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In this paper we present a theoretical study of incoherent electronic energy transfer (EET) in an impurity
band of substitutionally disordered, mixed, molecular crystals. Dispersive diffusion of the electronic
excitation was treated by an Average Dyson Equation Approximation (ADEA) to the master equation
for EET. The ADEA rests on expressing the Green’s function (GF) for the probability of site-excitations
in a single fixed spatial configuration in terms of a Dyson equation with a normalized vertex function
and subsequently performing the configurational average of the GF, invoking a decoupling approximation
which omits many-site contributions. Explicit expressions were derived for the initial site occupation
probability, P,(¢), the mean square displacement, 3%(¢), and the time dependent diffusion coefficient D(t).
We have explored the relation between the ADEA and the stochastic continuous time random walk
(CTRW) model applied by us for EET. We have demonstrated that the ADEA and the CTRW results
for 2%(t) and for D(t) are identical, while P,(t) has a similar structure in both schemes. The
ADEA/CTRW scheme was utilized to derive analytical results for P,(¢), 3%t) and D(t) in an impurity
band where the pair-probability of EET is determined by multipolar interactions. From the analysis of
asymptotic expansions for D(t) in such cases we conclude that the short time diffusion coefficient has
the time dependence D(t)act ®~"Y" while the long time diffusion coefficient is independent of t,
corresponding to an average superlattice of impurities. Numerical calculations based on the
ADEA/CTRW scheme were performed to elucidate the quantitative features of the crossover from
dispersive transport to pure diffusive behavior and how it is affected by the impurity concentration and
by the range of the multipolar interactions. For short range high order multipolar interactions the effects
of dispersive energy transport are expected to prevail over a broad concentration and time domain, being
more pronounced than in the conventional case of dipole-dipole coupling.

1. INTRODUCTION

Some of the most interesting features of exciton states
in pure molecular crystals involve the dynamic mani-
festations of electronic energy migration. L2 There have
been quite extensive studies on the dynamics of singlet
and triplet Frenkel type excitons in organic crystals, *
as well as of Wannier (or intermediate) type excitons in
solid rare gases.® These studies were interpreted in
terms of a strong exciton-phonon mechanism, resulting
in incoherent exciton transport, and led to reliable esti-
mates of the exciton diffusion coefficient in pure molec-
ular crystals. The effects of disorder on electronic en-
ergy transfer (EET) are of considerable interest. Two
basic types of disorder should be considered in this con-
text, involving structural disorder and substitutional
disorder, both of which may, of course, prevail simul-
taneously.

A relevant example for EET in structurally disordered
systems pertains to triplet energy migration in some
pure and mixed organic liquids,? while effects of sub-
stitutional disorder prevail for EET in mixed molecular
crystals. *~!! There has been considerable activity in
studies of EET between guest molecules in solids and
liquids in relation to fluorescence depolarization, sensi-
tized luminescence, organic photochemistry, and energy
transport in biological systems. Most of these studies
rest on the Fdrster —Dexter mechanism'*!? focusing at-
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tention on EET from a single donor to randomly dis-
tributed acceptors.'~1® At higher impurity concentra-
tions in a substitutionally disordered solid or in solu-
tion, one has to surpass the pair interaction picture and
to consider the migration of electronic excitation be-
tween randomly distributed molecules.

There has been considerable recent experimental and
theoretical activity in the field of EET in impurity bands
of substitutionally disordered molecular and ionic crys-
tals, From the theoretical point of view, this problem
is of interest because of two reasons:

(1) The possibility arises of observing Anderson lo-
calization!? of an electronic excitation in an impurity
band at low temperatures. Above the critical impurity
concentration for the Anderson transition, the electronic
states are expected to be extended, while below the crit-
ical concentration the states are localized. The possi-
bility of observing localization for EET in an impurity
band makes mixed molecular crystals attractive model
systems for the study of electronic structure of disor-
dered materials.

(2) At higher temperatures, the Anderson localized
states in the impurity band will be “liberated” due to
phonon-induced thermal hopping effects. An incoherent,
strong-scattering EET process will now prevail. The
interesting feature of the problem of incoherent EET in
an impurity band is that energy transport cannot be de-
scribed in terms of a conventional diffusion process.

From the experimental point of view, recent informa-
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tion concerning the migration of electronic excitation in
an impurity band emerged from the following sources:
(a) Luminescence quenching of the emission from the
impurity band occurs. EET in an impurity band of an
isotopic or a chemical substituent was monitored by in-
terrogating the emission yield for an energy acceptor,
such as a chemical supertrap or an impurity dimer. ™
(b) Spectral diffusion studies probe time-resolved fluo-
rescence-line-narrowing experiments. A small fraction
of the impurities within the inhomogeneously broadened
absorption line shape was excited by a narrow laser
pulse, resulting in EET from the initially excited states
to other impurities which are located at different micro-
scopic host environments.!%!! (c) Spatial diffusion
studies, which monitor the range of the spread of the
electronic excitation energy in an impurity band, were
conducted by the picosecond transient grating method.?

The recent spectral and spatial diffusion studies were
interpreted in terms of thermally induced incoherent
hopping, while it is still an open question whether some
of the low-temperature luminescence quenching experi-
ments should be interpreted in terms of a kinetic model
involving phonon-induced hopping of the electronic exci-
tation or, alternatively, whether an Anderson localiza-
tion of a triplet exciton is exhibited in these low-tem-
perature systems.

In this paper, we shall address ourselves to the prob-
lem of the incoherent, strong-scattering EET process,
where the excited impurity molecules have lost all
memory regarding previous energy migration events.
This state of affairs can be specified in terms of a mas-
ter equation for energy hopping in the impurity band,
which is characterized in terms of probabilities of EET
between randomly distributed pairs or impurities. It
was demonstrated recently by Sakun®! and by Haan and
Zwanzig?? that this strong scattering EET process in an
impurity band cannot be described in terms of an ordi-
nary diffusion process, but rather is characterized by a
dispersive (i.e., time-dependent) diffusion coefficient.
Explicit analytical expressions for the time-dependent
diffusion coefficient for incoherent EET were derived’~2*
within the pair approximation, i.e., for short times
and/or low impurity concentrations. The long-time,
high-coneentration characteristics of the dispersive
EET process constitute a challenging problem. Haan
and Zwanzig have conjectured that for long times an or-
dinary diffusion process is exhibited for EET in an im-
purity band.

Very recent theoretical progress in this interesting
field was accomplished originating from two independent
modes of attack. The first approach®"?® utilizes the
kinetic master equation to describe the time evolution of
the excitation probability. Haan’* and Gouchanour,
Andersen, and Fayer?® have derived explicit formal
Green’s function solutions for the master equation.
Gouchanour, Andersen, and Fayer?® were able to ad-
vance a self -consistent approximate relation for the
self-energy, resulting in a dispersive diffusion coef-
ficient, which is time dependent at short times and con-
stant at long times. The second approach rests on the
use of the continuous time random walk (CTRW) method
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applied by us? for the study of dispersive diffusion of an
electronic excitation in an impurity band, We were able
to derive closed analytical expressions for the frequency
dependence of the diffusion coefficient which spans the
entire time regime, demonstrating that the long-time
diffusion coefficient in the impurity band is constant,
corresponding to an effective superlattice. Both the
Godzik-Jortner (GJ)*® and the Gouchanour —Andersen—
Fayer (GAF)?® approaches provide a strong support to
the Haan—-Zwanzig conjecture.

