms of a convolution
integral between the total densities of states modified
by a transition operator

olw) =4 fEEF_” dE M(E, w)N(E +5w)N(E) (6.2)
w Fhe
M(E, 0) =ZK[1 +2a(E +%w)B(E +kw) +2a(E)B(E) +4a(E)B(E)a(E +fw)B(E +fw)]
+1[a*(E)B¥E +#w) + od*(E +iw)BHE) —2a(E)B(E)a(E +kw)B(E +Fw)] , (6.2a)

where the coefficient 4 is given by Eq. (6.1a), Z is
the coordination number, K is the two-center integral
[Eq. (A10)], and N (E) denotes the total density of
states [Eq. (A14)], while «(E) and B(E) are the ex-
pansion coefficients of s and p basis states at energy
E. The energy dependence of the transition operator
M (E, ») [Eq. (6.2a)] accounts for the distinct contri-
butions of the two bands. This energy dependence of
M (E, ) is distinct from the energy dependence of
the transition operator in some amorphous semicon-
ductors which are traced to band-structure effects
smeared out by disorder.5% 33

(3) The dc conductivity o(0) is obtained from Eq.
(6.1) in the limit @ —0. The contribution of the
one-center intrastate terms vanishes and o (0) takes
the form

(0) =AKZ {[N(Ep)1*+4N (EF) Ny, (Er)
+4[Nsp(EF)]2} » (63)

where N, (E) is the hybrid density of states [Eq.

[
(A16)] at the Fermi energy. The vanishing of the
one-center contribution in the low-frequency limit
makes sense, as only charge displacement will contri-
bute to the dc conductivity. Equation (6.3) reflects
the effect of s and p populations at the Fermi energy
Er to the dc conductivity. Only when
a(Er) — B(Er) do we expect that o(0) o [N (Ef)1?,
regaining the well-known single-band result. This
state of affairs may apply reasonably well to expanded
Hg over the density range 11.0-9.0 gcm™, providing
some justification to the application of the one-band
result to the analysis of dc transport in that system.
(4) In the limit of very high frequencies the major
contribution to o(w) originates from regions where
the s-p overlap is negligible. Accordingly, we can set
Ny(E) =N(E), N,(E +fiw) =N(E +kw),
Ns(E +fw) =N,(E) =0, and Ny, (E) = Ny, (E +#w)
=0. Equation (6.1) then reduces to the simple form

E
o =24 [[7 dENENE+1)U+2K)
oo 6.4)
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regaining the conventional expression in this limit.

(5) The relative contributions from the intersite
terms and the intrasite contributions to the optical
conductivity can be estimated from the ratio, K /I, of
the two-center and the one-center transition mo-
ments. The integrals 7 [Eq. (A8)] can be expressed
in an approximate form in terms of the atomic prop-
erties of the Hg atom

I =EX(X)'m?/h*=mE,f]2 , (6.5)

where Ej, is the atomic excitation energy for the
18— Py transition (X )2 corresponds to the X com-
ponent of the transition for this transition, while f
represents the oscillator strength for this transition.
The K integral [Eq. (A10)] can be approximated in
terms of the two-center exchange integral®*

K =a??m?/h? , (6.6)

where a is the lattice spacing, while J is the exchange
integral between nearest-neighbor Hg atoms. From
Egs. (6.3) and (6.6) we get

K/1=Q2/f)(J/Ep)a*m/h* . 6.7)

Taking E,,=6.5 eV, f =1 from atomic data and
J=0.5-0.7 eV from model band-structure-model cal-
culations for liquid Hg, we estimate K /I =0.1, which
is reliable within a numerical factor of 2. Note, that
at high Hg concentrations Z is large and ZK ~ [
(with this estimate), so that the contribution from
one-center and from the two-center terms are com-
parable. At low Hg concentration Z is small and

ZK =< I, so that the one-center contribution becomes
dominant, as is expected.

