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In this paper we advance a new approximation scheme for the dynamics of an N particle system, which is
based on the expansion of the Heisenberg equations of motion in powers of h in the coherent state
representation. The time evolution of the physical observables is generated classically by a Hamiltonian
H,, which is derived from the original Hamiltonian by adding 2N ? virtual particles to the system. These
virtual particles are related to the dispersion of the quantum mechanical wave function, and reflect the
(time dependent) sensitivity of the instantaneous positions and momenta x;, p; to the variation of the
initial conditions. The approximate equations of motion preserve the commutation relations between the
coordinates and the momenta and the total (quantum) energy. The present approximation may be adequate
for the study of the dynamics of coupled anharmonic oscillators in the quasiperiodic regime.

I. INTRODUCTION

The semiclassical approximation,! introduced in the
early days of quantum mechanics,? is an important tool
for the study of the properties of microscopic systems
in states characterized by high quantum numbers. As
such, it continues to attract considerable attention. The
semiclassical approach was applied extensively to the
theory of molecular collisions utilizing the stationary
phase approximation and the superposition principle®=®
or the classical trajectories method.® Recent develop-
ments include a comprehensive study of bound states in
the semiclassical limit’ and many other important con-
tributions.®!® The main effort in these studies was di-
rected towards the calculations of the energy spectrum
and the stationary wave function of the system. While
these quantities yield direct information concerning the
resonance frequencies and the transition probabilities,
they do not provide convenient starting point for the
study of the spatial dynamics of the system. The con-
ventional quantum mechanical approach which rests on
the expansion in terms of the basis set functions imposes
several practical difficulties at high energies.

The dynamics of classical coupled harmonic oscil-
lators attracted much attention in the past two decades.
This was mainly due to two aspects of such systems.
First, the observation that nonlinear coupling between
harmonic oscillators do not necessarily result in sta-
tistical equipartition of the energyu attracted consider-
able interest.!>~!* Second, the nature of the soliton'®
and its dynamics are under active study.'® Recently,
there were few attempis to apply the knowledge and the
concepts which were acquired in the course of the study
of classical systems17 to quantum systems‘.m'19 This is
most naturally accomplished in the spirit of the semi-
classical approach by adding quantum corrections to the
classical equations of motion. As we have already
noted, the traditional semiclassical formalism is not
directly applicable for this purpose, so that new approx-
imation schemes were advanced. Ichikawa et al.?
established a quantum correction to the classical equa-
tions of motion of a linear anharmonic chain by assum-
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ing that a coherent state preserves its coherence proper-
ties for times which are long relative to the time scale
of the relevant dynamic phenomena. Within the frame-
work of this approximation, they demonstrated the ex-
istence of solitons in an anharmonic chain with cubic
nonlinearity. This method was generalized and applied
also to the Morse and Toda lattices,?! leading to the ex-
hibition of solitons in these systems. It is known, how-
ever, that in the presence of nonlinear couplings, an
initially coherent state loses its coherence properties.2
Therefore, it is impossible to estimate, even qualita-
tively, the error which is introduced by the Ichikawa
et al. approximation. A different semiclassical ap-
proach to the soliton problem based on a generalized
WKB theory was devised by Shirajufi.?® In another re-
cent work, Heller? derived the approximate equation of
motion for a wave packet characterized by an arbitrary
number of parameters by utilizing a variational prin-
ciple.

2

The approximation scheme introduced in the present
article is based on the expansion of the Heisenberg
equations of motion in #Z. This approach differs from
the traditional semiclassical methods® which rest on ex-
pansion of the Schridinger equation. In this manner,
we derive equations of motion which have a classical
form with a quantum correction. The same idea was
recently used to study the condition of stochasticity in a
particular forced nonlinear oscillator.”® The formalism
given here applies to any system of N particles with a
velocity independent potential. Our equations of motion
have the virtue of preserving, to first order in %, the
commutation relations between the coordinates and the
momenta, and the total (quantum) energy.