In this paper, we report the results of a theoretical
study of dispersive diffusion of electronic energy in im-
purity bands, utilizing a novel approach to this problem
which is based on an averaged Dyson equation approxi-
mation (ADEA) to the solution of the master equation.
We shall demonstrate the close relationship between the
ADEA solution and the stochastic CTRW method. From
the point of view of general methodology, this interrela-
tionship between the ADEA and the CTRW is of consid-
erable interest in'relation to the general problem of dis-
persive transport in amorphous semiconductors. 2% %3
We would like to emphasize that the dispersive behavior
of the diffusion coefficient for energy transport bears a
close analogy to the problem of dispersive electron mo-
bility in disordered materials, *® whereupon the general
features of both energy and electron hopping can be ex-
plored from a unified point of view. From the practical
point of view, two new results were obtained. First, we
have derived an explicit analytical expression for the
time-dependent initial site excitation probability Py(#) in
terms of the configurationally averaged density of exci-
tation P(r, {}). Second, we derived an analytic expression
for the mean-square displacement >%(¢) of the electronic
excitation for dispersive diffusion, which is defined as
the second spatial moment of the average density of ex-
citation

sHp) :fdr(r ~-1p)%P(r, ) . (1.1)
P,(t) and Z%(#) constitute the two basic observables in
the description of dispersive diffusion. The third per-
tinent observable we shall discuss in this paper is the
time dependent diffusion coefficient D(t), which is close-
ly related to the mean square displacement by the defi-
nition
1 3

D(t)=;loz*(0)/at) = 5 f dr(r-r)’=P(r, ). (1.2)
These results are of considerable value for the inter-
pretation of EET experiments, such as luminescence
quenching, spectral diffusion, and spatial diffusion of
electronic excitation, and can be confronted with ex-
periment.

The outline of this paper is as follows: In Sec. II, the
microscopic time dependent probability of excitation
P(t) is derived from the master equation. In Sec. III,
we introduce the average density of excitation P(r, t)
which constitutes the fundamental quantity for the mac-
roscopic coarse-grained description of the EET pro-
cess. In Secs. IV and V, we obtain explicit expressions
for the pertinent experimental observables P(f), 1),
and D({) within the framework of the ADEA and the
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CTRW establishing the correspondence between these
two schemes. Section VI is devoted to the dispersive
diffusion in an impurity band where the transfer proba-
bilities are determined by isotropic multipolar interac-
tions while numerical results are presented in Sec. VII.

ii. MICROSCOPIC MODEL

We consider a substitutionally disordered two compo-
nent system, which consists of N molecules of an inert,
optically transparent host and Ny impurity molecules,

which are randomly distributed at the lattice sites. Con.

fining ourselves to flash excitation of the impurity, the
initial conditions at time i=0 imply that the probability
p,(R, t=0) of finding the molecule j located at », in the
excited state will be independent of the configurations
of the other (N, — 1) molecules

EJ(R’tZO)‘:F(Tj) s R=(71’7'2,---,"’N1) . (2-1)

This also implies the simplifying assumption that each
exciton is strictly localized at a particular lattice site,
generally known as single site approximation, omitting
any kind of interactions between clusters of sites, As a
consequence, the density matrix will be diagonal in the
site representation and we can reduce the problem to
the study of the time evolution of populations. In addi-
tion, we will assume in what follows that the total im-
purity number density C=N,/N is large relative to the
density C* of optically excited molecules

c*«<C (2.2)

s0 that the probability of exciton-exciton interaction
processes is negligible.

The microscopic time evolution of the excitation
probability Tb,(t) of an individual impurity molecule j at
time ¢ will be described by a master equation of the
gain-loss type:

L YCEN ST AOED SR CN
where

p,(8) =p,(t) exp(t/7)

and 7 is the lifetime of the excitation. The sum over n
is taken over all the impurities and w,, are the rates for
EET between the molecules 2 and j, and we assert that
wyy=0 when n=j. The way we are choosing the rates
wy, will fix the kind of randomness we are considering
here. Since we will concentrate in this work on multi-
polar resonance interaction, we are omitting any ran-
domness in site energies (diagonal disorder) and keep
only the randomness which is due to the distribution of
hopping rates in a spatially disordered medium.

(2.3)

The master equation (2. 3), which reflects the dynam-
ics of a particular configuration of our system, can
easily be rewritten in matrix form:

d

pr p(d=wp(#) , (2.4)
with

W}nz—ajnzwjl-*-wjn . (2.5)
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This transfer mairix W is real, symmetric, and singu-
lar. The latter feature means that summation with re-
spect to row—or column index—gives zero:

;WI,,:;WI":O ,

which is just the mathematical expression for the con-
servation of the number of excited impurities. The for-
mal solution of this first-order differential equation

(2. 4) is given by

p(R, ) =exp(W?) - p(R, 0) .

(2.6)

2.7

Hl. MACROSCOPIC MODEL

The quantities we are interested in, e.g., mean square
displacement, diffusion coefficient, or the time evolu-
tion of the initial site-excitation probability, are not de-
termined by a particular configuration of the system.
The experimental data provide only information about
the properties of the system sampled over all possible
configurations. The quantity we are therefore inter-
ested in is the average density of excitation. Until re-
cently, only approximate solutions for these observables
have been obtained, valid for short times or low densi-
ties. ™% In what follows, we will give a treatment
which provides a solution over the complete time and
concentration range and compare it with the recent inde-
pendent self-consistent treatment of GAF.?® The aver-
age density of excitation P(r, {) is defined as

Ple, 0= (32 6(e, - p, R, 1) (5.1
7
where
(---):V'"if drldrz-udr,“-o- (3.2)

v

denotes the usual configurational average under the as-
sumption of an independent and homogeneous distribution
of impurity sites (continuum approximation). Here, V
is the volume of the system.

Since the probability p,(R, 0) is taken to be independent
of the configuration of the other (N; — 1) molecules, the
initial condition for the P(r, f) is, according to Eq. (3.1),

P(r, t=0)=pF(r) , (3.3)

where p=N,/V is the impurity number density. Since
the physical observables we are interested in are ex-
pressed in terms of the moments of P(r, f), it turns out
to be convenient to introduce the Green’s function rep-
resentation for the solution of Eg. (3.1):

P(r, t)=fd % G(r,r'; )P(x', 0) , (3.9
where the configurationally averaged Green’s function
is defined as

Glr,x';t)=p1 D, zk:(é(r! —T)A,b(r,-r),  (3.5)
3
with
Ajk = [exp(tW)]ﬂz . (3 - 6)

1t is apparent that G(r,r’; ) is just a function of the dis-
tance |r —r’] and has the simple interpretation that it
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represents the average density of excitation in the case
of a 6-like initial distribution.

In the following, we are going to derive a representa-
tion for the averaged Green’s function which is amenable
to a perturbation treatment.

Performing now the Laplace transform (LT) of Egs.
(3.5) and (3.6), i.e.,

A __ ® -st
Alr, s) __/0‘ dte™stA(r, 1) , (3.7
we obtain
&(r,r';s)=p" 2 ; (0(r; ~r)ggdlr, -r'),  (3.8)
7

where g, is the Green'’s function for the probability of
excitation for a single fixed configuration

= [(s - w)-i]/k .

In the evaluation of the Green’s function (3.8), it is con-
venient and useful to separate the diagonal and the non-
diagonal contributions according to

(3.9)

&(r,1'; s)=plo(r ~1') D_(b(r, ~1)g,,(s))
4

+p-1,z&:<6(r, -1)gu(s)0(r, - r')) (3.10)

=p 6(r — ¥ )N = 1){6(r, — 7)g11(s)
+p (N = 1)(N = 2)(8(r; -r)gy(s)d(ry -1,

where in the second equality we have used the fact that
the configurational averages are independent of the spe-
cial labeling of the variables.

From this point on, one can proceed along two dif -
ferent lines to obtain a Dyson type equation for g,
and also for the averaged Green’s function G(r,r’, s).
The first approach rests on expressing Eq. (3.9) ina
form which results in a Dyson equation with a renor-
malized vertex function and then perform the configura-
tional average upon this quantity. We shall demonstrate
that this approach is intimately connected to a stochas-
tic, semi-Markovian description of the process within a
generalized random walk model. This method was in-
troduced by us®® and will be explored in the present
work. The second approach rests on a self-consistent
diagrammatic method (SCDM) of GAF.?% We shall briefly
comment on that method in Appendix A, while inSec. VII
we provide some comparison between the results of our
semi-Markovian method and the results of the diagram-
matic approach.

IV. THE AVERAGED DYSON EQUATION APPROACH

In the following, we shall exploit a special property
of the transfer matrix W. According to Eq. (2.5), W
can be segregated into diagonal and nondiagonal contri-
butions

W=W4+W,,a )

(wa)“—_— —ZX:W“ ]

(Wnd)anwjn ? j;&n .