VII. APPLICATION OF THE RANDOM-PHASE
MODEL TO THE OPTICAL PROPERTIES

We have utilized the theoretical result, Eq. (6.1),
for the frequency-dependent conductivity, together
with the experimental optical transmittance data for
Hg-Xe films to extract information concerning the
density-of-states functions in Hg-Xe MRGSM’s over
the composition range X =0.88—0.47. In the strong-
scattering metallic regime we have used the optical
data, together with the dc conductivity to provide a
fit of o(w) from zero frequency up to £ =3.8 eV.
These numerical simulations provide useful informa-
tion regarding the electronic structure and the
MNMT in Hg-Xe. We proceeded to fit the optical
data by model density of states adopting the following
general procedure:

(a) The density-of-states functions were specified:
The densities of states N;(E) and N,(E) were taken
to be characterized by the following three features.
First, analytical functions whose energy dependence
resembles the general features of density-of-states

functions calculated for expanded Hg (Ref. 45) as
well as that of randomly distributed donors,>®
Second, the hybrid density of states [Eq. (A16)]
could be expressed by an analytic function. Third,
the convolution integrals in Eq. (6.1) can be per-
formed analytically.

Two forms for model densities of states were
adopted: (al) Gaussian (GA) bands,

N,(E) =Z,exp(—a,E?) , (7.1a)
Ny(E) = Zyexpl—as(E —C)] (7.1b)

(a2) square difference of exponents (SQDE) densi-
ties of states,

N,(E) = W1 lexp[—bl(D "'E)]

—expl—b;r (D —-E)1}? , (7.2a)
N,(E) = Wy{expl—b,(D +E)]
—expl—byry(D+E)1}? . (7.20)

The relative areas of the s and p bands were 1:3, as
implied by the threefold degeneracy of the p band,
while the relative widths of the s and p bands were
about 1:1.5 following the model calculations of
Yonezawa et al.®® for expanded Hg. During the op-
timization process of the highest Hg concentration
X =0.88, the area of the s band was treated as an ad-
justable parameter. Subsequently, for lower concen-
trations the area of the s band was scaled (relatively
to the area at X =0.88) to be proportional to the Hg
density p(Hg).

(b) The Fermi energy Er was computed to satisfy
the relation

£
raENE) = [ dENE (1.3)

However, small variations of Er (£0.5 eV) were al-
lowed later, during the optimization procedure, to
improve the quality of the fittings. This variation of
Er resulted in deviations of less than 5% in the rela-
tive areas of the s and the p bands.

(c) The ratio K/I =0.11 was chosen in accordance
with the numerical estimate based on Eq. (6.5). This
ratio is independent of the composition.

(d) The Hg—Hg coordination number Z was taken
from Furukawa’s structural model®’ for vacancies
(representing the Xe atoms) introduced randomly as
a closed-packed lattice. For a fcc lattice the average
coordination number is

Z =(6~2)p(Hg)a® , (7.4)

yielding a reasonable value Z =10 at X =1.

(e) The parameter 4 was taken to be proportional
to [p(Hg) 17!, as implied by Eq. (6.1a).

(f) o(E) was calculated from Eq. (6.1) and
&,(E) =40 (E)/w was subsequently computed over
a wide range.
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(g) € (E) was calculated from €,(E) using the
Kramers-Kronig dispersion relation.

(h) The real and imaginary parts of the refractive
index n and k were calculated.

(i) The transmittance T of a film of thickness d
[Eq. (2.4)] was calculated using n and k. The differ-
ence between the calculated T, and the experimen-
tal transmittance Tex, Was minimized for several
values of 4 using the same general curve-fitting pro-
cedure as used in Sec. II B for extracting the optical
constants of our films. The quality of the fit of the
optical data at a given composition is assessed by the
mean relative deviation, A, of the fitted optical data
for N, energies for each film:

1/2
N, N /

e ' f - 2
A= Ne..l Nf_l 2 2 Texpt Tcalc ]
k=1 i=l

, (7.5)

Texpl

ki

where Ny denotes the number of films which were
simultaneously analyzed.