Il. THE SEMICLASSICAL EQUATIONS OF MOTION

We consider a quantum system of N interacting parti-
cles with the Hamiltonian

N 22
He D LLav(zy, ... 5. (1)
my

#=1 2

As a basis to the Hilbert space, we use the Gaussian

© 1979 American Institute of Physics

Downloaded 17 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Y. Weissman and J. Jortner: Semiclassical approximation to quantum dynamics

functions
N
lg)">=g‘§j9ﬂj>’ (2)
where

- 2 . .

and g, are constants with dimensions of length, which
serve as input data for the problem., We introduce the
variables

_ (& i )
a’~\/§<01+ n ") @)
so that
— 171 -
glz%(a,+a,), n,:m(a,—a,). 5)

The basis functions (2) can be labeled now in terms of
the complex variables a. It is readily recognized that
la) is a coherent state,?® which constitutes an eigen-
state of the boson annihilation operator a,;

a,la):a,la) , ‘ (6)
where
(5,0
a,_ﬁ(oj+ %5,) . 0

The Heisenberg equations of motion for the operators
%, and b, are

di; _H _py @®
at — 8, m,’

= -, 9)

In what follows, we shall use two semiclassical ex-
pansions, which are proved in the Appendix: (A) First
semiclassical expansion: Let Q and €, be any two oper-
ators defined in the N particle Hilbert space . Then,

(a|(Q2,| @)= 0,0, + (V,0, - V50,)+ 0(i2) , (10)
where
0,50, ) =(a|Qy,|a), (11)
a a
(va)k=§:“—u ) (Va).=a_a——h . (12)
(B) Second semiclassical expansion: Let Qe , Q

be a set of commutative operators defined in ¥y, and
let f be an analytic function of M arguments. Then,
(@|f@, ..

. ,Qﬂ)la>=f(ola cee ,Ou)

M
1 o%f . z
2 n,zx;: 90,90, (V.0 950,)+0(1?).

(13)

The nature of the term 0(%#2) is discussed in the Appen-
dix. From now on, we shall drop this term for the sake
of simplicity, It will be more convenient to use the vari-
ables £, and 7, instead of the a,. To carry out the
transformation, we introduce the following definitions:

O O 38
(vg)h:'-ﬁs_g: ) (vr)k=m 8_11’; . (14)
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It is easily verified that the term appearing in Eq. (13)

is

(V.04 ¥50,)= (9,0, V,0,) +i(V,0,* ¥,0,)
-i(¥,0,- v,0,)+ (v,0,- 9,0,). (15)

This expression can be simplified if @, and €, commute.
Using the first semiclassical expansion and Eq. (15),
we get

(C!l [Qk’ Q,](a): (vagk' vTle) = (vEQh' vaﬂl)

=2i[(v,0,- v,0,) - (v,0,- ¥,0,)] . (16)
Therefore, if {2,, 2,]=0, we obtain
(Vo0,* V50,)=(v,0, ¥,0,)+ (V,0," ¥,0,). an

Substitution of Eq. (17) into (13) yields

ErFQy, .., )| EmM=F0y, ... ,04)
M

L o : .
+3 24 50,50, [0 %0+ (9,0,- v,0)]. (18)

We are now in a position to derive the semiclassical
equations of motion. For the sake of simplicity, we
introduce

xj(E!"):‘(E"’r';cj‘g)")’ (19)
pyE M= (& mp; |6 m) . (20)

The equation of motion for x, is obtained by rewriting
Eq. (8) as

dx )
==i_ . 21
dat my (21)

To get an equation of motion for p,, we apply Eq. (18)
to (9) and choose &y=x, ...,y =xy, which results in

dpy__ 8
dat—  ex,

1<~ 8%y
X {V+§ ,,,24 EZa-x: [V Vex) + (Ve V,x,)]} :

(22)
Equations (21) and (22) have to be augmented by the
equations of motion for the gradients V,x, and V,x,.
These can be derived by differentiation of the primary
equations of motion (21) and (22):

d v

dt vc.rsz—‘;,:_jei s (23)
d 8 < av

di Vb= '5;: :L;’, 3;: Ve, ey - 249)

In deriving Eq. (24), we neglected terms of the order
of 7 in the rhs, since these terms will contribute terms
of order %2 to the primary equations of motion (21)-(22)
and such terms are discarded anyway. It should be
noted that this is a crucial step in the present approxi-
mation scheme, which enabled us to derive a closed set
of equations of motion for x, and p,.