(4.1)
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Defining now the bare diagonal Green’s function or ver-
tex function g, as

90 = [S - wd].1 y

the following Dyson equation is obtained for the micro-
scopic Green’s function g [Eq. (3.9)]:

(4.2)

g=9,tg;W,,9 (4.3)
or equivalently
g=g,+gW,,; 9 - (4. 4)

Iteration of this equation by means of the operator iden-
tity

1 1 A1

S-A 5 ss-A (4.5)
results in the expansion

9=9, +g W, 8+ 9W,,9W,,90+--- , (4. 6)
which due to the relations

(g1, =830 5

gi=ls - W, @
can eagily be recast in the form
gijGJkgg+g(f)wlkgg+;g2wjng2wnkgg+'" (4.8)

This expansion is formally similar to the “locator” ex-
pansion in the theory of amorphous systems.?’ The
main difference is that in our case the locator is a non-
local quantity, so that the configurational average be-
comes quite involved if not impossible after a few itera-
tions.

The Dyson equation (4. 4) is an algebraic matrix equa-
tion and hence can be segregated into its diagonal and

nondiagonal parts
9;; =(90);; +(9Wna90)is » (4.9)

95 = (W80 (4.10)

respectively, or explicitly in terms of the individual ma-
trix elements

!
gu=8g 42, gimmgi=g1+WN-Ugpwy,gl,  (4.11)
g12=g“w12g2+2 Zimlin2 83
m
=gnuwi g5+ (N -2)g 1w g3, (4.12)

where we have assumed that there is translational in-
variance with respect to the starting point.

By means of this partitioning, we have obtained a set
of coupled algebraic equations. In principle, one can
perform the same procedure for any finite order of
iteration of the Dyson equation. However, as it turns
out, due to the nonlocal nature of the vertex function gl
one has to stay in zeroth order, i.e., not to perform
any iteration at all, since otherwise the configurational
averaging becomes untractable, Taking the configura-
tional average of Egs. {4.11) and (4.12), we get
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Z11=85+ (N = 1){gpwugDe, » (4.13)

Z1o=E11W1285 + (N —2)XZ15w3 89 ) » (4.14)

where the bar indicates averaging with respect to all
variables except the ones which appear as indices of the
quantity under the bar, while the indexed brackets (),
mean averaging with respect to the variable (1) indicated
by the index.

Equations (4.13) and (4. 14) will be used to derive ex-
plicit and tractable approximate expressions for the
pertinent physical quantities we have introduced in Sec.
II. Let us first concentrate on the probability P(¢) to
find an exciton at site 1 at time ¢ if it started there at
time {=0. This quantity is closely related to the di-
agonal part of the configurationally averaged Green’s
function.

To decouple the Eqs. (4.13) and (4.14), we omit
many-site interactions, i.e., we neglect the second
term on the rhs of Eq. (4.14). Substituting the approxi-
mate expression for gy, into Eq. (4.13), we get

§“=§‘1’+§,1(N—1)<w12g‘2’w21g‘1’>(2, . (4.15)

Using Eqs. (3.4) and (3.5) for the diagonal part of the
Green’s function, we can recast the LT of Py(f) as

po(s):é(r9 l', S) » (4-16)
which together with Eq. (4.15) results in
Py(s)=(s)[1 - pF ()], (4.17)

where we have defined the configurational average of
g} [Bq. (4.7)] as

“I;(S) =§'? ’
which is expressed in terms of the LT of a waiting func-
tion ®(#):

3(8) =(Q(t) ,

(4.18)

(4.19)
Q(t):exp(—zw“t) ,
H
so that
&(s) = fmexp(—st)fb(t)dt . (4.20)
0

The waiting function (4. 19) has a simple physical inter-
pretation. It is the probability that the exciton, which
is at gite 1 at time ¢=0, stays there till time ¢; this
probability is averaged over all configurations of the
remaining (N; - 1) sites,
The function F(s) appearing in Eq. (4.17) is
F(s)=(wy, g3 w181 @) > (4.21)

which can be explicitly rewritten as

F(s)=fowdte"‘fot dr ®(7)d(t - 1)

X '[ drywyy exp( = wy T)wyy expl— wyo(t - 7)]

= fow et o (t)x&(1) - A)dt , (4.22)
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where we have defined the convolution integral

<I>(t)%q>(t)=f0‘ dr &(1)8(t - 1) (4.23)
and where
f(t):fdrzwfzexp(—wmt) . (4.29)
v

We have also used here the fact that the microscopic in-
teractions we take into consideration will depend only on
the distance between two sites. Equation (4.17T) consti-
tutes our final result for Py({).

The second physical quantity we want to calculate is
the mean square displacement of the excitation
zz(t)=fdr(r-yo)2P(r, t, (4.25)
which is the second spatial moment of the average den-
sity of excitation P(v,f). Substituting the expression for

the average density of excitation from Eq. (3. 4) into
(4. 25) and taking the Laplace transform results in

E:s)=(N - 1)(r, —r1)2§12(8)>(2) , (4.26)

where gy,(s) is the conditionally averaged nondiagonal
part of the Green’'s function, which is given by Eq.
(4.14).

Again we have to perform an approximation on the set
of coupled equations (4.13) and (4.14). Omitting the
second term on the rhs of Eq. (4.13), i.e., we repre-
sent the averaged diagonal part of g by the waiting time
distribution only, we formally decouple Eqs. (4.13)

and (4. 14) and obtain
Z12=81 wyp gy + (N =253 wpgd ) - (4.27)

The zeroth and second moment is then easily calculated
and we get

(Z12 @, =8 Kwip 8D @y + (N = 2)(819) 5y(ws 8 2) (4.28)
and
<7’§12’12>(2)=g(1)(7§1 w12g8>(z,
+(N=2)(rd g3 wangd , (4.29)

with 7y =7, —7;. Equation (4.28) is now recast in its
final form by bearing in mind that the moments appear-
ing in Eq. (4.26) do not any longer depend on the site
variables used as indices. The second term of Eq.
(4.29) can be separated into three parts with the aid of
the identity

(4.30)

Renumbering the moments and omitting the “mixed”
term in Eq. (4.30), which is supposed to vanish due to
symmetry considerations, we finally get a set of coupled
equations

(120 =8 Kwi 8D @) + (N = 2X(Z10) 0)@128D 2)

and

2 2 2
Y91 =723 +2’}’23731 + LT

(4.31)

(rhigw @) =g2(r§1 wng(z’)m +(N - 2)«7’515’12)(2)(”12 gg>(2,
+{g12 v} Wi g @) » (4.32)

or alternatively
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<§12>(2) =g?(w1agg> (2)[1 ~(N~ 2)(10128'(2)) (2)]-1 (4.33)
and

rhgw e =[girii wpgpe, + (N -2Xgw o)riwpgd o))

X[1 - (N -2¥wpgD e, . (4.34)
Substituting Eq. (4.33) into (4.34), we,obtain
<7’§1§12><2)=1?_2(7’§1 m> @)

X[1 = (N =2)(wip8 0 ]2 . (4.35)

At this stage, we can utilize the local continuity rela-
tion, i.e., that the change of the population at a site 1
is equal to the flux out of this site

%Q(t): -;' W Q) , (4.38)

where Q(f) is defined by Eq. (4.19). We obtain by taking
the LT of Eq. (4.36) and formally averaging over all
configurations

sgi’:l —(N—1)<w21g‘1))(2, .
In the thermodynamic limit, Eq. (4.35) takes the form
rhgwae,=s%ri w89 /g2 (4.38)

Substituting Eq. (4.38) into (4.26), we finally obtain the
desired expression for the Laplace transform of the
mean square displacement

(4.37)

1

FUs)=sHUN - 1)(rd wpg Doy &5 (4.39)
which reads explicitly

$2(s) = fo T dte™a(Dx(1)/s%(s) (4.40)
with &(¢) being the waiting function (4.19) and

x(t)=4np ‘[n dr v w(v) exp[ - w(»t] . (4.41)

Equation (4. 39) constitutes the second final result of
the ADEA.