We have analyzed the dc conductivity and the opti-
cal data for the metallic films with X =<0.88, which
correspond to the strong-scattering region. We have
attempted a simultaneous fit for the dc conductivity
and the optical data for all the conducting Hg-Xe
films. In this simultaneous fit of the dc conductivity
and the optical data, the dc conductivity is taken as
an additional experimental point with a double
weight. This simultaneous fit of the dc conductivity
and the optical data resulted in the ‘‘best fit”’
[0(0) 1 of the dc conductivity, as evaluated from
Eq. (6.1). This value of [o(0) 1., was then com-
pared with the experimental value [o(0) 1o, When
the relative deviation between [ o(0) ], and
[(0) Jexp exceeded 100%, we assert that the strong-
scattering mechanism for the dc conductivity breaks
down. Under these circumstances, only the optical

data were utilized to obtain information concerning
the density of states of Hg-Xe MRGSM’s.

Table I summarizes the relative deviations, Eq.
(7.5), which characterize the overall quality of the
results of the optimal numerical simulations and
which were obtained for Hg-Xe using the model
density-of-states functions (7.1) and (7.2). To assess
the quality of these fits we would like to mention that
the analysis of the experimental data (Sec. IIB) in
terms of a superposition of Lorentzians [Eq. (2.3)]
resulted in relative deviations of A, =0.05. All the
values of A (Table I) exceed A., indicating the over-
simplified nature of the model densities of states em-
ployed by us. Figure 11 displays the concentration
dependence of o(w) obtained from the best numeri-
cal simulations using either GA or SQDE densities of
states, which were fitted to the experimental data.
We have presented the o(w) [or €,(w)] data rather
than the €;(w) data, as the latter quantity in the me-
tallic regime is extremely sensitive to small changes
in the optical constants » and k. As it is apparent
from Table I the asymmetric SQDE density of states
is superior in the high-metal-concentration range
X =0.88—0.80, while at the lower metal concentra-
tions X =0.76—0.47 the GA form is superior. This
observation concurs with the results of some band-
structure calculations for randomly distributed
donors®-3¢ which indicate that the asymmetric SQDE
form might be preferable as a density-of-states model
function for high metal concentrations, while the
symmetrical form of the Gaussians may prove to be
superior for the mixtures with lower metal concentra-
tions. The density of states functions, which provide
the best fit of the optical transmittance data are
presented in Figs. 12 and 13 for the Gaussian and for
the SQDE density of states functions.

Finally, we shall attempt to provide a quantitative
analysis of the dc conductivity in the strong-scattering

TABLE I. The quality of the fit for model densities of states to the optical data and the dc conductivity data within the frame-

work of the random-phase model.

GA® SQDE®
Hg atomic [o(0) ] expe A(%) [0(0) T are [0(0)] 5 A(%) [a(0)] 4 [a(0)]
fraction X (sec™1) optical fit (sec™) [o(0) Jexpe optical fit (sec™!) [o(0) ] expe
0.47 S 55 1.2 x 1013 12 7 x10°
0.55 S 8.2 4.4x1013 17 7 x101!
0.66 ce 9.1 2.6 x 1014 ce 18 1.2 x 101 ce
0.73 6 x1013 9.1 5.8 x 101 9.7 20 4.4 %10 7.1
0.77 2.3x10M4 7.8 1.0 x 1013 43 15 8.7 x 1014 3.8
0.80 9.5.x 1014 8.4 1.6 x 1015 1.7 10 1.2 x 1015 1.26
0.83 2.0 x 1015 15 2.2x10!% 1.1 15 2.4 x 1015 1.2
0.88 4.4 %10 19 3.5x 10! 0.8 13 4.0 x 105 0.9

3Gaussian model densities of states.

bSquared difference of exponents model densities of states.
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FIG. 11. Optical conductivity o(E) of Hg-Xe mixtures at
various Hg concentrations. The number near each curve
denotes the mercury atomic fraction. The full lines corre-
spond to the best experimental fit of the optical data with
classical-oscillator dielectric functions. The broken lines cor-
respond to the best fit of the optical data with model densi-
ties of states. The curves for X =0.80, 0.83, and 0.88
represent the results of SQDE model densities-of-states fit.
At lower concentrations the results of the fit with Gaussian
densities of states are presented.

metallic regime. We present in Fig. 14 the results of
the ratio [0(0)]cae/[ 0(0) lexp: as obtained from the
simultaneous analysis of dc conductivity and optical
data. In the composition range 0.88 = X =0.80 the
dc conductivity obtained from the numerical simula-
tions is in good agreement with the experimental
data, providing a quantitative confirmation for the
proposal that the strong-scattering metallic transport