>

In order to solve Eqs. (21)-(24), we have to supply
the initial conditions, These are derived from the re-
quirement that, at ¢=0, the Heisenberg and the Schrd-
dinger pictures coincide. From this requirement, it
follows that, at {=0,
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x=4¢, (25)

pjzﬂj s (26)
/3

Vex,=7012= vy VrP,———'\/—Z-—% % 27)

Vex,=0, V,p,=0, (28)

where v, is a unit vector in the N dimensional space in
the direction of the jth coordinate. Equations (21)-(28)
constitute a complete dynamic theory. It is important
to note that Eqs. (21)-(24) are isomorphous to the
classical equations of motion for a system of N+ 2N?
particles, which are generated by the (classical) Hamil-
tonian

K

el zmj zmj ij
1< 8y
2D S [(V,xy Vox)+ (e Vexy)]

2 S BBy (29)

The components of the vectors V,x,, V,x, and V,2,,
V,p, in Eq. (29) are interpreted as the coordinates and
the momenta, respectively, of 2N? additional “virtual
particles.” Thus, in the present approximation, all the
information about the quantum system characterized by
H can be derived from a purely classical study of H,.
Note that the only traces of quantum mechanics which
survived in the present treatment are the quantities 7
and o; which appear in the initial conditions.

111. CONSERVATION RELATIONS

Consider first energy conservation. Using the second
semiclassical expansion [Eq. (18)], it is easily verified
that

(E;”'HIE:TDZHS (30)
and therefore our equations of motion conserve the total

(quantum) energy.

Next, we demonstrate the conservation of the commu-~
tation relations of the dynamic variables. As a matter
of fact, in the derivation of Eq. (22), we used the com-
mutation of the operators Fc,. In what follows, we show
that our equations {21)-(24) do indeed preserve the com-
mutation relations of the various coordinate and momen-
ta operators in such a manner that

(& 2D = 25 2a1)=0, (31)
Gy P =itoy, (32)
where we introduced the shortened notation
@)= r[elgmn.
Using Eq. (16), we get

(7y %) =2i[(Vyx,+ Vexp) = (Vexy- Vex)] (33)
Dy DD =2l (Ve 0y Vypa) = (Vep,- Vepd)], (34)
(B Dal)=2i[(Vy 3" Vapp) = (Vex; - Vepy)]. (35)

Differentiating Eqs. (33)-(35) with respect to time, and
using Eqs. (23) and (24), we obtain

- -~ | SPTEA 1 . .
dif <[x”x"]>:m_,, <[x3: P;;D";;; ([xmpgb s (36)
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d o~ - 5oV . .
s Bobd=5r 2 o (buiid

x,,
8 8V . .
—537; £ g’ <[pj:xl]> s (37)
d . = 1 0~ =« 3 <~ 8V
T <[x,,m]>=;n-; ([P,,sz-*a;; g o, (x5 2] . (38)

Equations (36)-(38) determine the various commutation
relations in a unique manner once the initial conditions
are specified. From Eqs. (27) and (28), we see that the
initial conditions are

(x5 %D te0=Dys DD | tu0=6, (39)

<[£j!ﬁk]>

It is easily verified that Eqs. (31) and (32) provide
the solution of Eqs. (36)~(38) with the initial conditions
(39) and (40). Therefore, the commutation relations
conserve their correct values, and our previous as-
sumption about the commutativity of the coordinate
operators is justified.

0 =10, . (40)

IV. PHYSICAL SIGNIFICANCE OF THE
VIRTUAL PARTICLES

The additional virtual particles resulting from the
present semiclassical treatment can be assigned both a
classical and a quantum interpretation. From the
classical point of view, £; and r, are the initial coor-
dinates and momenta, respectively. The virtual coor-
dinate (V,x,), represents the change in the instantaneous
value of x, due to an addition of the quantity 0,/V2 to the
initial condition &,, the virtual momentum (V,p,), repre-
sents the change in the instantaneous value of p, due to
an addition of the quantity &/ \/50, to the initial condition
7, etc. From the quantum mechanical point of view,
the additional virtual particles are related to the dis-
persion of the operators x, and ﬁk. Indeed, using Eq.
(18), we obtain

<xi>_ <xk>2: (v(xk)2+ (vrxh)z ] (41)
(PE) = (pali= (Vepu + (Ve 0,) . (42)

An important conclusion from the above considerations
is that the evolution of the dispersion of the coordinate
and of the momentum operators in a quantum system is
closely related to the sensitivity of the trajectories of
the corresponding classical system to the initial condi-
tions.