V. STOCHASTIC APPROACH: CONTINUOUS
TIME RANDOM WALK (CTRW)

This approach offers a very nice and physically trans-
parent picture of the hopping migration process in dis-
ordered systems, at leastas far as thebasic understanding
is concerned. We shall demonstrate that the final re-
sult for the mean square displacement agrees exactly
with the ADEA result (4. 39).

The CTRW constitutes a description of a stochastic
process which incorporates the essential physical fea-
tures of hopping EET among a random spatial distribu-
tion of impurity sites.®* This approach simulates the
hopping process among randomly located sites by a
CTRW on a discrete lattice which is characterized by a
distribution of hopping times. The basic underlying as-
sumption for the applicability of the CTRW is that the
spread in the impurity spacings is mild relative to the
large dispersion in the hopping times. In view of the
strong dependence of the transition probability for a
single hop on the interimpurity spacing, this assumption
is reasonable.

K. Godzik and J. Jortner: Electronic energy transport in disordered crystals

We shall now outline the basic results of the.
CTRW. " The average density of excitation can be
expressed in the form

t
P(r, )= f dar R(r, 1)®(t - 1), (5.1)
9

where R(r, f) is the probability per unit time to reach
the site r at time ¢ in an arbitrary number of steps while
&(¢) is the waiting time function [Eq. (4.189)] which cor-
responds to the probability for the excitation to remain
fixed in the time interval [0, ). Both functions appearing
in the integral in Eq. (5.1) can be expressed by means
of the joint distribution function u(r, £} of a (random)
hopping event, which represents the probability per unit
time for a single hopping event toc occur in the time in-
terval [t, £+ At] over a distance r. In order to establish
a recurrence relation for the probability to arrive at
time t at a certain site r in » steps, one has to make the
following considerations: In the usual random walk on a
lattice, ? it is assumed that the time interval between
two consecutive hops is constant. The process is es-
sentially Markovian. For a random distribution of im-
purities on a lattice, this assumption is no more valid
due to the distribution of transition probabilities. If we
consider instead the time intervals between consecutive
steps as independent random variables, which are char-
acterized by a common distribution, for an ensemble of
identical systems, then the process is semi-Markovian®
in the sense that the future of the migrating species is
not only determined by the probability of occupation of a
site r, but also by the time distribution to arrive at the
next site. The recurrence relation can then be set up
according to

Rylr, )=0,,,,0(t=0) (5.2)
Ry(r, t):Z ft dr(r —t'; t = T)Ry(r’, 7)

roo (5.3)

= z,b(r -r, t) +
and hence
t
R, .(r, 1) =Z f drp(r -’ t = TIR,(x', 7). (5.4
r’ 1]

Performing the summation over n and inserting the
initial condition (5.2) with ry=0 gives
t
R(r, t) —Z f dri(r =r', t - T)R(r', 7) =6, (8(t - 0) .
r ¢

(5.5)

Taking the Laplace transform of Eq. (5.5) reduces the
integral equation (5.5) to an algebraic equation

R(r,s) -2 ¥r —r', IR, s) =8, , (5.6)

which in the case of an infinite lattice or by imposing
periodic boundary conditions can be solved by means of
Fourier transforms
Uk, s):ZR(r, s)exp(—ik-r) . 5.7
r

The LT of R(r, #), i.e.,
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exp{ik- r)

o =3
Rir,s)=N zh: ms—,

where N is the number of lattice sites and k the lattice
quasimomentum is then expressed in terms of the gen-
eralized structure factor for CTRW:

(5.8)

Ak, s)=2$(r, s)exp(-ik-r) . (5.9)
r

To find the LT of P(r, {), we still have to specify the

waiting time function [Eq. (4.19)], which can be ex-

pressed in the alternative form

H
1 5.10
#(n=1 fo ary() (5. 10)
where
W)= ylr, ) (5.11)

is the distribution function of hopping times,

Taking the LT of Eq. (5.1), one finally gets an ex-
plicit expression for the excitation probability

P(r, s)=R(r, s)¥(s) , (5.12)
where
d(s)=s"1 - ¥(s)] . (5.13)

The time development of the initial site-excitation prob-
ability is then simply given by

P(0, s) =R(0, s)B(s)

=3(s) N3 [1-Alk, 9], (5.14)
3

where the sum gives the corrections due to the possibil-

ity that the excitation comes back to the site it initially

started off after an arbitrary number of steps.

From Egs, (5.12), (5.13), and (4.25), we also derive
an explicit expression for the LT of the mean square dis-
placement

sy = v2lr, 5)/s%8(s) . (5.15)
r
The final step in this analysis requires the specification

of the distribution function of the one-step hopping times
which can be approximated in the form?®

Plry, t) =vpw(ry) exp[-wlr)t] 8(1) ,

where &(?) is again the waiting time function [Eq. (4.19)
or (5.10)], the exponential in Eq. (5.16) being the wait-
ing time probability with respect to the jump to site r,,
with w(r,) being the single-site jump probability to that
site, and finally vp with v= V/N is the probability of site
r, being an accessible impurity site.

(5.16)

Equation (5, 15) together with Eq. (5.16) results in the
final form for £%(s) within the framework of the CTRW
which is identical with the ADEA result [Eq. (4.39)].
This result establigshes an important interrelationship
between the ADEA, which starts from the master equa-
tion, and the CTRW, which rests on a stochastic, ran-
dom walk picture. It should be noted that this exact cor-
respondence between the two diverse .approaches has
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been established for the mean square displacement and
also for the time-dependent diffusion coefficient. On the
other hand, the explicit expressions (4.17) and (5. 14) de-
rived for P,(t) in the framework of the ADEA and the
CTRW, respectively, have similar structure, but the
interrelationship between these results has not been
established,

VL APPLICATION OF THE AVERAGED DYSON
EQUATION APPROACH TO MULTIPOLAR
INTERACTIONS

In this chapter, we shall now give explicit expressions
for the Laplace transforms of the initial site-excitation
probability P,(#) and the mean square displacement
=X1) for a general class of multipolar interactions. For
the time being, we shall confine ourselves to the orien-
tationally averaged form of the interaction, neglecting
any effects due to the possible anisotropy of the interac-
tion. We then have for the transition probability

w(rt)=71"YRy/7)", n=6,8,10,..., (6.1)

where 71 is the lifetime of the electronic excitation and
R, is the critical radius for EET.

To perform the configurational averages in Egs.
(4.39) and (4.17), it turned out to be necessary to trans-
form back to time variables, then to perform the aver-
ages, and finally do a LT on the result. The reason for
this elaborate procedure lies in the nature of the vertex
function, which is a nonlocal quantity with a LT which is
not separable with respect to the spatial coordinates.

Assuming that the spatial coordinates can be treated
as independent random variables homogeneously dis-
tributed in a volume V, the configurational average of
the characteristic quantity in our description, the wait-
ing time function (4. 19) which is discussed in Appendix
B, results in

o, () =exp(-rT%) , (6.2)
with

A=¢cl(l -v),

v=38/n, (6.3)

T=t/T,

where the effective number of impurities in the critical
volume is ¢ =p[(4n/3)R}], with p being the impurity num-
ber density, T represents a reduced time, and » spe-
cifies the order of the multipolar interaction according
to Eq. (6.1). It should be noted that Eq. (6.2) consti-
tutes an asymptotic limit in the continuum approxima-
tion, so that corrections for the effects of discrete lat-
tice structure, which are expected to be exhibited at ex-
tremely short times, !® will be ignored in the present
analysis.