50

40

Density of States

E-Ep(aV)

FIG. 12. Gaussian model densities of states that provide
the best fit for the optical data of Hg-Xe mixtures (subject
to the restrictions described in the text). The full lines
represent the energy range Er—3.8 eV to Ep+3.8 eV,
which is directly accessible by our optical spectra. The
curves (progressing from those with the highest to the
lowest maxima) represent the concentrations X =0.88, 0.83,
0.80, 0.77, 0.73, 0.66, 0.55, and 0.47, respectively. Densities
of states are in arbitrary units.
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FIG. 13. SQDE (square difference of exponents) model
densities of states that provide the best fit for the optical
data of Hg-Xe mixtures (subject to the restrictions described
in the text). The full lines represent the energy range
Er—3.8 eV to Ep+3.8 eV, which is directly accessible by
our optical spectra. The curves (progressing from those with
the highest to the lowest maxima) represent the concentra-
tions X =0.88, 0.83, 0.80, 0.77, 0.73, 0.66, 0.55, and 0.47,
respectively. Densities of states are in arbitrary units.

prevails. However, at lower concentrations, the dc
conductivity cannot be accounted for in terms of the
RPM and the model densities of states that fit the
optical data. The fast increase of [o(0) 1./

[(0) lexpe With the decrease of metal concentration
indicates that the Anderson localization has occurred
at the Fermi energy in the pseudogap. The termina-
tion of the strong-scattering dc transport at X =0.80,
as exhibited in Fig. 14, marks the MNMT in the Hg-
Xe system.

T T T
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FIG. 14. Ratio of the calculated and the experimental dc
conductivity of Hg-Xe mixtures as a function of the Hg
atomic fraction X. The calculated values of the dc conduc-
tivity were obtained from the simultaneous fit of optical data
and dc conductivity to model densities of states within the
framework of the random-phase model. The full cycles cir-
cles are from the fit of Gaussian densities of states while the
open circles are from the SQDE fit.
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VIII. CONCLUDING REMARKS

We have explored the optical data and the dc con-
ductivity together with the temperature coefficient of
the conductivity (TCC) to provide a complete physi-
cal picture for the change in the electronic structure
and transport properties of Hg-Xe films over the en-
tire composition range. We felt that the results of
the detailed study of the Hg-Xe system will elucidate
the general features of a broad class of MRGSM’s,
which exhibit a continuous change in the transport
and optical properties with increasing X. On the basis
of our data the following transport regimes can be
distinguished in the Hg-Xe system:

(1) Weak-scattering propagation-type metallic re-
gime X =0.90. Here o =5000 (Q cm)~! and
d o/dT is negative.

(2) Strong-scattering diffusive metallic regime
0.90 = X =0.80. Here 5000 (Q cm) ™' =< o =600
(Q cm)™!, which can be adequately described, to-
gether with o(w), by the two-band RPM, while
d o/dT is vanishingly small.

(3) The metal-nonmetal transition occurring at
Xy =0.80 £0.02. The composition corresponding to
the MNMT is obtained from three independent
sources: (3a) onset of a positive TCC; (3b) change of
the sign of €; (at E =0.65 eV); (3c) termination of
the strong-scattering metallic transport.

(4) Pseudogap extrinsic transport: In the composi-
tion range 0.70 < X <0.77, thermally activated hop-
ping between large-radius localized states prevails
even at low temperature. ’

(5) Intrinsic semiconductor: When X <0.70 the
optical properties correspond to an amorphous semi-
conductor.

A central result of the present work is the unambi-
guous identification of the MNMT and the distinction
drawn between the MNMT and the conductivity on-
set in Hg-Xe MRGSM. 1t is gratifying that three in-
dependent methods provide self-consistent results for
Xy, demonstrating the advantage of working with
low-temperature amorphous materials in contrast to
liquids. In the case of MNMT in two-component
liquids, such as metal-ammonia solutions,*® which are
induced by concentration changes, an unambiguous
identification of the composition marking the MNMT
was not yet accomplished.