V. DISCUSSION

The time has come to consider the limitations of our
semiclassical scheme for the dynamics of an N particle
system. We shall be somewhat more specific in the
discussion of the validity of this approximation than just
merely invoking the usual correspondence principle re-
quirement of high quantum numbers.

We consider first the potential, It is important that
the motion of the system will occur in a region where
the potential is a smooth analytic function of the coordi-
nates. As the present derivation involves an expansion
of the potential in Taylor series, the smoothness of the
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potential is obviously necessary. Higher quantum cor-
rections will probably contain higher derivatives of the
potential with respect to the coordinates. Therefore,
whenever the system approaches a singularity of the po-
tential, our approximation will break down,

Second, consider the validity condition for the expan-
sion which leads to the present scheme. A general nec-
essary condition for the validity of a perturbation treat-
ment is that the corrective terms will be small relative
to the leading terms. In our case, the correction is the
second term in the rhs of Eq. (22), and therefore a nec-
essary condition for the validity of our semiclassical
approximation is
I av|_ 1| a 82V

N
E 1 o, kzl;l e [{(Vexy: Vox )+ (Vox, s Vex D]l
(43)

For a harmonic potential, the rhs of the inequality (43)
vanishes altogether and, indeed, for a harmonic poten-
tial our scheme is exact,

One of the contributions to the inequality (43) is the
spatial dispersion of the coordinate operator (or, in the
Schridinger picture, the spatial dispersion of the wave
function). This quantity is expected, in general, to in-
crease with time. Therefore, the range of times for
which our scheme is adequate is determined by the rate
by which the spatial dispersion expands. As demon-
strated in Sec. IV, the dispersion is related to the sensi-
tivity of the classical trajectories to the initial condi~ .
tions, which in turn are determined by the nature of the
classical motion. In a quasiperiodic motion regime, the
separation between two trajectories emerging from two
adjacent points in the phase space increases linearly
with time, while in a stochastic motion regime, this
separation increases exponentially with time.?’ There-
fore, we do not recommend interpreting the virtual par-
ticles resulting from our treatment as additional degrees
of freedom in the statistical sense. We suggest that the
most effective application of the present new method will
involve the study of the dynamics of coupled anharmonic
oscillators in the quasiperiodic regime.

APPENDIX: THE SEMICLASSICAL
EXPANSIONS OF OPERATORS

Before elaborating on the semiclassical expansions of
operators in the coherent state representation, we would
like to clarify what we mean here by such an expansion.
The quantum parameters that appear in our scheme are
o; and Z. Since all the physical quantities can be ex-

3883

pressed in terms of the coordinates and of the momenta,
the quantities o,/ax and %#/0,Ap can be regarded as the
small parameters of the expansion, where Ax and Ap

are characteristic ranges of the spatial and of the mo-
mentum coordinates, respectively. If the o, contain a
factor of V7%, as we shall assume fromnow on to be the
case [recall that for coherent states of a harmonic oscil-
lator o= (F/mw)'/?], all those small parameters contain
a factor %#'/%, In this sense, the semiclassical expan-
sion can be regarded as an expansion in 7.

The factor 7 will not appear explicitly in the expan-
sion. Its presence is implied by the operators 8/da"
and 8/8a (throughout this Appendix, all operators are
the usual Schrodinger operators). Indeed, from Eq. (7),

we obtain
8 o5 9 ] )
8a*~ V2 0%, iV20, 8p,’ (a1)
8 o, 0 n ]
0, V5 5, " Wi, 8, " 42)

Therefore, each of the operators 9/3a’ ; and 8/9a 5 im-
plies a factor #'/2,

We turn now to the proof of the first semiclassical ex-~
pansion. Let us represent the operators @, and @, as a
normally ordered power series in the operators ¢, and
ay

N
)
= Z bag,my H (@3)"ikayte

81, My kel

9222
29, My

The vector indices have N components, and the sum-
mation is performed over each component independently.
In order to find the normally ordered presentation of the
product £,Q,, we shall use the following identity, ®*which
is satisfied by the boson creation and annihilation oper-

ators a* and a:
al(a¢)n=& [( ) @ *)k]
s (@ )ka?]+ 0w,

= (@)’ +

(A3)

b, II (a})2ralon . (A4)

aaa (a5)
where N is the normal ordering operator. All the other
terms contain higher order derivatives which imply the
presence of 7 to second power or higher, and this is

the meaning of 0(#%). We proceed now with the product
9192:

80, = Z Z b::,’mbmmz H (a,.)"“' mig H (a+)"2n M2k _ E E b;}:m,bm ﬁ (ah)nxknaru(ah)"z:en a"'Zk

o, My N9, My

l1vm1 ty, By

Taking the expectation value of £,9, in the state |a), we get

(@]9 | a)=0,0,+ (9,0, - V30,) + 0(i?),
where we used Eqs. (11) and (12).