The LT of Eq. (6.2), i.e.,

3,(s)=73,(u) , (6.4)
with
& (u)= f ) dT e™T exp(— ATY) (6.5)
o
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and u=s7, can then be given in terms of its asymptotic
series expansions, % i.e., for large values of ,

&, (u)= u'iz (- 1) v+ 152"’ , (6.6)
m=0

with

z=xu" (6.7)
and for small values of «,

5.0 = (% E i +amle, 6.0
with

z=2"Vyy (6.9)

The short-time [Eq. (6. 6)] and the long-time [Eq. (6. 8)]
asymptotic expansions of the waiting time function are
valid for any multipolar interaction. Only for the case
of dipole—dipole interaction, i.e., n=16, could we find a
closed expression for the waiting time function in terms
of the complementary error function®:

Bo(u) =u[1 - 7'/%z exp(2?) erfe(z)], (6.10)
with
z=1/(2ul? . (6.11)

After establishing the explicit form of the waiting time
function, we are in a position to provide explicit results
for Py(t) and for Z*(#).. To calculate now the LT of Py(¢),
we substitute Eq. (6.1) into Egs. (4.17) and (4. 22) and
obtain the final result

Py(s) =7 dw)(1 - F(w)]? (6.12)

where

Flw)y=v(l =»)I'(1 -v)¢ f” aT e TT 3 (T)*®(T)] .
’ (6.13)

F(x) could be evaluated analytically by means of a series
expansion up to c=1. The details of this procedure are
outlined in Appendix C. For higher values of ¢ (>1), we
have evaluated F(«) by applying numerical integration
methods, which were checked by comparison with the
analytical results for low ¢ values.

To obtain in a similar manner an expression for the
mean square displacement, we rewrite Eq. (4.39) in
the form

S:s)= [ ) dt e""C(t)rb(t)] [s2&(s)]! (6.14)
0
with
Cc(H)= 417pfw dr r*w(v) exp[— w(n)t] . {(6.15)
0

Substituting now the general form of the interaction w(»)
[Eq. (6.1)], we finally get the result
$¥s) =vI(1 - p)eRrir Jw) 12 8(w)], v=5/n,
(6.16)

where

f(u):fde eI 1e(T) . (6.17)

0

Electronic energy transport in disordered crystals

For the special case n=6, i.e., dipole-dipole inter-
action, Eq. (6.17) has a closed solution in terms of a
parabolic cylinder function D.{2) of a complex argu-

ment z 3¢
J o(u) = 2Y°1(5/3)u™ ¢ expl(z2/4) D5 5(2) , (6.18)

with z =2/(24)"2. In all the other cases, J(u) is given

by its asymptotic series expansions, % j.e., for large u,
- 1
Jlu) = “Z (—)—F(m' v+ p)z™ (6.19)
m={

with

z=xu" (6.20)
and for small u values,

1 +

J(u )L u/uZ( ) (m “) , (6.21)
with

2=\ (6.22)

Equation (6.16) is now amenable to numerical calcula-
tions which are given below. Before doing so, it will be
instructive to consider two limiting cases of this final
result.

A. Asymptotic behavior

Before discussing the asymptotic behavior, we pre-
sent the relation between the LT’s of the mean square
displacement =(#) and the time dependent diffusion coef-
ficient D(#) which has been defined in Eq. (1.2). The
LT of Eq. (1.2) is obtained using the relation

- N _
f dte™t a—tP(r, t)=sP(r, s) - P(r, 0)
0

=sB(r, s) - pb(r—7,) , (6.23)

being simply given by

Bls)=7g farte -x?Ptr, )= TEUs) . (6.24)

B. Short-time limit

The short-time limit corresponds to the short-time
low concentration domain, where the pair approxima-
tion?1"?% ig valid. If we take just the first few terms of
the asymptotic expansions (6. 6) and (6. 19) for large val-
ues of u

() =ul[1 =T+ DA™+ 3020 + N2 ~-« -] (6.25)

and

Jw)=u[0(p) =T+ p)ra™ + 3T@v + At -+ .0 ],
(6.26)

respectively, we get the leading terms of an expansion
of the mean square displacement in powers of the im-
purity concentration c:

£3s) = vT(1 = p)I(p)cRiru™**
x{1+[rv+1) =Ty + u)/T(p) ™ + - -

which for the special case of dipole-dipole interaction
takes the explicit form

-}, (6.27)
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TABLE 1. Coefficients a, and a, in the ex~
pression for the short-time/low-density
limit of the LT of the mean square displace-
ment according to Eq. (6.28).

ay a
DE® 2.7988 0.3892
scom® 2.799 0.5182
ADEA/CTRW 3.1416 0.5297
ADEA/CTRW(BT) 2.7988 0.3337

£¥(s) = ay SRYT 057118

+a,ctRET V3573 4 0(s71V) | (6.28)

with the numerical values of the coefficients a, and a,
being given in Table I. The functional form of Egs.
(6.27) and (6.28) is identical with the results which have
been previously obtained by Haan and Zwanzig from the
solution of the master equation within the pair approxi-
mation and by means of a general scaling argument. %
The present derivation of these old results by our
ADEA/CTRW method inspires some confidence in the
present approach, although we have to point out that the
numerical values of the coefficients a; and a, are slightly
different from those resulting of the density expansion of
Haan and Zwanzig or from the recent SCDM of GAF
(Table I). The reason for these deviations is quite sim-
ple. The semi-Markovian approach we have pursued
corresponds to a self-avoiding walk approximation
where only a single hop in the chain of hopping events is
correlated. Thus, we allow only for the simplest con-
tribution of interferences of the hopping process with the
waiting time distribution and we completely discard in-
terferences between actual jumps (backtransfer events).

Backtransfer can be taken into account in a heuristic
manner, by including the effects of twofold exchange of
excitation between impurity pairs as done by Huber et
al. 3" This first order correction does not modify the
time dependence of the waiting time probability, but just
changes the numerical value of the exponent X in Eq.
(6.2). The waiting time function now is

&50(T) = exp[- 2T (1 - v)eT"] (6.29)

and the corresponding hopping time distribution takes
the form

Upa(r, T) = pv w(¥) exp| - 21w(") T1® (T) . (6.30)

This empirical procedure, which leaves the functional
form of &(#) invariant, just modifies the numerical coef-
ficients in Eq. (6.28), which are again presented in
Table I, being very close to the result reported by Haan
and Zwanzig. Although this approach is not self-consis-
tent, it is nevertheless quite remarkable that the short-
time or low density features of dispersive transport are
well established within our model. The importance of
certain diagrams may also be understood in a more ob-
vious way within our simple model than in the SCDM.

Equations (6.27) and (6.28) may easily be inverted
term by term and we finally get for the short-time limit

=¥T)=1.063a,cRT™®

Electronic energy transport in disordered crystals
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+0.839a,c’RETY® + O(T!VE) | (6.31)
R}
D(T) =0, 147aic79T'“6
— R2
+0.105azczT°T“3+0(T5/6) . (6.32)

The validity condition for the short-time limit is z
=11y <1, Invoking Eqs. (6.3), (6.4), and (6.8), we
get

(t/7)<[T(1 =3/n)c]™* .

Setting c=x(47/36)(R,/d)’, where d is the lattice con-
stant, 3 (~1) a numerical coefficient depending on the
lattice structure, and x the impurity mole fraction, we
get

(6.33)

(t/7)<[(47/38)T(1 - 3/n) % (Ry/d)] ™3 . (6.34)

Three general features of this result should be noted.
First, (¢/7)<x™3 and the short-time limit prevails for
low concentrations, as expected. Second, for the com-
mon case of a long-range dipole -dipole interaction
where n=6 and where common values of R,/d are in the
range 5-10, the validity range of the pair approximation
which exhibits the short-time limit is rather limited.
Thus, for x=0.01 and R,/d=5, we get (t/7)<3x1072,
Third, the upper time limit for the validity of the pair
approximation strongly depends on (R,/d). For high-
order short range multipolar interactions, or for short
range exchange interactions Ry/d~1 and in this case for
sensible values of x=0.01-10, the upper limit for (¢/7)
will be large. For example, taking n=12, x=0,01, and
Ry/d=2, we get the astronomical upper limit (¢/7)<10*
and transport will never become diffusive. We thus
conclude that, for short-range interactions, dispersive
diffusion effects will prevail over a broad concentration
and time domain,

Our formalism is not limited to the short time region
and we proceed to consider the second extreme case.
C. Long-time limit

Now we consider the small frequency limit where the
leading terms of Eqs. (6.8) and (6.21) are

)y =1/v 2V T/ V),
Juy=1/v A T (u/v)

respectively and u—0*, from which we obtain for the
mean square displacement

(6.35)

SAUs)=aly, v)RiTu? (6. 36)
with
oy, V)=v?i,(—(11—;VL))P(u/V)
XT(1 —p)tmevgtomuly (6.37)

Equation (6.36) as well as Eq. (6.24) for the diffusion

coefficient are immediately inverted resulting in
M) =a(u, VRET ; (6.38)

and we find that the long-time result exhibits the char -
acteristics of a conventional diffusion process where
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TABLE II. Long-time diffusion coefficient D =D%
o¢ “m2)/3p% 771 for multipolar interactions with n = 6—12
andc=1.

n 6 8 10 12
D~ 0.5068 0.1275  0,0445 0.0154
D” (BT) 0.4022 0.0638  0.0140 0.0031

SHT)oT and D(T)=a(y,v)RY/67 is independent of 7.