We have attempted to account for the electronic
structure and transport in Hg-Xe films in terms of
physical models appropriate to microscopically homo-
geneous materials, e.g., strong-scattering metallic
transport followed at lower X by a Mott-Anderson
MNMT intermediated by thermal hopping.
Nevertheless, one should explore further the interre-
lationship between the topological percolation thresh-
old and the MNMT, following the suggestion of
Phelps and Flynn*"%° and others.!? These workers
have attempted to identify the onset of metallic con-

ductivity data for Cs-Xe and for Rb-Kr in terms of
the power law!824

ox(C,—=CH)? , 8.1)

with p =1.6—2.0, citing this result as evidence for the
applicability of the percolation picture to describe the
MNMT in MRGSM’s. As the material is microscopi-
cally homogeneous, the volume fraction C, (Fig. 2)
has to be utilized to specify the metallic volume frac-
tion. The proposal of Phelps and Flynn*"%° was ad-
vanced for monovalent systems, e.g., MRGSM’s con-
taining monovalent metals, where electron correlation
effects can prevail.!” This physical picture®’ is
inapplicable for the divalent Hg-Xe system studied
herein. The continuous percolation picture predicts
that in the concentration range X =0.69—0.77 the dc
conductivity for Hg-Xe can be described in terms of
Eq. (8.1), with p =1.5 +0.1, the temperature coeffi-
cient of o (TCC) should be small and negative, being
roughly equal to the TCC for pure Hg. In contrast,
the experimental value of the TCC in that concentra-
tion range is large and positive.'® Thus, our system
provides a counterexample against the generality of
the proposal of Phelps and Flynn. We believe that
the existence of an infinite metallic cluster at the per-
colation threshold in a microscopically homogeneous
MRGSM does not provide a sufficient condition for
the onset of metallic conductivity. Consider the
MNMT originating from s-p band overlap effects in
Hg-Xe. In the infinite cluster just above C,* the
average Hg-Hg coordination number is low,

Z =2-3, as the infinite cluster consists of a superpo-
sition of a weakly-bound finite cluster, whereupon
the s-p band overlap is not expected to be effective at
the topological percolation threshold. This point of
view is supported by the results of the recent com-
puter experiments by Srivastava and Weaire,® which
demonstrate that the Anderson localization in a ran-
dom binary alloy with nearest-neighbor interactions
occurs at a concentration Xy, which is considerably
higher than the concentration X* corresponding to
the percolation threshold and that for a three-
dimensional network X,/X*=1.51. Thus, the
MNMT is expected to occur at X =X, > X*, in con-
trast to the proposal of Phelps and Flynn. We would
like to propose that the appearance of an infinite
chain of metal atoms at the percolation threshold will
result in a dramatic decrease in the activation energy
for thermally activated hopping, as the hopping prob-
ability between a pair of sites decreases exponentially
with the intersite separation. Consequently, the to-
pological percolation threshold marks the onset for
effective activated transport, i.e., the conductivity
transition in an MRGSM. This proposal is borne out
by the experimental dc conductivity data for the Hg-
Xe system where the conductivity threshold occurs at
C,=0.17 (Xc =0.69), the value of C, being close to
the continuous percolation threshold?—24¢! C*=0.15
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in a disordered material. The applicability of the
power law, Eq. (8.1), for the thermally activated con-
ductivity at C, = C,* may be not just accidental but
rather reflect enhancement of connectivity between
the weakly bound finite clusters when the metal con-
centration increases just above the percolation thresh-
old.
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APPENDIX: THE RANDOM-PHASE MODEL
FOR A TWO-BAND SYSTEM

Let us expand the wave function corresponding to
an extended electronic state |k) in terms of a local
basis of wave functions |j, k) centered on the sites j
occupied by the Hg atoms,

lk) = 3 a;.li, k) (A1)
J

and where the local basis states are represented in
terms of a superposition of s type, |s,), and p type,
|p;), states:

Ij» K) =aK|sj) +Bx|p./> ’ (A2)

in which «, and B, correspond to the expansion coef-
ficients of the atomic states s and p in the |«) state.
In our analysis we shall represent all the three com-
ponents of the p state in terms of a single basis func-
tion, neglecting the effects of spatial degeneracy and
crystal field splitting of the p components. The basic
assumption underlying the RPM is that the wave
function (A1) on different sites has equal magni-
tudes, being characterized by complete random
phase. As the phases of a,, on different sites are
completely random, it will be convenient to repro-
duce these amplitudes in the form

aje=exp(i¢;) /N | (A3)

where N is the number of Hg atoms in the system,
the appearance of N™'/2 in Eq. (A3) being implied by
the normalization condition for |«k). ¢, is the ran-
dom phase at site . We note that only intersite
phase relationships are taken to be random, while the
coefficients a, and B,, for given electronic states |k ),
are taken to be fixed on all the j sites. The normali-
zation condition is |a,|?+|B«]>=1, while the sand p
character of a given |«) state are

lotl2 (el + 18l " and [Bul*(arel* + 8D,

respectively.
The conductivity o(w) at the angular frequency w

is expressed in terms of the Kubo-Greenwood formu-
1a62.63

o) =L 35D (f =18 e—e ~hw) . (AD)

B=me¥miQ (Ada)
D= 1elalOF (ad)

where () is the volume of the system, D“, is the

transition operator expressed in terms of the matrix
element of the momentum operator p between the
states |«) and |') of energies €, and €, whose oc-
cupation probabilities are f, and fK,.

We now proceed to the calculation of the transition
operator invoking the RPM.*® According to the
RPM*"%" Eq. (A4b) can be replaced by its configura-
tional average, which is expressed in the form

(D Ne=NT3NGxlpli' k)P, (AS)
jl

where ( ). denotes the configurational average. We
shall further advance the reasonable assumption that
the only nonvanishing contributions to Eq. (AS5) ori-
ginate from diagonal one-center intrasite contribu-
tions with j =j', and from the two-center interstate
contributions from neighboring Hg sites with j and j'
corresponding to nearest neighbors. The transition
operator is

(D _ye=N"NGklpli k)2
+N7Z1 G kBl kDI (A6)

where Z is the coordination number of Hg atoms,
which depends on N. The one-center contribution to
Eq. (A6) was obtained in the form

‘(Jn Klﬁl‘]r K,>|2=(axﬁx'_ﬁxax’)21 ’ (A7)

1=|{s;|p|ppI? (A8)

where, for the sake of simplicity, the expansion coef-
ficients a, and B, were taken to be real. The two-
center contribution to Eq. (6.6) is
|Gkl b1 6 W =evea (5B s} + BB (2|5 D))
+ axﬁk’ (S.IipA lpj’) +Bxak’ (pjlﬁ ‘s_/'>|2
(A9)

where jand j’ are nearest neighbors. In view of our
current ignorance of the numerical values of the in-
tersite integrals appearing in Eq. (A9), we shall take
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all these integrals to be equal and define
K EHSJ‘];‘SJ’)PEl(l’jlﬁlﬂ,')lz

ST (a10)

The two-center contribution to Eq. (A16) now as-
sumes the form i

1GoklB i k)P =K (14208, +2aBc+4aB o B
(A1D)

Armed with Eqgs. (A6), (A7), and (A11), the transi-
tion operator takes the form

D'“(I = _ll(aiﬁi:ﬁ’i: +B,2‘ai, - ZaKaK,BK,BK/)
+N71ZK (1 +2a B+ 20 B 4B s By)

(A12)

It will be convenient at this stage to define the s
and p densities of states in terms of the s and p char-

acter,

Ny(E)=Q7' 3 al8(E-E,) , (A13a)

N,(E)=Q7' 3 BI(E-E,) , (A13b)
so that the total density of states, N (E),

N(E)=Q7' 38(E-E,) (A14)
can be expressed as the superposition

N(E) =N,(E) +N,(E) . (A15)

Finally, we shall define the hybrid density of states,
Ny(E)=Q7' 3 a,B3(E—E,) , (A16)

which will be approximated in terms of the relation
Ny (E) =[N,(E)N,(E)]'* . (A17)

We are now able to express the optical conductivi-
ty, Eq. (A4), at T =0 with the aid of Eq. (A12) and
the definition, Egs. (A13)—(A17), which lead to Eq.
6.1).
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