This is the first semiclassical expansion.

ui, By By, Mo

Z b::,) ;g,)mgn( k)ﬂlhn {(a')"“ Ik""a .52 ,[(a;)"z" ”‘]}Ha’"”+0 %)= N(9192+Zl % ) 0(72)

(a6)

(an)

For a single particle space (N=1),
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this result was derived by Berman and Zatslawsky.13 Note that if 2; and §, commute, then Eq. (A7) implies that
(V01 V50,)= (930, 9,0,)+0(r?) . (A8)

We turn now to the proof of the second semiclassical expansion. This will be done in two stages. At the first
stage, we prove the relation

(a|Q" {a)y=0"+2nln~1)0"4V,0 - V;0)+0(n?). (49)

The proof will be presented by the method of mathematical induction. Equation (A9) is obviously valid for n=1; we
assume now that it is valid for » and calculate (@ 2™!|@). Using Eq. (A7), we get

(@] @™ a)y=(a|Q2"2|a)=(a|Q"|@)0 + (V,(a| 9" a) - V;0)+0(r?)
=[0"+ 3nn-1)0"" (9,0 9;0)] O+ n0" 1 (V,0- V;0)+ 0% =0""+sn(n+1)0""1(V,0 - V30)+0(r?%),
which completes the proof. The next stage is a generalization of this result to a product of powers of operators:
M M :
1 ?’P
(@[T ap |a)=Py +3 2 ;O—gua‘ (VoOip, 1+ V5Ot )+ 002 , (A10)
k=1 B, 1=1 k 1

where

PM:ﬁOZk)
k=1

(&, D=mink, 1),
[ka l]: max(k, l) s

and €y, ..., 2, are any operators (not necessarily commutative) defined in the N particle Hilbert space. Both Egs.
(A7) and (A9) are special cases of Eq. (A10). We shall prove Eq. (A10) again using the method of mathematical
induction. The validity of Eq. (A10) for M =1 follows immediately from Eq. (A9). We assume now that Eq. (A10)
is valid for M and calculate {a |T¥*!2;*|a). Using Eq. (A7), we get

“ M 2 2~ TMel
, Qrr) )= ( l llgﬂk,ﬂnml )-[P +_1_ _a_PQL_(v o . V=0 )][Onu41+_];9_()_54_i(v Ou.i* V=0 )]
<a A ® ,d)—- & = (] NOM 4 la = M 9 oy 30,,30, aY e, ) a k1] M+l 9 30/«»1 a M+l a UMt

1 <5 %p 18%p
. o0 H 2y = M) .. = + Co
+(V, Py V500 + 0 =P,y + 2 42 50,50, (VoOep, 1 * V5O01s, ) + 3 BjLLOMd {(VoOuer* VaOuut)

M+l

M nMsl
+Z—“P 8usy (V,0,° VaOy.1)+0(h'2)=Puol+'1' 2

a’p
S LMl V-0 +0 h—2 ,
o1 90, 0804, (VO * VaOr, n #*)

2 554 80,90,

which completes the proof. When the operators £y, ..., 2y commute, their order in the product is immaterial,
and in view of Eq. (A8), we get a simplified version of Eq. (A10):

M M
1 9*P
dlar= 2 ¢ " Va : Al1
<a]g9,, Jaz>_p,,,+2’:§1 50,50, (v,0,- V50,)+0(%?) . A11)

The proof of the second semiclassical expansion is now straightforward, Let us expand the function f in power
series

M
@y .U =D f H o, (a12)
[ k=
where n stands for (ny, ... ,ny) and the operators &y, ..., §, commute. Applying Eq. {A11) to (A12) term by term

and then performing the summation, we obtain

1< @l
(a|r@y, ... , Q)| a)y=F(0y, ... ,OM)+§ I:Lt;Ia_Ok__a%—t (v,0,- 950 +0(n?) . (A12)

—
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