Table II gives the long-time diffusion coefficients for
various multipolar interactions with and without back-
transfer being taken into account. Our result for long
time EET in an impurity band is characterized by the
same functional form as that obtained for the diffusion
coefficient of the elecironic excitation on a superlattice.
For example, for the special case of dipole-dipole in-
teraction (n==6), the long-time diffusion coefficient
(Table II) is quite close to that for a regular lattice,
e.g., for a SC lattice, D/(c¥°R3/7)=0.409.

The validity condition for the onset of long-time be-
havior is, according to Eq. {6.9), z=2"V"4<1, whieh
implies that

(/7> (1 -3/n)e)™°.
This result is complementary to Eq. (6.33).

(6.39)

VIl. NUMERICAL CALCULATIONS

We have conducted a series of numerical model cal-
culations for the three pertinent experimental observ-
ables: the initial site-excitation probability Po(t), the

1.00 T T 7 T l

1.DE(©)
- 2.DE(E +2?) -
3.SCOM(3)
4.5CDM (2) |
5. ADEA/CTRW

6. ADEA/CTRW(BT)

0.80

2
o/T)

D(M)/(R

FIG. 1. The time dependent diffusion coefficient D(T) for
dipole—dipole coupling (» =6} and impurity concentration €=1.0.
In this figure, a comparison is given of the results obtained
within three different schemes: the first order DE(c) [curve (1)]
and the second order DE(Z+Z°) [curve (2)] density expansion
(Ref. 22), the three-body SCDM(3) [curve (3)] and the two-body
SCDM(2) [curve (4})]. SCDM results (Ref. 25) and the resuits
obtained by the ADEA/CTRW method without [curve (5)] and
with {curve (6)] backtransfer taken into account.
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1 T
I.DE(E)

| I T1
; 4.5CDOM(2)

2 DE(5+%%) ; 5.ADEA/CTRW
3.5CDM(3) : 6.ADEA/CTRW(BT)

E/r)
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L i ! 1 |
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1
2.5

FIG. 2. The time~dependent diffusion coefficient D(T) for
dipole—dipole coupling (z =6) and impurity concentration ¢ =5.0.
Figure 2 presents again a comparison of the results obtained

by the three methods DE, SCDM, and ADEA /CTRW demonstrat-
ing the behavior in the crossover region between dispersive and
diffusive transport. Notation identical with that of Fig. 1.

mean square displacement of the excitation ZX#), and
the time dependent diffusion coefficient D(f}). These cal-
culations were performed using our ADEA/CTRW
scheme where Pt} was expressed by Egs. (6.12) and
(6.13) while %) and D(f) are given in terms of Eqs.

(6. 16) and (6. 21), respectively. The LT’s from the fre-
quency to the time domain were calculated using the nu-
merical procedure by Stehfest.*® The ADEA/CTRW re-
sults were compared with the Haan and Zwanzig results
which originate from a density expansion and with the
recent results of GAF who utilized the self-consistent
diagrammatic method (Appendix A). Numerical data
will be reported to explore the dependence of energy
transport on the range of the multipolar interaction vary-
ing # in Eq. (6.1) in the range »=6-12, and to investi-
gate the concentration dependence of the EET process
varying the reduced concentration of the impurity in the
range ¢=1-10, so that the impurity mole fraction is
x=1c(36/41)(d/R,)?. 'The time dependence of the observ-
ables was investigated in the range T=1/7=0-2 as due
to the finite lifetime of the excitation longer times are
of no interest.

First, we confront the results of our method with re-
sults obtained by other methods, In Figs. 1 and 2, we
have compared our results for the time-dependent diffu-
sion coefficient for » =86 to the two low-order resulis
from a density expansion as well as to those recently ob-
tained by the SCDM. For c¢=1, dispersive transport
occurs over the whole range of 37. All the curves of
ADEA/CTRW and SCDM differ remarkably from the
simple pair approximation. The ADEA/CTRW curve
modified for backtransfer is close to the three-body cor-
rected result of Haan and Zwanzig which is practically
indistinguishable from the best approximation in SCDM.
The result in SCDM, which uses the pair approximation
for the self-energy, turns out to be of quite similar
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FIG. 3. The time dependence of the generalized diffusion coefficient D(T) for dipole~dipole interaction (r =6) is shown for various

impurity concentrations c.

functional form as the CTRW curve except to 2 uniform
shift along the vertical axis. For somewhat higher con-
centrations ¢=>5, the density expansion technique breaks
down and both the pair approximation and the three-body
density expansion result are inadequate. Both fail to
give any meaningful result at long times (¢>7) and high
densities. ADEA/CTRW and SCDM again differ only
with respect to the magnitude of the diffusion-coefficient
but not with respect to the general characteristics of its
time dependence. We conclude that both our ADEA/
CTRW method as well as the SCDM of GAF are adequate
to establish the gross features of dispersive diffusion
for EET determined by dipole—dipole coupling (x=6)
over the entire time and concentration domains.

Second, we shall consider the cardinal problem of the
crossover from the dispersive to the pure diffusive be-
havior. Numerical calculations were conducted using
the ADEA/CTRW method over a broad concentration
range ¢=0.1-10. Typical results for the » =6 case are
portrayed in Fig, 3. At very low concentration c=0.1-
1.0 [or x=2x10"-2x107 for (d/R,)=1/5), pure dis-
persive diffusion is exhibited over the entire time region
of interest. Unfortunately, at these low concentrations,
the diffusion length is rather low being of the order of
L~Rgc"3 so that for c=1.0 L~R,. Deviations from -
conventional diffusive behavior due to dispersive trans-
port will be extremely difficult to observe, At higher
densities ¢=5-10, the diffusion coefficients for n=6
reach a constant, time-independent limiting value at ¢/7
>0.3. This result is in accord with the qualitative pre-
dictions of Egqs. (6.34) and (6.39). For large densities

©>10 (x>0, 02 for d/R,=1/5), the dipole—dipole induced
EET exhibits essentially only diffugsive trangport. The
experimental verification of the theoretical results for
the effects of dispersive diffusion in the case of long-
range dipole-dipole coupling will require very careful
experimental work to establish small deviations from
conventional diffusive transport at the intermediate con-
centration range ¢~5-10 (x~0.01),

The second relevant physical variable which might in-
fluence the crossover point from dispersive to diffusive
transport is the range of the interaction potential and the
excitation transition probability [Eq. (6.1)] between the
impurities. As shown in Figs. 4 and 5 for the densities
¢c=1 and ¢=5, respectively, the crossover to diffusive
transport is shifted to larger times the more shortranged
the interaction becomes, which is in accord with the pre-
dictions of Eq. (6.34). To explain this interesting fea-
ture, we assert that spatial inhomogeneity due to the
random distribution of impurities is more easily aver-
aged out in the case of long-ranged interactions like di-
pole—-dipole (n=6) than in the case of short-ranged in-
teractions like higher multipoles (x> 6) or exchange.

The effects of dispersive diffusion should become more
pronounced for EET dominated by short-range interac-
tions and this novel and interesting feature should be
amenable to experimental observation.

To provide some quantitative predictions regarding
the effects of dispersion of D({) on EET in an impurity
band, we have calculated the diffusion length L =[S()]V/2
at =17 for n="6 and for =10 as a function of the im-
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FIG. 4. Time dependence of D(T) at ¢ =1.0 for multipolar in-
teractions of order n=6, 8, 10.

purity concentration ¢. In Fig. 6, we present the ¢ de-
pendence of L together with the values of the conven-
tional diffusion length obtained from the relation L
=(6D7)"?, where D is the long time diffusion coefficient
of Table II. The deviations from ordinary diffusion are
much more pronounced in the case of short-ranged in-
teractions, as expected,

Finally, after considering the mean square displace-
ment and the time-dependent diffusion coefficient, we
turn to consider the third experimental observable, the
initial site-excitation probability Py(f). P, is of consid-
erable interest as it can be experimentally determined
from laser fluorescence line narrowing experiments
and, moreover, the combination of picosecond optical
excitation techniques with ultrafast fluorescence inter -
rogation methods using streak cameras will enable the
monitoring of this observable on the psec time scale
where effects of dispersive transport will be prominent.
In this context, it is important to note that P, ({) can be
monitored on a much shorter time scale than £2(#) and
D(t). In Fig. 7, we present the time dependence of P,
for the n=6 case. As P(¢) is related to the waiting
time function &(¢) as is evident from Eq. (6.12), we have
found it convenient to plot also In Py(#) vs ¢t3" (Fig. 8)
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FIG. 5. Time dependence of D(T) at ¢=5.0 for n=6, 8, and
10.
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FIG. 6. The diffusion length L =[£%)]}/? at t=7 as a function
of the impurity concentration ¢. The solid curves describe L
vs (/N2 for =6 and n=10. The dashed curves represent
the long-time diffusion length L =(6D7)!/2, where D is the long
time diffusion coefficient of Table II. The left vertical scale
and the scale at the bottom are for the curves with » =6, while
the right vertical scale and the scale at the top are for the
curves with » =10,

according to Eq. (6.2). For c¢=1, the simple waiting
time distribution (6. 2) exhibits the same time depen-
dence exp(—AT'?) as the result of the SCDM with three-
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FIG. 7. The time dependence of Pt} is shown for =6 and im-
purity densities ¢=1.0 and ¢ =5.0. The figure presents a com~
parison between the simple waiting time function &(¢)

[Eq. (4.19)], the two-body and the three-body SCDM results,
and the result by the ADEA/CTRW method.
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FIG. 8. The time dependence of the natural logarithm of P (¢)
is displayed versus T2,

body interactions taken into account in the self -energy,
but the numerical value of A is different in the two cases.
This SCDM result also coincides with the heuristic ini-
tial site-excitation probability of Huber et al-,*" which
contains corrections for effects of back transfer. The
perfect agreement may be fortuitious. Our ADEA re-
sult at c=1 shows a time dependence which is quite sim-
ilar to that exhibited by the SCDM when the pair approx-
imation is applied to the self-energy; this time depen-
dence, however, reveals some deviations from the
exp(—ATY?) law. At higher values of ¢, a fast decrease
of Py(t) vs ¢ is revealed and the relevant time scale for
monitoring the ¢t dependence of this quantity is shifted

to shorter times.

VIll. CONCLUDING REMARKS

Four theoretical methods were recently developed to
explore the characteristics of dispersive energy trans-
port in an impurity band:

(1) the density expansion method originally advanced
by Sakun®' and by Haan and Zwanzig?;

(2) the self-consistent diagrammatic method (SCDM)
proposed by Gouchanour, Andersen, and Fayer (GAF), %
who studied the two lowest approximations for the self-
energy (pair approximation and three-body interactions)
in a Dyson type equation for the average density of ex-
citation;

(3) the stochastic continuous time random walk
(CTRW) method adopted by us® and further developed
in the present paper;

(4) the average Dyson equation approach (ADEA) pro-
posed and explored in the present work.

The density expansion method has been extremely
important in establishing the effects of dispersive,
i.e., time dependent, diffusion in the short-time, low
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concentration domain. From the technical point of view,
this approach is based on a partial summation of all
diagrams in the expansion for the mean square displace-
ment which are of first and second order in the impurity
density ¢. From the point of view of general method-
ology, this formalism rests on general scaling argu-
ments. However, as demonstrated by our model calcu-
lations in Sec. VII, even the second-order density ex-
pansion fails for long times, as expected. It is appar-
ent that the long-time behavior of T2(#) and of the diffu-
sion coefficient cannot be deduced using the density ex-
pansion technique. Both the SCDM and the CTRW lead
to the important conclusion that for long times an or-
dinary diffusion process is exhibited for EET in the im-
purity band. The SCDM of GAF and our CTRW method
seem to be unrelated, as the former starts from the
Haan—-GAF solution to the master equation for incoher-
ent EET while the latter rests on a description of a
stochastic random walk process which simulates the en-
ergy hopping among randomly distributed impurity sites
in terms of a distribution of hopping times. The inter-
relationship between the stochastic CTRW approach to
EET and the general treatment of EET in terms of a
Dyson type equation for the average density of excita-
tion was provided in the present work by the ADEA
method. Starting from the master equation for EET,

we established the close relationship between the ADEA
and the CTRW, demonstrating that =%(¢) and D(t) are
identical, while Py(f) has a similar structure in both
schemes.

Both our ADEA/CTRW formalism and the SCDM were
utilized for numerical calculations of the pertinent ex-
perimental observables, The qualitative and quantita-
tive information emerging from these two schemes is
very similar. At the present stage of development of
the theory, our ADEA/CTRW formalism seems to be
more transparent as compared to the SCDM, particu-
larly since it demonstrates how the long-time behavior
is related to interference effects between direct hopping
events and the contributions of the waiting time function
in our approximation, or in general the diagonal part of
the Green’s function and to interferences of individual
direct hopping steps of the exciton. From the technical
point of view, it should be noted that while both our
ADEA/CTRW and the SCDM can be used for numerical
calculations of dispersive transport induced by dipole -
dipole interactions (»=86), the SCDM cannot be easily
adopted to study transport induced by high-order (n> 6)
multipolar interaction while our ADEA/CTRW scheme
yields general results for any order of the multipolar
coupling.

Several comments regarding future extensions of the
SCDM and of the ADEA/CTRW schemes are now in or-
der. From the point of view of general methodology,
the SCDM (for n=6) can be systematically extended, in
principle, to include higher-order effects, although we
suspect and expect that upgrading of this method beyond
the three-body approximation for the self-energy in the
SCDM will be a formidable task. The ADEA/CTRW ap-
proach seems to us to be terminal as far as basic ex-
tensions of this formalism is concerned as it is practi-
cally impossible to systematically relax the approxima-
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tions (i.e., rerandomization after each hopping event)
inherent in these two schemes. On the other hand, the
ADEA/CTRW approach can be extended in several prac-
tical directions, which are of physical interest: (a)
Technical improvements of the scheme: One may con-
sider the possibility of using better formalisms for the
waiting time function which are superior to the con-
tinuum approximation {Eq. (5.2)] utilized herein.* (b)
Extensions to lower dimensionality: All the formalism
presented herein pertains to dispersive diffusion in
three-dimensional systems where the hopping proba-
bility is spatially isotropic. Incoherent EET between
impurity states in systems where the exciton band struc-
ture is essentially determined by one-dimensional (1D)
and two-dimensional (2D) interactions are of interest.
Extensive theoretical studies?’ and computer experi-
ments*! were recently conducted to explore the features
of incoherent EET in 1D. Regarding 2D systems, we
would like to emphasize that this state of affairs pre-
vails for triplet EET in naphthalene. The ADEA/CTRW
formalism can be extended in a straightforward manner
for the 2D situation. *°

The present formalism of dispersive transport pro-
vides a comprehensive framework for a detailed analy -
sis of experimental data which pertain to the direct in-
terrogation of Py(t) and of Z%#) or D(t). Spectral diffu-
sion studies as well as spatial diffusion studies provide
such experimental information. Another class of inter-
esting experimental data involves luminescence quench-
ing of the emission from the impurity band induced by a
chemical trap. The effect of dispersive transport on
energy trapping from an impurity band is yet unknown.
Blumen and Silbey*® have provided a treatment of such a
trapping process. However, their analysis essentially
considers a diffusion controlled trapping process with
the trapping rate being proportional to the long time dif-
fusion coefficient Dec¢?, with y=(1+v - p)/v=(n-2)/3,
thus disregarding the effects of dispersive diffusion.
The problem of trapping from an impurity band is of
considerable inherent and practical interest and de-
serves further study.

Dispersive EET in an impurity band falls into the
broad class of dispersive transport in disordered ma-
terials, bearing a close analogy to dispersive mobility
in amorphous semiconductors. 28 Experimental studies
of dispersive incoherent EET, where the transition
probability is determined by a power law, are amenable
to a complete interpretation in terms of our theory. On
the other hand, in the case of dispersive mobility for
which the transition probability is exponential, some
difficulties arise in the detailed derivation of the LT of
the waiting time function. Thus, experimental and theo-
retical studies of EET in substitutionally disordered
molecular solids will serve as a touchstone for the un-
derstanding of the general problem of dispersive trans-

port,
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APPENDIX A. COMMENT ON THE SELF-
CONSISTENT DIAGRAMMATIC METHOD (SCDM)

For the sake of completeness, we present a brief
analysis of the diagrammatic method utilized by GAF
for the ERT problem.? Starting from Eq. (4.9), we can
readily write down the corresponding Dyson equation for
the microscopic Green's function g:

g=g"+g'Wg , (A1)
where now the vertex function g° is local, i.e., a diag-
onal matrix of the simple structure

(go)jk:s-léjk . (A2)

Applying successively the operator identity Eq. (4.5) to
Eq. (Al) results in the following identity for g,,:

gin= st «grjk ,
(A3)
Z="0p +5-1ij +s7 Z: WypWop +r00
n
which can be expressed in the concise form
in= 2 B, B (a9
n26

The first few B, coefficients, as well as their appro-
priate diagrammatic expansion, can easily be obtained
and have been given in Refs. 23, 25, and 43. In per-
forming the configurational average on Eq. (A4), ap-
proximations of a different level of sophistication have
been made.

The simplest approximation is to expand the averaged
Green’s function in a power series in the density, which
corresponds to a partial summation of Eq. (A4) by sum-
ming up all graphs of first and second orders (or even
higher orders) in the impurity density. The validity of
this approach is limited to short times or low densities,
and nothing can be learned about the long-time behavior.
The second approach is to perform a reduction of the
appearing diagrams by exploiting topological equiva-
lences and to calculate only the irreducible graphs. The
first attempt along this line is due to Moore*® in the con-
text of electronic conduction in amorphous systems. His
reduction scheme was incomplete in the sense that he
did not exploit the special role of the diagonal part of
the microscopic Green’s function, which itself corre-
sponds to a partial summation of irreducible diagrams.
Taking advantage of this feature of the diagrammatic
expansion {A4), GAF recently managed to derive a Dyson
type equation for the averaged Green’s function. The
topological reduction they performed consisted of re-
moving all loops which did not interfere with the path of
migration by renormalizing the vertex by the averaged
diagonal Green’s function. The simplified path, which still
contained loops and which however interfered with the
path of migration, was then further reduced to a simple
connection of irreducible graphs. These irreducible
graphs are diagrams which cannot be further divided
along an interaction line. The sum of these irreducible
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graphs represents the self-energy of the problem and is
due to the renormalization of the vertices itself a func-
tion of the averaged diagonal Green’s function G%(s).
The pseudo-Dyson equation then reads

G%(s)
1-pG(s)E[k, G¥(s)]

Gk, s) = (A5)

Although this has been an important step forward to
the solution of the problem, there still remained the
task to solve for the diagonal averaged Green’s func-
tion. Haan and Zwanzig were the first who pointed out
the important sum rule

lim G(k, s)=1/s ,
R=0

(A6)

which just indicates the conservation of probability. By
means of this sum rule, GAF found the relation between
the self-energy and the diagonal Green’s function

1

_— . T
s +p2[0, G*(s)] (A7)

G¥s) =

Equation (A7) allowed one to obtain good solutions to
G*(s) which is identical to the LT of initial site-excita-
tion probability P,(f), while staying in a reasonable low
approximation for T (pair or three-body approxima-
tions),

As will become obvious by comparing the numerical
results, there are only slight differences between this
gelf -consistent scheme and the ADEA/CTRW described
in Secs. IV and V.

APPENDIX B. THE WAITING TIME FUNCTION &(r)

In this Appendix, we shall derive the waiting time
function &(¢) [Eq. (4.19)] within the continuum approxi-
mation. The physical situation we consider is a single
excited donor in the presence of N, acceptors distributed
at random around the donor site. The question we ask
then is as follows: What is the probability Q(#) to find
the excitation still localized at the donor site at some
time t? Q(f) obeys a simple linear differential equation

Na
2 Qr=0,0= 2w, Qr=0,1), (B1)
k=1

with the initial condition
Q(’r:O, t:O)::]. . (B2)

The solution of this initial value problem for a fixed
configuration of acceptors is

Q) =exp (-:2: wo,ht)

Na
= exp( - ’I,Uork t) .
k-!

The macroscopic time evolution of Q() is then obtained
by performing a configurational average on Eq. (B3).

(B3)

In the following, we make the assumption that the r,
are statistically independent variables with a distribu-
tion function f(r,). Neglecting the detailed lattice struc-
ture, we obtain in the continuum approximation for the
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average of Eq. (B3):
Ny R
lim H f exp(—wo,kt)f('r,,)dvk .

R== k=1 "0
NA -0
NA/Vinsconst.

(N = (B4)

We now assume that the random variable r, is homo-
geneously distributed in the volume V,, i.e., we take
the distribution function

fr)=4mr?/Vy . (B5)

Due to the specific form of f(7), Eq. (B4) can easily be
rewritten as

lim

R-AQ

Ny==
DA=conat.

R Na
o(f) = {1 - j(: drfir)[1 —exp(—wo,t)]}

:exp{- 4mp, f”drrz[l —exp(-wg,t)]} . (B
0

The same result would have been obtained if we would
have assumed that f(¥) describes a Poisson distribu-
tion.!® In the case of multipolar interactions of order
n, Eq. (B6) reduces finally to

&(t) =exp[-cT(1 - 3/n)T¥"] . (B7)

A derivation of a formula for &(¢) without invoking the
continuum approximation has been given by Yonezawa
and Matsubara*! and independently by Leath and Good-
man,*’ These authors exploited the cumulant technique
in performing the configurational average on Eq. {B3)
and found the general result

&(t) = exp Z In{l - ¢[1 -—exp(- wo,kt)]} , (B8)

k

which has recently been reconsidered by Blumen and

Manz!? in a numerical study of the time evolution of
o(t).

APPENDIX C. EVALUATION OF F{s)
According to Eq. (6.13), we can write F(s) in the
form
© y
F(s)= ks"'f dy e"y"'zf dx exp{- [x(x* +(y - x)*]},
0 0
(C1)

where we have changed variables by means of the sub-
stitution y=s7 and where 2=cv(1 -»)I'(1 -») and «
=A/s*., The convolution integral is then rewritten by
expanding the exponential into a power series

foy dxexp{-a[x’+(y -2}

S (cam  ( ,,,,( x)
=§§Wy fodxx 1—3—)' . (CZ)
Using the identity
, 3 Hr=1)-- (r-1+1
(1= =1+2 (-1 ol
lz]<1, (c3)

we end up with a pure algebraic expression for the con-
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volution (C2):

j;y dx exp{-alx’+(y - %)}

- a)M‘ﬂl

mln!

+Z( 1) r-1)--- (T—l“’"l):l ,

=1 - m+1+1)

yv- (n+m)+i [(V' m+ 1)-1

(CY

where ¥=v* n. Substituting Eq. (C4) into (C1) and per-
forming the integration with respect to y, we obtain the
final result

F(s)—kZZ(uﬁl"ﬁ" Llvm + 7+ 1))

m=0 n=) S mint
S, oD (o1t
x[(y m+1) -I-,Z=l:(—]~)z Ny m+1+1) ] :
(C5)
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